
HAL Id: hal-00823968
https://hal.science/hal-00823968

Preprint submitted on 20 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schützenberger’s factorization on the (completed) Hopf
algebra of q−stuffle product.

Chen Bui, Gérard Henry Edmond Duchamp, Vincel Hoang Ngoc Minh

To cite this version:
Chen Bui, Gérard Henry Edmond Duchamp, Vincel Hoang Ngoc Minh. Schützenberger’s factorization
on the (completed) Hopf algebra of q−stuffle product.. 2013. �hal-00823968�

https://hal.science/hal-00823968
https://hal.archives-ouvertes.fr


Schützenberger’s factorization on the

(completed) Hopf algebra of q−stuffle product

C. Bui♭, G. H. E. Duchamp♯, V. Hoang Ngoc Minh♦,♯
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Abstract. In order to extend the Schützenberger’s factorization, the combinatorial Hopf algebra of
the q-stuffles product is developed systematically in a parallel way with that of the shuffle product
and and in emphasizing the Lie elements as studied by Ree. In particular, we will give here an
effective construction of pair of bases in duality. [ 20-05-2013 09:23]
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1 Introduction

Schützenberger’s factorization [23, 22] has been introduced and plays a central role in the renormalization
[18] of associators1 which are formal power series in non commutative variables [1]. The coefficients of
these power series are polynomial at positive integral multi-indices of Riemann’s zêta function2 [13, 26]
and they satisfy quadratic relations [5] which can be explained through the Lyndon words [2, 14, 6, 20].
These quadratic relations can be obtained by identification of the local coordinates, in infinite dimension,
on a bridge equation connecting the Cauchy and Hadamard algebras of the polylogarithmic functions and
using the factorizations, by Lyndon words, of the non commutative generating series of polylogarithms
[16] and of harmonic sums [18]. This bridge equation is mainly a consequence of the double isomorphy
between these algebraic structures to respectively the shuffle [16] and quasi-shuffle (or stuffle) [17] algebras
both admitting the Lyndon words as a transcendence basis3 [20, 15].
In order to better understand the mechanisms of the shuffle product and to obtain algorithms on quasi-
shuffle products, we will examine, in the section below, the commutative q-stuffle product interpolating
between the shuffle [21], quasi-shuffle (or stuffle [15]) and minus-stuffle products [7, 8], obtained for4

q = 0, 1 and −1 respectively. We will extend the Schützenberger’s factorization by developping the
combinatorial Hopf algebra of this product in a parallel way with that of the shuffle and in emphasizing
the Lie elements studied by Ree [21]. In particular, we will give an effective construction (implemented
in Maple [4]) of pair of bases in duality (see Propositions 4 and 6).
This construction uses essentially an adapted version of the Eulerian projector and its adjoint [22] in order
to obtain the primitive elements of the q-stuffle Hopf algebra (see Definition 1). They are obtained thanks
to the computation of the logarithm of the diagonal series (see Proposition 1). This study completes the
treatement for the stuffle [18] and boils down to the shuffle case for q = 0 [22].
Let us remark that it is quite different from other studies [9, 19] concerning non commutative q-shuffle
products interpolating between the concatenation and shuffle products, for q = 0 and 1 respectively and
using the q-deformation theory of non commutative symmetric functions5 [9].

1 The associators were introduced in quantum field theory by Drinfel’d [10, 11] and the universal Drinfel’d asso-
ciator, i.e. ΦKZ , was obtained, in [13], with explicit coefficients which are polyzêtas and regularized polyzêtas
(see [18] for the computation of the other associators involving only convergent polyzêtas as local coordinates,
and for three algorithmical process to regularize the divergent polyzêtas).

2 These values are usually abbreviated MZV’s by Zagier [26] and are also called polyzêtas by Cartier [5].
3 Our method applies also to any other transcendence basis built by duality from PBW, see below.
4 In [7], the letter λ is used instead of q.
5 Recall also that the algebra of non commutative symmetric functions, denoted by Sym is the Solomon descent
algebra [24] and it is dual to the algebra of quasi-symmetric functions, denoted by QSym which is isomorphic
to the quasi-shuffle algebra [15].
Thus our construction of pair of bases in duality are also suitable for Sym and QSym (and their deformations,
provided they remain graded connected cocommutative Hopf algebras).
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2 q-deformed stuffle

2.1 Results for the q-deformed stuffle

Let k be a unitary Q-algebra containing q. Let also Y = {ys}s≥1 be an alphabet with the total order

y1 > y2 > · · · . (1)

One defines the q-stuffle, by a recursion or by its dual co-product ∆
q
, as follows. For any ys, yt ∈ Y

and for any u, v ∈ Y ∗,

u q1Y ∗ = 1Y ∗ qu = u and ysu qytv = ys(u qytv) + yt(ysu qv) + qys+t(u qv), (2)

∆
q
(1Y ∗) = 1Y ∗ ⊗ 1Y ∗ and ∆

q
(ys) = ys ⊗ 1Y ∗ + 1Y ∗ ⊗ ys + q

∑

s1+s2=s

ys1 ⊗ ys2 . (3)

This product is commutative, associative and unital (the neutral being the empty word 1Y ∗). With the
co-unit defined by, for any P ∈ k〈Y 〉,

ǫ(P ) = 〈P | 1Y ∗〉 (4)

one gets H
q
= (k〈Y 〉, conc, 1Y ∗ , ∆

q
, ǫ) and H∨

q
= (k〈Y 〉, q, 1Y ∗ , ∆conc, ǫ) which are mutually

dual bialgebras and, in fact, Hopf algebras because they are N-graded by the weight, defined by

∀w = yi1 . . . yir ∈ Y +, (w) = i1 + . . .+ ir. (5)

Lemma 1 (Friedrichs criterium). Let S ∈ k〈〈Y 〉〉 (for (2), we suppose in addition that 〈S | 1Y ∗〉 = 1).
Then,

1. S is primitive, i.e. ∆
q
S = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S, if and only if, for any u, v ∈ Y +, 〈S | u qv〉 = 0.

2. S is group-like, i.e. ∆
q
S = S ⊗ S, if and only if, for any u, v ∈ Y +, 〈S | u qv〉 = 〈S | u〉〈S | v〉.

Proof. The expected equivalence is due respectively to the following facts

∆
q
S = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S − 〈S | 1Y ∗ ⊗ 1Y ∗〉1Y ∗ ⊗ 1Y ∗ +

∑

u,v∈Y +

〈S | u qv〉u ⊗ v,

∆
q
S =

∑

u,v∈Y ∗

〈S | u qv〉u⊗ v and S ⊗ S =
∑

u,v∈Y ∗

〈S | u〉〈S | v〉u ⊗ v.

Lemma 2. Let S ∈ k〈〈Y 〉〉 such that 〈S | 1Y ∗〉 = 1. Then, for the co-product ∆
q
, S is group-like if

and only if logS is primitive.

Proof. Since ∆
q
and the maps T 7→ T ⊗ 1Y ∗ , T 7→ 1Y ∗ ⊗T are continous homomorphisms then if logS

is primitve then, by Lemma 1, ∆
q
(log S) = logS ⊗ 1Y ∗ + 1Y ∗ ⊗ logS. Since logS ⊗ 1Y ∗ , 1Y ∗ ⊗ logS

commute then

∆
q
S = ∆

q
(exp(log S))

= exp(∆
q
(log S))

= exp(logS ⊗ 1Y ∗) exp(1Y ∗ ⊗ logS)

= (exp(log S)⊗ 1Y ∗)(1Y ∗ ⊗ exp(log S))

= S ⊗ S.

This means S is group-like. The converse can be obtained in the same way.

Lemma 3. Let S1, . . . , Sn be proper formal power series in k〈〈Y 〉〉. Let P1, . . . , Pm be primitive elements
in k〈Y 〉, for the co-product ∆ .

1. If n > m then 〈S1 q . . . qSn | P1 . . . Pm〉 = 0.
2. If n = m then

〈S1 q . . . qSn | P1 . . . Pn〉 =
∑

σ∈Sn

n
∏

i=1

〈Si | Pσ(i)〉.
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3. If n < m then, by considering the language M over the new alphabet A = {a1, . . . , am}

M = {w ∈ A∗|w = aj1 . . . aj|w|
, j1 < . . . < j|w|, |w| ≥ 1}

and the morphism µ : Q〈A〉 −→ k〈Y 〉 given by, for any i = 1, . . . ,m, µ(ai) = Pi, one has :

〈S1 q . . . qSn | P1 . . . Pm〉 =
∑

w1,...,wm∈M

supp(w1⊔⊔ ...⊔⊔wm)∋a1...am

n
∏

i=1

〈Si | µ(wi)〉.

Proof. On the one hand, since the Pi’s are primitive then

∆
(n−1)

q
(Pi) =

∑

p+q=n−1

1⊗p
Y ∗ ⊗ Pi ⊗ 1⊗q

Y ∗ .

On the other hand,

∆
(n−1)

q
(P1 . . . Pm) = ∆

(n−1)
q

(P1) . . .∆
(n−1)

q
(Pm)

and
〈S1 q . . . qSn | P1 . . . Pm〉 = 〈S1 ⊗ . . .⊗ Sn | ∆

(n−1)
q

(P1 . . . Pm)〉.

Hence,

〈S1 q . . . qSn | P1 . . . Pm〉 = 〈
n

⊗

i=1

Si |
m
∏

i=1

∑

p+q=n−1

1⊗p
Y ∗ ⊗ Pi ⊗ 1⊗q

Y ∗〉.

1. For n > m, by expanding ∆
(n−1)

q
(P1) . . .∆

(n−1)
q

(Pm), one obtains a sum of tensors containing at least
one factor equal to 1Y ∗ . For i = 1, .., n, Si is proper and the result follows immediately.

2. For n = m, since

n
∏

i=1

∆
(n−1)

q
(Pi) =

∑

σ∈Sn

n
⊗

i=1

Pσ(i) +Q,

where Q is sum of tensors containing at least one factor equal to 1 and the Si’s are proper then
〈S1 ⊗ . . .⊗ Sn | Q〉 = 0. Thus, the result follows.

3. For n < m, since, for i = 1, .., n, the power series Si is proper then the expected result follows by
expanding the product

m
∏

i=1

∆
(n−1)

q
(Pi) =

m
∏

i=1

∑

p+q=n−1

1⊗p
Y ∗ ⊗ Pi ⊗ 1⊗q

Y ∗ .

Definition 1. Let π1 and π̌1 be the mutually adjoint projectors degree-preserving linear endomorphisms
of k〈Y 〉 given by, for any w ∈ Y +,

π1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 q . . . quk〉u1 . . . uk,

π̌1(w) = w +
∑

k≥2

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉u1 q . . . quk.

In particular, for any yk ∈ Y , the polynomials π1(yk) and π̌1(yk) are given by

π1(yk) = yk +
∑

l≥2

(−q)l−1

l

∑

j1,...,jl≥1

j1+...+jl=k

yj1 . . . yjl and π̌1(yk) = yk.

Proposition 1. Let DY be the diagonal series over Y :

DY =
∑

w∈Y ∗

w ⊗ w.

Then
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1. logDY =
∑

w∈Y +

w ⊗ π1(w) =
∑

w∈Y +

π̌1(w)⊗ w.

2. For any w ∈ Y ∗, we have

w =
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

〈w | u1 q . . . quk〉π1(u1) . . . π1(uk)

=
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉π̌1(u1) q . . . qπ̌1(uk).

In particular, for any ys ∈ Y , we have

ys =
∑

k≥1

qk−1

k!

∑

s′1+···+s′
k
=s

π1(ys′1) . . . π1(ys′
k
) and ys = π̌1(ys).

Proof. 1. Expanding by different ways the logarithm, it follows the results :

logDY =
∑

k≥1

(−1)k−1

k

(

∑

w∈Y +

w ⊗ w

)k

=
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈Y +

(u1 q . . . quk)⊗ u1 . . . uk

=
∑

w∈Y +

w ⊗
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 q . . . quk〉u1 . . . uk.

logDY =
∑

w∈Y +

∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉u1 q . . . quk ⊗ w.

2. Since DY = exp(log(DY )) then, by the previous results, one has separately,

DY =
∑

k≥0

1

k!

(

∑

w∈Y +

w ⊗ π1(w)

)k

=
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

(u1 q . . . quk)⊗ (π1(u1) . . . π1(uk))

=
∑

w∈Y +

w ⊗
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

〈w | u1 q . . . quk〉π1(u1) . . . π1(uk).

DY =
∑

k≥0

1

k!

∑

u1,...,uk∈Y +

(π̌1(u1) q . . . qπ̌1(uk))⊗ (u1 . . . uk)

=
∑

w∈Y +

∑

k≥0

1

k!

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉π̌1(u1) q . . . qπ̌1(uk)⊗ w.

It follows then the expected result.

Lemma 4. For any w ∈ Y +, one has ∆
q
π1(w) = π1(w)⊗ 1Y ∗ + 1Y ∗ ⊗ π1(w).

Proof. Let α be the alphabet duplication isomorphism defined by, for any ȳ ∈ Ȳ , ȳ = α(y)
Applying the tensor product of algebra isomorphisms α ⊗ Id to the diagonal series DY , we obtain, by
Lemma 1, a group-like element and then applying the logarithm of this element (or equivalently, applying
α⊗ π1 to DY ) we obtain S which is, by Lemma 2, a primitive element :

(α⊗ Id)DY =
∑

w∈Y ∗

α(w) w and S = (α ⊗ π1)DY =
∑

w∈Y ∗

α(w) π1(w).

The two members of the identity ∆
q
S = S ⊗ 1Y ∗ + 1Y ∗ ⊗ S give respectively

∑

w∈Y ∗

α(w) ∆
q
π1(w) and

∑

w∈Y ∗

α(w) π1(w) ⊗ 1Y ∗ +
∑

w∈Y ∗

α(w) 1Y ∗ ⊗ π1(w).

Since {w}w∈Ȳ ∗ is a basis for Q〈Ȳ 〉 then identifying the coefficients in the previous expressions, we get
∆

q
π1(w) = π1(w)⊗ 1Y ∗ + 1Y ∗ ⊗ π1(w) meaning that π1(w) is primitive.
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2.2 Pair of bases in duality on q-deformed stuffle algebra

Let P = {P ∈ Q〈Y 〉 | ∆
q
P = P ⊗ 1Y ∗ + 1Y ∗ ⊗ P} be the set of primitive polynomials [3]. Since, in

virtue of Lemma 4., Im(π1) ⊆ P , we can state the following

Definition 2. Let {Πl}l∈LynY be the family of P and6 k〈Y 〉 obtained as follows

Πyk
= π1(yk) for k ≥ 1,

Πl = [Πs, Πr] for l ∈ LynX, standard factorization of l = (s, r),

Πw = Πi1
l1
. . .Πik

lk
for w = li11 . . . likk , l1 > . . . > lk, l1 . . . , lk ∈ LynY.

Proposition 2. 1. For l ∈ LynY , the polynomial Πl is upper triangular and homogeneous in weight :

Πl = l +
∑

v>l,(v)=(l)

cvv,

where for any w ∈ Y +, (w) denotes the weight of w with (yk) = deg(yk) = k.
2. The family {Πw}w∈Y ∗ is upper triangular and homogeneous in weight :

Πw = w +
∑

v>w,(v)=(w)

cvv.

Proof. 1. Let us prove it by induction on the length of l : the result is immediate for l ∈ Y . The result
is suppose verified for any l ∈ LynY ∩ Y k and 0 ≤ k ≤ N . At N + 1, by the standard factorization
(l1, l2) of l, one has Πl = [Πl1 , Πl2 ] and l2l1 > l1l2 = l. By induction hypothesis,

Πl1 = l1 +
∑

v>l1,(v)=(l1)

cvv and Πl2 = l2 +
∑

u>l2,(u)=(l2)

duu,

⇒ Πl = l +
∑

w>l,(w)=(l)

eww,

getting ew’s from cv’s and du’s.
2. Let w = l1 . . . lk, with l1 ≥ . . . ≥ lk and l1, . . . , lk ∈ LynY . One has

Πli = li +
∑

v>li,(v)=(li)

ci,vv and Πw = l1 . . . lk +
∑

u>w,(u)=(w)

duu,

where the du’s are obtained from the ci,v’s. Hence, the family {Πw}w∈Y ∗ is upper triangular and
homogeneous in weight. As the grading by weight is in finite dimensions, this family is a basis of
k〈Y 〉.

Definition 3. Let {Σw}w∈Y ∗ be the family of the quasi-shuffle algebra (viewed as a Q-module) obtained
by duality with {Πw}w∈Y ∗ :

∀u, v ∈ Y ∗, 〈Σv | Πu〉 = δu,v.

Proposition 3. The family {Σw}w∈Y ∗ is lower triangular and homogeneous in weight. In other words,

Σw = w +
∑

v<w,(v)=(w)

dvv.

Proof. By duality with {Πw}w∈Y ∗ (see Proposition 2), we get the expected result.

Theorem 1. 1. The family {Πl}l∈LynY forms a basis of P.
2. The family {Πw}w∈Y ∗ forms a basis of k〈Y 〉.
3. The family {Σw}w∈Y ∗ generate freely the quasi-shuffle algebra.
4. The family {Σl}l∈LynY forms a transcendence basis of (k〈Y 〉, q).

6 Due to the fact this Hopf algebra is cocommutative and graded, then by the theorem of CQMM, k〈Y 〉 ≃ U(P).
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Proof. The family {Πl}l∈LynY of primitive upper triangular homogeneous in weight polynomials is free
and the first result follows. The second is a direct consequence of the Poincaré-Birkhoff-Witt theorem.
By the Cartier-Quillen-Milnor-Moore theorem, we get the third one and the last one is obtained as
consequence of the constructions of {Σl}l∈LynY and {Σw}w∈Y ∗ .

To decompose any letter ys ∈ Y in the basis {Πw}w∈Y ∗ , one can use its expression in Proposition 1.
Now, using the mutually adjoint projectors π1 and π̌1 given in Definition 1 and are determinded by
Proposition 1, let us clarify the basis {Σw}w∈Y ∗ and then the transcendence basis {Σl}l∈LynY of the
quasi-shuffle algebra (k〈Y 〉, q, 1Y ∗) as follows

Proposition 4. We have

1. For w = 1Y ∗ , Σw = 1.
2. For any w = li11 . . . likk , with l1, . . . , lk ∈ LynY and l1 > . . . > lk,

Σw =
Σ qi1

l1 q . . . qΣ
qik

lk

i1! . . . ik!
.

3. For any y ∈ Y ,

Σy = y = π̌1(y).

Proof. 1. Since Π1Y ∗ = 1 then Σ1Y ∗ = 1.

2. Let u = u1 . . . un = li11 . . . likk , v = v1 . . . vm = hj1
1 . . . h

jp
p with l1 . . . , lk, h1, . . . , hp, u1, . . . , un and

v1, . . . , vm ∈ LynY, l1 > . . . > lk, h1 > . . . > hp, u1 ≥ . . . ≥ un and v1 ≥ . . . ≥ vm and i1+ . . .+ik = n,
j1 + . . .+ jp = m. Hence, if m ≥ 2 (resp. n ≥ 2) then v /∈ LynY (resp. u /∈ LynY ).
Since

〈Σu1 q . . . qΣun
|

n
∏

i=1

Πvi〉 = 〈Σu1 ⊗ . . .⊗Σun
| ∆

(n−1)
q

(Πv1 . . . Πvm)〉

then many cases occur :
(a) Case n > m. By Lemma 3(1), one has

〈Σu1 q . . . qΣun
| Πv1 . . . Πvm〉 = 0.

(b) Case n = m. By Lemma 3(2), one has

〈Σu1 q . . . qΣun
|

n
∏

i=1

Πvi〉 =
∑

σ∈Σn

n
∏

i=1

〈Σui
| Πvσ(i)

〉

=
∑

σ∈Σn

n
∏

i=1

δui,vσ(i)
.

Thus, if u 6= v then (u1, . . . , un) 6= (v1, . . . , vn) then the second member is vanishing else, i.e.
u = v, the second member equals 1 because the factorization by Lyndon words is unique.

(c) Case n < m. By Lemma 3(3), let us consider the following language over the new alphabet
A := {a1, . . . , am} :

M = {w ∈ A∗|w = aj1 . . . aj|w|
, j1 < . . . < j|w|, |w| ≥ 1},

and the morphism µ : Q〈A〉 −→ k〈Y 〉 given by, for any i = 1, . . . ,m, µ(ai) = Πvi . We get :

〈Σu1 q . . . qΣun
|

n
∏

i=1

Πvi〉 =
∑

w1,...,wn∈M

supp(w1⊔⊔ ...⊔⊔wn)∋a1 ...am

n
∏

i=1

〈Σui
| µ(wi)〉

= 0.

Because in the right side of the first equality, on the one hand, there is at least one wi, |wi| ≥ 2,
corresponding to µ(wi) = Πvj1

. . . Πvj|wi|
such that vj1 ≥ . . . ≥ vj|wi|

and on the other hand,

νi := vj1 . . . vj|wi|
/∈ LynY and ui ∈ LynY .
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By consequent,

〈Σu | Πv〉 =
1

i1! . . . ik!
〈Σ qi1

l1 q . . . qΣ
qik

lk
| Πj1

h1
. . .Π

jp
hp
〉

= δu,v.

3. For any y ∈ Y , by Proposition 3, Σy = y = π̌1(y). The directe computation prove that, for any
w ∈ Y ∗ and for any y ∈ Y , one has 〈Πw | Σy〉 = δw,y.

Proposition 5. 1. For w ∈ Y +, the polynomial Σw is proper and homogeneous of degree (w), for
deg(yi) = i, and with rational positive coefficients.

2. DY =
∑

w∈Y ∗

Σw ⊗Πw =

ց
∏

l∈LynY

exp(Σl ⊗Πl).

3. The family LynY forms a transcendence basis of the quasi-shuffle algebra and the family of proper
polynomials of rational positive coefficients defined by, for any w = li11 . . . likk with l1 > . . . > lk and
l1, . . . , lk ∈ LynY ,

χw =
1

i1! . . . ik!
l qi1
1 q . . . ql

qik
k

forms a basis of the quasi-shuffle algebra.
4. Let {ξw}w∈Y ∗ be the basis of the envelopping algebra U(LieQ〈X〉) obtained by duality with {χw}w∈Y ∗ :

∀u, v ∈ Y ∗, 〈χv | ξu〉 = δu,v.

Then the family {ξl}l∈LynY forms a basis of the free Lie algebra LieQ〈Y 〉.

Proof. 1. The proof can be done by induction on the length of w using the fact that the product q

conserve the property, l’homogenity and rational positivity of the coefficients.
2. Expressing w in the basis {Σw}w∈Y ∗ of the quasi-shuffle algebra and then in the basis {Πw}w∈Y ∗ of

the envelopping algebra, we obtain successively

DY =
∑

w∈Y ∗

(

∑

u∈Y ∗

〈Πu | w〉Σu

)

⊗ w

=
∑

u∈Y ∗

Σu ⊗

(

∑

w∈Y ∗

〈Πu | w〉w

)

=
∑

u∈Y ∗

Σu ⊗Πu

=
∑

l1>...>lk
i1,...,ik≥1

1

i1! . . . ik!
Σ qi1

l1 q . . . qΣ
qik

lk
⊗Πi1

l1
. . . Πik

lk

=

ց
∏

l∈LynY

∑

i≥0

1

i!
Σ qi

l ⊗Πi
l

=

ց
∏

l∈LynY

exp(Σl ⊗Πl).

3. For w = li11 . . . likk with l1, . . . , lk ∈ LynY and l1 > . . . > lk, by Proposition 2, the proper polynomial
of positive coefficients Σw is lower triangular :

Σw =
1

i1! . . . ik!
Σ qi1

l1 q . . . qΣ
qik

lk

= w +
∑

v<w,(v)=(w)

cvv.

In particular, for any lj ∈ LynY , Σlj is lower triangular :

Σlj = lj +
∑

v<lj ,(v)=(lj)

cvv.
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Hence, Σw = χw + χ′
w, where χ′

w is a proper polynomial of k〈Y 〉 of rational positive coefficients. We
deduce then the support of χw contains words which are less than w and 〈χw | w〉 = 1. Thus, the
proper polynomial χw of rational positive coefficients is lower triangular :

χw = w +
∑

v<w,(v)=(w)

cvv,

⇒ ∀l ∈ LynY, χl = l +
∑

v<l,(v)=(l)

cvv.

It follows then expected results.
4. By duality, for w ∈ Y ∗, the proper polynomial ξw is upper triangular. In particular, for any l ∈ LynY ,

the proper polynomial ξl is upper triangular :

ξl = l +
∑

v>l,(v)=(l)

dvv.

Hence, the family {ξl}l∈LynY is free and its elements verify an analogous of the generalized criterion
of Friedrichs :
– for w ∈ LynY , one has 〈χw | ξl〉 = δw,l,
– for w = l1 . . . ln /∈ LynY with l1, . . . , ln ∈ LynY and l1 ≥ . . . ≥ ln, one has (since l ∈ LynY )

〈χl1 q . . . qχln | ξl〉 = 〈χw | ξl〉 = 0.

The polynomials ξl’s are primitive. Actually, we have

∆
q
ξl =

∑

u∈Y +

〈u q1Y ∗ | ξl〉u⊗ 1 +
∑

v∈Y +

〈1Y ∗ qv | ξl〉1 ⊗ v +
∑

u,v∈Y +

〈u qv | ξl〉u ⊗ v

+ 〈1Y ∗ q1Y ∗ | ξl〉1⊗ 1
= ξl ⊗ 1 + 1⊗ ξl.

Because, after decomposing the words u and v on the transcendence basis {χl}l∈LynY and by the
previous fact, the third sum is vanishing. The last one is also vanishing since the ξl’s are proper.
Hence, it follows the expected result.

2.3 Determination of {Σl}l∈LynY

Following [22], we call a standard sequence of Lyndon words to be a sequence

S = (l1, · · · , lk), k ≥ 1 (6)

if for all i, either li to be a letter or the standard factorization σ(li) = (l′i, l
′′
i ) and l′′i ≥ li+1, · · · , ln. Note

that a decreasing sequence of Lyndon words is also a standard sequence. A rise of a sequence S is an
index i such that li < li+1. A legal rise of sequence S is a rise of i such that li+1 ≥ li+2, · · · , lk; with the
legal rise i, we define

λi(S) = (l1, · · · , li−1, lili+1, li+2, · · · , ln) and ρi(S) = (l1, · · · , li−1, li+1, li, li+2, · · · , ln) (7)

We denote S ⇒ T if T = λi(S) or T = ρi(S) for some legal rise i; and S
∗
⇒ T , transitive closure of ⇒.

A derivation tree T (S) of S to be a labelled rooted tree with the following properties : if S is decreasing,
then T (S) is reduced to its root, labelled S; if not, T (S) is the tree with root labelled S, with left and
right immediate subtree T (S′) and T (S′′), where S′ = λi(S), S

′′ = ρi(S) for some legal rise i of S; we
define Π(S) = Πl1 . . . Πln (Π(S) 6= Πl1...lk because l1, · · · , lk can be not a decreasing sequence).
Conversely, we call a fall of sequence S is an index i such that l1, · · · , li ∈ Y, li > li+1. We define

ρ−1
i (S) = (l1, · · · , li+1, li, · · · , ln). (8)

We call a landmark of sequence S is an index i such that l1, · · · , li−1 ∈ Y, li ∈ Y ∗ \ Y , and we define

λ−1
i (S) = (l1, · · · , li−1, l

′
i, l

′′
i , li+1, · · · , ln), (9)

where σ(li) = (l′i, l
′′
i ). We will denote by S ⇐ T if T = ρ−1

i (S) or T = λ−1
i (S) for some fall or landmark

i; and S
∗
⇐ T , transitive closure of ⇐.

Similarly, we call the conversely derivation tree T −1(S) with root labelled S, with left and right immediate
subtree T −1(S′) and T −1(S′′), where S′ = ρ−1

i (S) for some fall i, S′′ = λ−1
i (S) for some landmark i.
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Lemma 5. For each standard sequence S, Π(S) is the sum of all Π(T ) for T a leaf in a fixed derivation
tree of S.

Proof. This is a consequence of the definitions of λi(S) and ρi(S) on (7), of T (S) and Π(S), and of the
identity ΠliΠli+1 = [Πli , Πli+1 ] +Πli+1Πli = Πlili+1 +Πli+1Πli .

Example 1. Π(y4, y2, y1) = Πy4y2y1 +Πy2y1Πy4 +Πy4y1y2 +Πy2Πy4y1 +Πy1Πy4y2 +Πy1Πy2Πy4 , we can
see the following diagram (note that y4 < y2 < y1)

Fig. 1. Derivation tree T (y4, y2, y1)

Proposition 6. 1. For any Lyndon word ys1 . . . ysk , we have

Σys1 ...ysk
=

∑

{s′
1
,··· ,s′

i
}⊂{s1,··· ,sk},l1≥···≥ln∈LynY

(ys1 ···ysk
)
∗
⇐(y

s′
1
,··· ,y

s′n
,l1,··· ,ln)

qi−1

i!
ys′1+···+s′

i
Σl1···ln .

2. In special case, if ys1 ≤ · · · ≤ ysk then

Σys1 ...ysk
=

k
∑

i=1

qi−1

i!
ys1+···+siΣysi+1

...ysk
.

Proof. At first, we remark this Proposition is equivalent to saying that for any word u and any letter ys,

〈Σys1 ...ysk
| ysu〉 =

∑

{s′
1
,··· ,s′

i
}⊂{s1,··· ,sk},l1≥···≥ln∈LynY

(ys1 ···ysk
)
∗
⇐(y

s′
1
,··· ,y

s′n
,l1,··· ,ln)

qi−1

i!
δs′1+···+s′

i
,s〈Σl1...ln | u〉.

One has

u =
∑

w∈Y ∗

〈Σw | u〉Πw,

multiplying the two members by ys and by Proposition 1, one obtains

ysu =
∑

w∈Y ∗

〈Σw | u〉

(

∑

i≥1

qi−1

i!

∑

s′1+···+s′
i
=s

Πys′1
. . . Πys′

i

)

Πw

=
∑

w∈Y ∗

〈Σw | u〉
∑

i≥1

qi−1

i!

∑

s′1+···+s′
i
=s

Πys′
1
. . .Πys′

i

Πw,

⇒ 〈Σy1...yk
| ysu〉 =

∑

w∈Y ∗

〈Σw | u〉
∑

i≥1

qi−1

i!

∑

s′1+···+s′
i
=s

〈Σy1···yk
| Πys′

1
. . . Πys′

i

Πw〉.
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For each w fixed, we write w form factorization of Lyndon words w = l1 . . . ln, l1 ≥ · · · ≥ ln, then we have
S := (ys′1 , · · · , ys′i , l1, · · · , ln) is a standard sequence, so we obtain from Lemma 5

Π(S) = Π(ys′1 , · · · , ys′i , l1, · · · , ln) =
∑

S
∗
⇒T

αTΠ(T ).

Consequently,

〈Σy1...yk
| ysu〉 =

∑

l1≥···≥ln∈LynY

〈Σl1...ln | u〉
∑

i≥1

qi−1

i!

∑

s′1+···+s′
i
=s

(ys1 ,··· ,ysi
,ln,··· ,ln)

∗
⇒T

αT 〈Σy1...yk
| Π(T )〉.

Note that, the leaves T ’s of derivation tree T (S) are decreasing sequences of Lyndon words with length
≥ 2 except leaves form T = (l), where l ∈ LynY . Therefore 〈Σy1...yk

|Π(T )〉 6= 0 if T = (ys1 . . . ysk). By
maps ρ−1 and λ−1, we construct a conversely derivation tree from the standard sequence of one Lyndon
word S = (ys1 . . . ysk), we take standard sequences form (ys1, · · · , ysi , ln, · · · , ln), i ≥ 1; at that time,
for each S of these sequences, we get unique leaf T = (ys1 . . . ysk) in the derivation tree T (S), it mean
αT = 1. Thus, we get the expected result.

In other words, if ys1 ≤ · · · ≤ ysk then the standard sequence (ys1 . . . ysk) may only be a leaf of a derivation
tree T (S) after applying map λi more times, we imply that 〈Σys1 ...ysk

| Πys′
1
. . . Πys′

i

Πw〉 6= 0 if and only

if ys1 . . . ysk = ys′1 . . . ys′i l1 . . . ln, then ys1 = ys′1 , · · · , ys′i = ysi and ysi+1 . . . ysk = l1 . . . ln. Hence

〈Σys1 ...ysk
|Πys′

1
. . . Πys′

i

Πw〉 = δs1+···+si,sδysi+1
...ysk

,w,

we thus get

〈Σys1 ...ysk
| ysu〉 =

qi−1

i!
δs1+···+si,s〈Σysi+1

...ysk
| u〉.

2.4 Examples with Maple

Πy1 = y1, (10)

Πy2 = y2 −
q

2
y21 , (11)

Πy2y1 = y2y1 − y1y2, (12)

Πy3y1y2 = y3y1y2 −
q

2
y3y

3
1 − qy2y

2
1y2 +

q2

4
y2y

4
1 − y1y3y2 +

q

2
y1y3y

2
1

+
q

2
y21y

2
2 −

q2

2
y21y2y

2
1 − y2y3y1 +

q

2
y22y

2
1 + y2y1y3 +

q

2
y21y3y1 −

q

2
y31y3 +

q2

4
y41y2, (13)

Πy3y1y2y1 = y3y1y2y1 − y3y
2
1y2 −

q

2
y2y

2
1y2y1 − y1y3y2y1 + y1y3y1y2 +

q

2
y21y

2
2y1

−
q

2
y21y2y1y2 − y2y1y3y1 +

q

2
y2y1y2y

2
1 + y2y

2
1y3 + y1y2y3y1

−
q

2
y1y

2
2y

2
1 − y1y2y1y3 +

q

2
y1y2y

2
1y2. (14)

Σy1 = y1, (15)

Σy2 = y2, (16)

Σy2y1 = y2y1 +
q

2
y3, (17)

Σy3y2y1 = y3y1y2 + y3y2y1 + qy23 +
q

2
y4y2 +

q2

3
y6 +

q

2
y5y1, (18)

Σy3y1y2y1 = 2y3y2y
2
1 + qy3y

2
2 + y3y1y2y1 +

3q

2
y23y1 +

q

2
y3y1y3 +

q2

2
y3y4 +

q

2
y4y2y1

+
q2

4
y4y3 + qy5y

2
1 +

q2

2
y5y2 +

q2

2
y6y1 +

q3

8
y7. (19)
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3 Conclusion

Since the pioneering works of Schützenberger and Reutenauer [23, 22], the question of computing bases
in duality (maybe at the cost of a more cumbersome procedure, but without inverting a Gram matrix)
remained open in the case of cocommutative deformations of the shuffle product. We have given such a
procedure, based on the computation of log∗(I) on the letters which allows a great simplification for an
interpolation between shuffle and stuffle products (this interpolation reduces to the shuffle for q = 0 and
the stuffle for q = 1). Our algorithm boils down to the classical one in the case when q = 0. In the next
framework, this product will be continuously deformed, in the most general way but still commutative
(see [12] for examples).
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