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An additive damping treatment is an effective tool to control the dynamic response of built-

up structures, and it is widely utilized through industrial applications. By applying a 

viscoelastic layer on a given structure, the vibratory energy is dissipated through shear and 

in-plane motions at the layer interface. Modeling the effect of such a treatment in a complex 

mechanical system for the mid frequency domain is of interest. Statistical modal Energy 

distribution Analysis (SmEdA) has been developed as an alternative approach to Statistical 

Energy Analysis (SEA) for describing subsystems with low modal overlap. This technique is 

developed from the knowledge of the uncoupled subsystem modes. In this paper, one 

proposes to extend SmEdA by including the effect of a damping treatment. A damped 

subsystem consisting of a composite layer is modeled with the equivalent modulus of a single 

layer, which gives the same transverse displacement as a multi-layered system. The modal 

loss factor of a partially damped structure is estimated by the Modal Strain Energy method 

(MSE), and the results are well agreed with the Complex Eigenvalue Method (CEM). Finally, 

energy transmission between the damped structure and a coupled cavity can be deduced from 

SmEdA modeling, knowing the modeshapes and modal loss factors of the equivalent single 

layer and of the cavity. This method is applied for modeling a rectangular plate partially 

damped with an unconstrained viscoleastic layer coupled to a small acoustic cavity. 

1. Introduction 

Deterministic FEM analysis and SEA method are typical means to predict dynamic response 

of a complicated mechanical system, yet neither method is appropriate for a mid-frequency domain. 

Over the years, a number of alternative/hybrid techniques have been developed to cover this gap 

between low and high frequency domains. SmEdA (Statistical Modal Energy Distribution 

Analysis)
1-5

 is among them, where the basic SEA theory is modified on the energy flow exchanged 

by two oscillators coupled through a gyroscopic element and use of the dual modal formulation for 

describing coupled subsystems. With modal information of uncoupled subsystems deduced from 

FEM, individual modal energies between coupled resonant modes can be apprehended rather than 

ensemble energy of modes that dictates classical SEA theory. Since eigenvectors and natural 
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frequencies of uncoupled subsystems are deduced from FEM, the SmEdA technique can evaluate a 

system that has a complicated geometry and consists of composite materials.  

This paper aims at analyzing energy transmission of a structure-fluid coupled system for a 

mid-frequency domain. SmEdA can reveal energy distribution of coupled modes in a given 

frequency band for a rectangular steel plate coupled to an acoustic cavity. This is extended to a case 

where a plate subsystem is treated with an unconstrained viscoelastic damping layer. The influence 

of additive damping on the energy transmission is of interest. A rectangular steel plate partially 

damped with a viscoelastic patch is characterized by equivalent modulus of a single layer plate
6-7 

that gives the same transverse displacement as a multi-layered plate. In this approach, multi-layers 

are replaced by a single homogeneous layer with equivalent mechanical properties calculated by the 

mixture of classical plate theories. The frequency-dependent properties of a viscoelastic material are 

considered in the equivalent plate modeling which can compute Young’s modulus and damping loss 

factors at resonant modes for an infinite plate. In order to calculate damping levels of a finite plate, 

MSE (Modal Strain Energy) method
8,10,11

  is employed. The fundamental assumption of MSE is that 

the modeshapes of a damped structure is the same as those of undamped. Then, a ratio of a damped 

plate loss factor to the viscoelastic material loss factor can be estimated from a ratio of the elastic 

strain energies stored in the entire structure to the viscoelastic layer. Finally, with the modal loss 

factors of a damped plate calculated by series of mentioned techniques, the energy transmission 

between subsystems can be deduced.  

This paper presents numerical analysis of SmEdA on undamped/damped rectangular steel 

plate coupled to an acoustic cavity. When a plate subsystem is partially damped with a viscoelastic 

patch, the composite panel is modeled as an equivalent single layer, and modal damping levels of 

total subsystem are evaluated and compared to those obtained from CEM (Complex Eigenvalue 

Method)
8-9

. The modal coupling energy loss factors between subsystems and their energy relation is 

evaluated.  

2. SmEdA Method For The Mid-Frequency Domain 

SmEdA is dictated by the basic linear equation of power exchanged between coupled 

subsystems as the SEA principle. However, the method differentiates by dealing with energy levels 

of individual modes of subsystems rather than ensemble energy within a considered frequency band 

Δf. This compensates rather disputable SEA assumption of the energy equipartition among 

subsystem modes. Two subsystems with natural mode p and q, and powers injected into mode p of 

subsystem 1 and mode q of subsystem 2 can be written as 

 .  (1) 

 

    

 

where Πinj
p
 and Πinj

q
 are the time-averaged power injected into mode p and q of subsystem 1 and 2, 

Ep and Eq are the energy of mode p and q of subsystem 1 and 2, ηp and ηq are the damping loss 

factor of mode p and q of subsystem 1and 2, ηpq is the coupling loss factor between mode p and q of 

subsystem 1 and 2. Consider a rectangular plate coupled to an acoustic cavity illustrated in Fig. 1, 

the dual modal formulation uses the modal bases of uncoupled subsystems described by 

displacement and pressure with blocked and free boundary conditions accordingly.  

Modeshapes of each subsystem are extracted from FEM, and interactions between coupled 

modes are evaluated by considering the discretized modes at a coupling surface. The modal 

coupling loss factor is given by 
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                                                                     (2) 

 
 

 where βijkmn, βW and βω are the modal coupling loss factor between mode (m,n) of the plate and 

mode (i, j,k) of the cavity, the modal spatial coupling factor and the modal spectral coupling factor 

respectively. Wijkmn  Mmn and Mijk are the inter-modal work between mode (m,n) of the plate and 

mode (i, j,k) of the cavity and the modal mass of mode (m,n) of the plate and mode (i, j,k) of the 

cavity  respectively. ηijk and ηmn are the modal damping loss factors of each subsystem. If a plate is 

treated with a viscoelastic damping material, the complex modulus of elasticity is considered for the 

modal damping level. Deducing this term, ηmn is rendered by MSE method and is presented in 

Section 3.3. The inter-modal work (Wijkmn) is given by  

 .  

where pijk(Q) and Wmn(Q) are modeshapes of the cavity and the plate. This term represents the 

modal interaction between displacement modeshape (m, n) of the plate and pressure modeshape (i, 

j,k) of the cavity.  

 

 
Figure 1. Top: a rectangular plate coupled to a cavity via a coupling surface (red area). 

Bottom: subsystem descriptions with their boundary conditions of the SmEdA model.  

 

3. Analysis of A Structure-Fluid Coupled System 

3.1 The damping loss factor of the plate subsystem 

The properties of a steel plate are experimentally determined. Young’s modulus and the loss 

factor are measured from modal analysis of a plate with a free-free boundary condition. The plate is 

driven by an impact hammer at one corner of the plate, and the response is measured with an 

accelerometer at another corner. The loss factors are obtained from well-separated modes by the 

high-resolution modal analysis method based on the ESPRIT algorithm
12

 on the recorded time 

signal. Table 1 shows the loss factors averaged over frequency bands of 400 Hz. The total (global) 

average loss factor is considered for the equivalent single plate modelling as presented in Table 2.  
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Table 1. Frequency band averaged damping loss factor of a steel plate with a free-free boundary 

condition obtained from laboratory measurement. The bandwidth (Δf) is 400 Hz. 

Center 

Frequency 

(Hz) 

 

200 

 

600 

 

1k 

 

1.4k 

 

1.8 

 

Total 

average 

η 0.0027 0.0017 0.0014 0.0019 0.0009 0.0017 

 

3.2 Equivalent single layer modelling of a partially damped plate 

Developed by Guyader et al.
6-7

 and implemented in the software MOVISAND, the equivalent 

single layer modelling simplifies a multi-layered panel with a single homogenous layer of 

equivalent viscoelastic moduli. The method is based on transverse waves motion computation 

(Love-Kirchhoff thin plate theory), the equivalent viscoelastic moduli of a single layer are 

determined in order to give the same transverse displacements of multi-layered panel. The method 

considers bending, membrane and shear motions in each layer and uses the continuity condition on 

displacements and shear stresses at layer interfaces to obtain an equation of motion that is 

independent of a number of layers. In order to characterize an equivalent single layer material, 

equivalent moduli e.g. Young’s modulus, mass density and Poisson’s ratio must be determined. 

There parameters are given by  

 

         
        

where D and h are bending stiffness of the equivalent layer and thickness of each damping layer 

respectively. Derivation of the analytical expression of the equivalent bending stiffness D can be 

found in the literature
7
. 

 

 
Figure 2. Equivalent single layer modelling. Boundaries are clamped. 

 

 

A rectangular steel plate subsystem damped with a rectangular PVC (polyvinyl chloride) 

patch is modelled as an exact multi-layered plate and an equivalent plate as seen in Fig. 2. The PVC 

patch bears 33% of the base plate, and its location is arbitrarily chosen over the plate surface. 

Young’s modulus of the steel plate presented in Table 2 is obtained from the averaged relative 

natural frequency differences between numerical FE calculation and experimental results. 

MOVISAND software calculates equivalent parameters for an infinite plate model according to 

Eq. 4; Young’s modulus, density, Poisson’s ratio and damping loss factor. Figure 3 shows the 

variations of Young’s modulus and damping factors with respect to vibration frequency for the 

equivalent infinite plate model. In fact, neither quantity varies significantly since complex moduli 

(frequency-dependent) of PVC are neglected in the calculation.  
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Figure 3. Equivalent moduli of the infinite steel-PVC composite panel: (a) Young’s 

modulus, (b) Loss factor 

 

 

Table 2. MOVISAND calculation results: equivalent moduli of the infinite steel-PVC composite 

panel. Frequency-dependent E(f) and η(f) of the equivalent plate model are presented in Fig. 3.  

 Steel PVC Equivalent 

h (m) 0.001 0.003 0.004 

E (Pa) 2.03e11 2.4e7 E(f) 

(kg/m
3
) 7523.1 1200 2780.77 

 0.33 0.45 0.42 

η 0.0017 0.35 η(f) 

 

 

Once equivalent parameters are determined for an infinite plate model, they can be taken 

into a computation of the dynamic behaviour of a finite plate partially damped with a PVC patch. 

To evaluate the equivalent modelling method, the frequency response function of two plate models 

shown in Fig. 2 is computed. Seen from the equivalent plate model in Fig. 2, the composite core is 

defined by the equivalent parameters presented Table 2 and Fig. 3, and the rest is the steel plate 

whose parameters are also given in Table 2. Since complex moduli of the equivalent plate shown in 

Fig. 3 do not vary significantly in the frequency range of interest (up to 2 kHz), constant averaged 

values Eeqv = 2.95 GPa and ηeqv = 0.0096 are considered for the computation. Both plate models 

with clamped boundaries are driven with a harmonic transverse point force at the same position, and 

the point response is calculated with NASTRAN FE software. The results are in good agreement 

between two models, demonstrating a validity of the equivalent single layer modelling.  

 

 
Figure 4. Frequency response function (a single response point) of the equivalent and multi-layered 

plate models, clamped at their boundaries. 
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3.3 Numerical estimation of modal loss factor of the finite equivalent plate 

Amongst several techniques to predict dynamic behaviours of a damped structure, MSE 

method has been proved effective and widely used in practice. It relies on the linear dynamics of 

undamped systems in which a viscously damped linear system is assumed to posses the same real 

normal modes as undamped systems. In other words,  a ratio of the modal composite loss factor to a 

viscoelastic loss factor can be approximated as a ratio of the elastic strain energy stored in the 

viscoelastic layer to the total elastic energy stored in the total structure for a given undamped mode 

ψ. This is given by  

 
 

where K and V are a real part of the stiffness matrix and strain energy. This method is applied to 

calculate the modal damping levels of a finite damped plate. Note that MSE calculation is 

performed on the equivalent plate model only. The equivalent parameters calculated for an infinite 

plate model are taken into FE normal mode calculation on the equivalent plate model with clamped 

boundaries in order to give the modal damping levels. As the same manner presented in the 

frequency response function computation given in Section 3.1, constant averaged values of Eeqv = 

2.95 GPa and ηeqv = 0.0096 are considered for the damped part of the finite plate. The results are 

evaluated with those obtained from the CEM (Complex Eigen Method)
8-9

 and are in good 

agreement. 

 

3.4 The damping loss factor of the cavity subsystem 

The loss factor of a cavity is experimentally determined. A dimension of the cavity is 0.5 * 

0.6 * 0.7 (m) as illustrated in Fig. 1. The cavity is driven with a white noise at a random position, 

and the pressure decay inside the cavity is recorded after the noise source is turned off. Two 

methods are used to derive the loss factors. The method presented in the literature
12

 based on modal 

analysis and the standard ISO method
13

 are used. For the latter, the decay curve of measured 

pressure is fitted to a straight line by the linear regression approach in order to calculate the 

reverberation time. Then the modal loss factor of an acoustic space can be obtained as  

                                              
where A, S, ᾱ, V and TR are total absorption area, surface area of the cavity, angle averaged 

absorption coefficient, cavity volume and the reverberation time (T30) respectively.  

 

Table 3. Frequency band averaged damping loss factor of an acoustic cavity obtained from 

laboratory measurement with the high-resolution method
13

. The bandwidth (Δf) is 400 Hz. 

Center 

Frequency 

(Hz) 

 

200 

 

600 

 

1k 

 

1.4k 

 

1.8 

 

Total 

average 

ηijk 0.0047 0.0037 0.0025 0.0026 0.0011 0.0029 

 

3.5 Energy relation between subsystems 

SmEdA computations are rendered on two different coupled systems: undamped steel plate 

coupled to a cavity (model 1) and partially damped steel plate with a rectangular PVC patch 

coupled to a cavity (model 2). Dimensions of the plate, cavity and PVC patch are 0.5*0.6*0.001 
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(m), 0.5*0.6*0.7 (m) and 0.25*0.4*0.003 (m) respectively. The total (global) average loss factor of 

the cavity shown in Table 3 is considered in the SmEdA computation for both models. For model 2, 

an average value (ηmn = 0.0054) of the modal damping levels of the damped plate subsystem is 

considered. The plate subsystem is driven with a normal harmonic point force at the same position 

randomly chosen for both models. The modeshape at the excitation point is considered for the 

injected power, which is used to compute subsystem energy levels from Eq. 1. 

 

     

Figure 5. A steel plate coupled to a cavity (model 1) and a steel plate damped with a PVC patch 

coupled to a cavity (model 2). 

 

SmEdA can reveal the energy transmission between coupled resonant modes in a given 

frequency band. As seen in Fig. 6 (c1), the coupled modes (11
th

 plate mode at 1097.13 Hz, 10
th

 

cavity mode at 1096.33 Hz) of model 1 dominate the energy exchange rate within a frequency band 

centered at 1 kHz, and this strong coupling occurs when their resonant frequencies coincide. This 

introduces a considerable modal energy disparity as overlapping between subsystem modes is low. 

In such case, SEA is not able to describe uneven modal energy distribution and overestimates the 

energy transfer.  

The influence of damping in model 2 can be clearly detected from the modal coupling loss 

factor (βijkmn) of model 2 as presented in Fig. 6 (c2). For the same frequency band considered (1 

kHz), the resonant coincidence that conducts the highest level of energy transfer is shifted to a 

different mode couple (19
h
 plate mode at 993.2 Hz, 15

th
 cavity mode at 993.11 Hz) compared to 

model 1. 

 

               

Figure 6. Modal coupling factors of model 1 (left) and model 2 (right) in a frequency band centered at 1 

kHz. (a1) (a2) The modal spatial coupling loss factor (βW).  (b1) (b2) The modal spectral coupling factor 

(βω). (c1) (c2) The modal coupling loss factor (βijkmn). 
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While an additive damping layer surely reduces the vibratory energy of a plate subsystem, it 

does not necessarily lead to a reduction of energy transmission to a cavity subsystem. In fact, for the 

frequency band of 1 kHz an energy ratio of the cavity subsystem to the plate subsystem (E2/E1) of 

model 2 exceeds that of model 1, which indicates the damped plate permits more energy to be 

transmitted to a cavity than the case of undamped. As seen in Fig. 6 (a1) and (a2), the interactions 

between subsystem modeshapes at the coupling surface do not significantly differentiate between 

two models as total levels (sum) of their modal spatial coupling factors (βW) within the frequency 

band are nearly the same. On the other hand, the damping augments the frequency coupling as a 

sum of the modal spectral coupling factor (βω) of model 2 is higher than that of model 1 as 

presented in Fig. 6 (b1) and (b2). This results in approximately 40 % higher modal damping loss 

factor (βijkmn) for model 2, which indicates that the influence of damping over frequency 

coincidence is more responsible for the strong coupling between subsystems than spatial 

coincidence. However, such influence of the damping is shown to be disproportionate over different 

frequency bands, which depends on the modal density.  

 

4. Conclusion 

The dynamic behaviour of the structure-fluid coupled system is investigated with SmEdA 

methodology. Energy transmission between a plate subsystem and an acoustic cavity subsystem is 

deduced based on energies of individual modes rather than ensemble energy in a given frequency 

band. When a plate subsystem is partially damped with an additive viscoelastic layer, the composite 

plate can be modelled as an equivalent single layer which gives the same transverse displacement as 

a multi-layered plate. Such a method has been demonstrated computationally efficient and proved to 

yield comparable results. The modal loss factor of a damped plate is obtained from the MSE 

method. A ratio of the composite system loss factor to the viscoelastic loss factor can be 

approximated from a ratio of the elastic strain energy store in viscoelastic core and total structure. 

This provides a rapid estimate of modal damping levels with a reasonable accuracy. With the modal 

loss factors deduced by MSE, the influence of a damping layer over the vibratory energy flow can 

be evaluated by the SmEdA technique. The advantage of such technique is that it can reveal the 

energy transmission between individual coupled modes and evaluate the influence of damping on 

the modal energies for a frequency band under study. It is shown that it is possible for a damping 

mechanism to allow high energy transmission to a cavity subsystem largely due to the frequency 

coincidence of subsystems rather than the spatial coincidence in a given frequency band. However, 

this is a particular case where a damping layer geometry, thickness and location can yield different 

outcome.  
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