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Introduction

Schützenberger's factorization [START_REF] Schützenberger | Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil[END_REF][START_REF] Reutenauer | Free Lie Algebras[END_REF] has been introduced and plays a central role in the renormalization [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] of associators 1 which are formal power series in non commutative variables [START_REF] Berstel | Rational series and their languages[END_REF]. The coefficients of these power series are polynomial at positive integral multi-indices of Riemann's zêta function 2 [START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF][START_REF] Zagier | Values of zeta functions and their applications[END_REF] and they satisfy quadratic relations [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents[END_REF] which can be explained through the Lyndon words [START_REF] Berstel | Theory of codes[END_REF][START_REF] Lothaire | Combinatorics on words[END_REF][START_REF] Chen | -Free differential calculus, IV. The quotient groups of the lower central series[END_REF][START_REF] Radford | A natural ring basis for shuffle algebra and an application to group schemes[END_REF]. These quadratic relations can be obtained by identification of the local coordinates, in infinite dimension, on a bridge equation connecting the Cauchy and Hadamard algebras of the polylogarithmic functions and using the factorizations, by Lyndon words, of the non commutative generating series of polylogarithms [START_REF] Hoang | L'algèbre des polylogarithmes par les séries génératrices[END_REF] and of harmonic sums [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF]. This bridge equation is mainly a consequence of the double isomorphy between these algebraic structures to respectively the shuffle [START_REF] Hoang | L'algèbre des polylogarithmes par les séries génératrices[END_REF] and quasi-shuffle (or stuffle) [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF] algebras both admitting the Lyndon words as a transcendence basis 3 [START_REF] Radford | A natural ring basis for shuffle algebra and an application to group schemes[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]. In order to better understand the mechanisms of the shuffle product and to obtain algorithms on quasishuffle products, we will examine, in the section below, the commutative q-stuffle product interpolating between the shuffle [START_REF]Lie elements and an algebra associated with shuffles Ann[END_REF], quasi-shuffle (or stuffle [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF]) and minus-stuffle products [START_REF] Costermans | Calcul non nommutative : analyse des constantes d'arbre de fouille[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF], obtained for 4 q = 0, 1 and -1 respectively. We will extend the Schützenberger's factorization by developping the combinatorial Hopf algebra of this product in a parallel way with that of the shuffle and in emphasizing the Lie elements studied by Ree [START_REF]Lie elements and an algebra associated with shuffles Ann[END_REF]. In particular, we will give an effective construction (implemented in Maple [4]) of pair of bases in duality (see Propositions 4 and 6). This construction uses essentially an adapted version of the Eulerian projector and its adjoint [START_REF] Reutenauer | Free Lie Algebras[END_REF] in order to obtain the primitive elements of the q-stuffle Hopf algebra (see Definition 1). They are obtained thanks to the computation of the logarithm of the diagonal series (see Proposition 1). This study completes the treatement for the stuffle [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] and boils down to the shuffle case for q = 0 [START_REF] Reutenauer | Free Lie Algebras[END_REF]. Let us remark that it is quite different from other studies [START_REF] Duchamp | Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras[END_REF][START_REF] Hoffman | Quasi-shuffle products[END_REF] concerning non commutative q-shuffle products interpolating between the concatenation and shuffle products, for q = 0 and 1 respectively and using the q-deformation theory of non commutative symmetric functions 5 [START_REF] Duchamp | Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras[END_REF].

2 q-deformed stuffle 2.1 Results for the q-deformed stuffle Let k be a unitary Q-algebra containing q. Let also Y = {y s } s≥1 be an alphabet with the total order

y 1 > y 2 > • • • . (1)
One defines the q-stuffle, by a recursion or by its dual co-product ∆ q , as follows. For any y s , y t ∈ Y and for any u, v ∈ Y * , u q 1 Y * = 1 Y * q u = u and y s u q y t v = y s (u q y t v) + y t (y s u q v) + qy s+t (u q v),

∆ q (1 Y * ) = 1 Y * ⊗ 1 Y * and ∆ q (y s ) = y s ⊗ 1 Y * + 1 Y * ⊗ y s + q s1+s2=s y s1 ⊗ y s2 . ( (2) 
) 3 
This product is commutative, associative and unital (the neutral being the empty word 1 Y * ). With the co-unit defined by, for any P ∈ k Y ,

ǫ(P ) = P | 1 Y * (4) 
one gets

H q = (k Y , conc, 1 Y * , ∆ q , ǫ) and H ∨ q = (k Y , q , 1 Y * , ∆ conc , ǫ
) which are mutually dual bialgebras and, in fact, Hopf algebras because they are N-graded by the weight, defined by ∀w = y i1 . . . y ir ∈ Y + , (w) = i 1 + . . . + i r .

(
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Lemma 1 (Friedrichs criterium). Let S ∈ k Y (for (2), we suppose in addition that S | 1 Y * = 1). Then,

1. S is primitive, i.e. ∆ q S = S ⊗ 1 Y * + 1 Y * ⊗ S, if and only if, for any u, v ∈ Y + , S | u q v = 0. 2. S is group-like, i.e. ∆ q S = S ⊗ S, if and only if, for any u, v ∈ Y + , S | u q v = S | u S | v .
Proof. The expected equivalence is due respectively to the following facts

∆ q S = S ⊗ 1 Y * + 1 Y * ⊗ S -S | 1 Y * ⊗ 1 Y * 1 Y * ⊗ 1 Y * + u,v∈Y + S | u q v u ⊗ v, ∆ q S = u,v∈Y * S | u q v u ⊗ v and S ⊗ S = u,v∈Y * S | u S | v u ⊗ v. Lemma 2. Let S ∈ k Y such that S | 1 Y * = 1.
Then, for the co-product ∆ q , S is group-like if and only if log S is primitive.

Proof. Since ∆ q and the maps

T → T ⊗ 1 Y * , T → 1 Y * ⊗ T are continous homomorphisms then if log S is primitve then, by Lemma 1, ∆ q (log S) = log S ⊗ 1 Y * + 1 Y * ⊗ log S. Since log S ⊗ 1 Y * , 1 Y * ⊗ log S commute then ∆ q S = ∆ q (exp(log S)) = exp(∆ q (log S)) = exp(log S ⊗ 1 Y * ) exp(1 Y * ⊗ log S) = (exp(log S) ⊗ 1 Y * )(1 Y * ⊗ exp(log S)) = S ⊗ S.
This means S is group-like. The converse can be obtained in the same way. 

S i | µ(w i ) .
Proof. On the one hand, since the P i 's are primitive then

∆ (n-1) q (P i ) = p+q=n-1 1 ⊗p Y * ⊗ P i ⊗ 1 ⊗q Y * .
On the other hand, ∆

(n-1)

q (P 1 . . . P m ) = ∆ (n-1)
q (P 1 ) . . . ∆

(n-1)

q (P m ) and S 1 q . . . q S n | P 1 . . . P m = S 1 ⊗ . . . ⊗ S n | ∆ (n-1)
q (P 1 . . . P m ) . Hence,

S 1 q . . . q S n | P 1 . . . P m = n i=1 S i | m i=1 p+q=n-1 1 ⊗p Y * ⊗ P i ⊗ 1 ⊗q Y * .
1. For n > m, by expanding ∆ (n-1)

q (P 1 ) . . . ∆ (n-1)
q (P m ), one obtains a sum of tensors containing at least one factor equal to 1 Y * . For i = 1, .., n, S i is proper and the result follows immediately.

For

n = m, since n i=1 ∆ (n-1) q (P i ) = σ∈Sn n i=1 P σ(i) + Q,
where Q is sum of tensors containing at least one factor equal to 1 and the S i 's are proper then S 1 ⊗ . . . ⊗ S n | Q = 0. Thus, the result follows. 3. For n < m, since, for i = 1, .., n, the power series S i is proper then the expected result follows by expanding the product

m i=1 ∆ (n-1) q (P i ) = m i=1 p+q=n-1 1 ⊗p Y * ⊗ P i ⊗ 1 ⊗q Y * .
Definition 1. Let π 1 and π1 be the mutually adjoint projectors degree-preserving linear endomorphisms of k Y given by, for any w ∈ Y + ,

π 1 (w) = w + k≥2 (-1) k-1 k u1,...,u k ∈Y + w | u 1 q . . . q u k u 1 . . . u k , π1 (w) = w + k≥2 (-1) k-1 k u1,...,u k ∈Y + w | u 1 . . . u k u 1 q . . . q u k .
In particular, for any y k ∈ Y , the polynomials π 1 (y k ) and π1 (y k ) are given by

π 1 (y k ) = y k + l≥2 (-q) l-1 l j 1 ,...,j l ≥1 j 1 +...+j l =k y j1 . . . y j l and π1 (y k ) = y k .
Proposition 1. Let D Y be the diagonal series over Y :

D Y = w∈Y * w ⊗ w. Then 1. log D Y = w∈Y + w ⊗ π 1 (w) = w∈Y + π1 (w) ⊗ w.
2. For any w ∈ Y * , we have

w = k≥0 1 k! u1,...,u k ∈Y + w | u 1 q . . . q u k π 1 (u 1 ) . . . π 1 (u k ) = k≥0 1 k! u1,...,u k ∈Y + w | u 1 . . . u k π1 (u 1 ) q . . . q π1 (u k ).
In particular, for any y s ∈ Y , we have

y s = k≥1 q k-1 k! s ′ 1 +•••+s ′ k =s π 1 (y s ′ 1 ) . . . π 1 (y s ′ k )
and y s = π1 (y s ).

Proof. 1. Expanding by different ways the logarithm, it follows the results :

log D Y = k≥1 (-1) k-1 k w∈Y + w ⊗ w k = k≥1 (-1) k-1 k u1,...,u k ∈Y + (u 1 q . . . q u k ) ⊗ u 1 . . . u k = w∈Y + w ⊗ k≥1 (-1) k-1 k u1,...,u k ∈Y + w | u 1 q . . . q u k u 1 . . . u k . log D Y = w∈Y + k≥1 (-1) k-1 k u1,...,u k ∈Y + w | u 1 . . . u k u 1 q . . . q u k ⊗ w.
2. Since D Y = exp(log(D Y )) then, by the previous results, one has separately,

D Y = k≥0 1 k! w∈Y + w ⊗ π 1 (w) k = k≥0 1 k! u1,...,u k ∈Y + (u 1 q . . . q u k ) ⊗ (π 1 (u 1 ) . . . π 1 (u k )) = w∈Y + w ⊗ k≥0 1 k! u1,...,u k ∈Y + w | u 1 q . . . q u k π 1 (u 1 ) . . . π 1 (u k ). D Y = k≥0 1 k! u1,...,u k ∈Y + (π 1 (u 1 ) q . . . q π1 (u k )) ⊗ (u 1 . . . u k ) = w∈Y + k≥0 1 k! u1,...,u k ∈Y + w | u 1 . . . u k π1 (u 1 ) q . . . q π1 (u k ) ⊗ w.
It follows then the expected result.

Lemma 4. For any w ∈ Y + , one has

∆ q π 1 (w) = π 1 (w) ⊗ 1 Y * + 1 Y * ⊗ π 1 (w).
Proof. Let α be the alphabet duplication isomorphism defined by, for any ȳ ∈ Ȳ , ȳ = α(y) Applying the tensor product of algebra isomorphisms α ⊗ Id to the diagonal series D Y , we obtain, by Lemma 1, a group-like element and then applying the logarithm of this element (or equivalently, applying α ⊗ π 1 to D Y ) we obtain S which is, by Lemma 2, a primitive element :

(α ⊗ Id)D Y = w∈Y * α(w) w and S = (α ⊗ π 1 )D Y = w∈Y * α(w) π 1 (w).
The two members of the identity

∆ q S = S ⊗ 1 Y * + 1 Y * ⊗ S give respectively w∈Y * α(w) ∆ q π 1 (w) and w∈Y * α(w) π 1 (w) ⊗ 1 Y * + w∈Y * α(w) 1 Y * ⊗ π 1 (w).
Since {w} w∈ Ȳ * is a basis for Q Ȳ then identifying the coefficients in the previous expressions, we get

∆ q π 1 (w) = π 1 (w) ⊗ 1 Y * + 1 Y * ⊗ π 1 (w) meaning that π 1 (w) is primitive.
2.2 Pair of bases in duality on q-deformed stuffle algebra

Let P = {P ∈ Q Y | ∆ q P = P ⊗ 1 Y * + 1 Y * ⊗ P }
be the set of primitive polynomials [START_REF] Boubaki | Groupes et Algbres de Lie[END_REF]. Since, in virtue of Lemma 4., Im(π 1 ) ⊆ P, we can state the following Definition 2. Let {Π l } l∈LynY be the family of P and6 k Y obtained as follows

Π y k = π 1 (y k ) for k ≥ 1, Π l = [Π s , Π r ] for l ∈ LynX, standard factorization of l = (s, r), Π w = Π i1 l1 . . . Π i k l k for w = l i1 1 . . . l i k k , l 1 > . . . > l k , l 1 . . . , l k ∈ LynY.
Proposition 2. 1. For l ∈ LynY , the polynomial Π l is upper triangular and homogeneous in weight :

Π l = l + v>l,(v)=(l) c v v,
where for any w ∈ Y + , (w) denotes the weight of w with (y k ) = deg(y k ) = k. 2. The family {Π w } w∈Y * is upper triangular and homogeneous in weight : 

Π w = w + v>w,(v)=(w) c v v.
Π l1 = l 1 + v>l1,(v)=(l1) c v v and Π l2 = l 2 + u>l2,(u)=(l2) d u u, ⇒ Π l = l + w>l,(w)=(l)
e w w, getting e w 's from c v 's and d u 's. 2. Let w = l 1 . . . l k , with l 1 ≥ . . . ≥ l k and l 1 , . . . , l k ∈ LynY . One has

Π li = l i + v>li,(v)=(li) c i,v v and Π w = l 1 . . . l k + u>w,(u)=(w) d u u,
where the d u 's are obtained from the c i,v 's. Hence, the family {Π w } w∈Y * is upper triangular and homogeneous in weight. As the grading by weight is in finite dimensions, this family is a basis of k Y . Definition 3. Let {Σ w } w∈Y * be the family of the quasi-shuffle algebra (viewed as a Q-module) obtained by duality with {Π w } w∈Y * :

∀u, v ∈ Y * , Σ v | Π u = δ u,v .
Proposition 3. The family {Σ w } w∈Y * is lower triangular and homogeneous in weight. In other words,

Σ w = w + v<w,(v)=(w) d v v.
Proof. By duality with {Π w } w∈Y * (see Proposition 2), we get the expected result. Proof. The family {Π l } l∈LynY of primitive upper triangular homogeneous in weight polynomials is free and the first result follows. The second is a direct consequence of the Poincaré-Birkhoff-Witt theorem. By the Cartier-Quillen-Milnor-Moore theorem, we get the third one and the last one is obtained as consequence of the constructions of {Σ l } l∈LynY and {Σ w } w∈Y * .

To decompose any letter y s ∈ Y in the basis {Π w } w∈Y * , one can use its expression in Proposition 1. Now, using the mutually adjoint projectors π 1 and π1 given in Definition 1 and are determinded by Proposition 1, let us clarify the basis {Σ w } w∈Y * and then the transcendence basis {Σ l } l∈LynY of the quasi-shuffle algebra (k Y , q , 1 Y * ) as follows Proposition 4. We have

1. For w = 1 Y * , Σ w = 1.
2. For any w = l i1 1 . . . l i k k , with l 1 , . . . , l k ∈ LynY and l 1 > . . . > l k ,

Σ w = Σ q i1 l1 q . . . q Σ q i k l k i 1 ! . . . i k ! .
3. For any y ∈ Y ,

Σ y = y = π1 (y). Proof. 1. Since Π 1 Y * = 1 then Σ 1 Y * = 1. 2. Let u = u 1 . . . u n = l i1 1 . . . l i k k , v = v 1 . . . v m = h j1 1 . . . h jp p with l 1 . . . , l k , h 1 , . . . , h p , u 1 , . . . , u n and v 1 , . . . , v m ∈ LynY, l 1 > . . . > l k , h 1 > . . . > h p , u 1 ≥ . . . ≥ u n and v 1 ≥ . . . ≥ v m and i 1 +. . .+i k = n, j 1 + . . . + j p = m. Hence, if m ≥ 2 (resp. n ≥ 2) then v / ∈ LynY (resp. u / ∈ LynY ). Since Σ u1 q . . . q Σ un | n i=1 Π vi = Σ u1 ⊗ . . . ⊗ Σ un | ∆ (n-1) q (Π v1 . . . Π vm )
then many cases occur : (a) Case n > m. By Lemma 3(1), one has

Σ u1 q . . . q Σ un | Π v1 . . . Π vm = 0. (b) Case n = m. By Lemma 3(2), one has Σ u1 q . . . q Σ un | n i=1 Π vi = σ∈Σn n i=1 Σ ui | Π v σ(i) = σ∈Σn n i=1 δ ui,v σ(i) .
Thus, if u = v then (u 1 , . . . , u n ) = (v 1 , . . . , v n ) then the second member is vanishing else, i.e. u = v, the second member equals 1 because the factorization by Lyndon words is unique. (c) Case n < m. By Lemma 3(3), let us consider the following language over the new alphabet A := {a 1 , . . . , a m } :

M = {w ∈ A * |w = a j1 . . . a j |w| , j 1 < . . . < j |w| , |w| ≥ 1},
and the morphism µ : Q A -→ k Y given by, for any i = 1, . . . , m, µ(a i ) = Π vi . We get :

Σ u1 q . . . q Σ un | n i=1 Π vi = w 1 ,...,wn ∈M supp(w 1 ⊔⊔ ... ⊔⊔ wn)∋a 1 ...am n i=1 Σ ui | µ(w i ) = 0.
Because in the right side of the first equality, on the one hand, there is at least one w i ,

|w i | ≥ 2, corresponding to µ(w i ) = Π vj 1 . . . Π vj |w i | such that v j1 ≥ . . . ≥ v j |w i | and on the other hand, ν i := v j1 . . . v j |w i | / ∈ LynY and u i ∈ LynY .
By consequent,

Σ u | Π v = 1 i 1 ! . . . i k ! Σ q i1 l1 q . . . q Σ q i k l k | Π j1 h1 . . . Π jp hp = δ u,v .
3. For any y ∈ Y , by Proposition 3, Σ y = y = π1 (y). The directe computation prove that, for any w ∈ Y * and for any y ∈ Y , one has Π w | Σ y = δ w,y .

Proposition 5. 1. For w ∈ Y + , the polynomial Σ w is proper and homogeneous of degree (w), for deg(y i ) = i, and with rational positive coefficients.

D

Y = w∈Y * Σ w ⊗ Π w = ց l∈LynY exp(Σ l ⊗ Π l ).
3. The family LynY forms a transcendence basis of the quasi-shuffle algebra and the family of proper polynomials of rational positive coefficients defined by, for any w = l i1 1 . . . l i k k with l 1 > . . . > l k and l 1 , . . . , l k ∈ LynY ,

χ w = 1 i 1 ! . . . i k ! l q i1 1 q . . . q l q i k k
forms a basis of the quasi-shuffle algebra. 4. Let {ξ w } w∈Y * be the basis of the envelopping algebra U(Lie Q X ) obtained by duality with {χ w } w∈Y * :

∀u, v ∈ Y * , χ v | ξ u = δ u,v .
Then the family {ξ l } l∈LynY forms a basis of the free Lie algebra Lie Q Y .

Proof. 1. The proof can be done by induction on the length of w using the fact that the product q conserve the property, l'homogenity and rational positivity of the coefficients. 2. Expressing w in the basis {Σ w } w∈Y * of the quasi-shuffle algebra and then in the basis {Π w } w∈Y * of the envelopping algebra, we obtain successively

D Y = w∈Y * u∈Y * Π u | w Σ u ⊗ w = u∈Y * Σ u ⊗ w∈Y * Π u | w w = u∈Y * Σ u ⊗ Π u = l 1 >...>l k i 1 ,...,i k ≥1 1 i 1 ! . . . i k ! Σ q i1 l1 q . . . q Σ q i k l k ⊗ Π i1 l1 . . . Π i k l k = ց l∈LynY i≥0 1 i! Σ q i l ⊗ Π i l = ց l∈LynY exp(Σ l ⊗ Π l ).
3. For w = l i1 1 . . . l i k k with l 1 , . . . , l k ∈ LynY and l 1 > . . . > l k , by Proposition 2, the proper polynomial of positive coefficients Σ w is lower triangular :

Σ w = 1 i 1 ! . . . i k ! Σ q i1 l1 q . . . q Σ q i k l k = w + v<w,(v)=(w) c v v.
In particular, for any l j ∈ LynY , Σ lj is lower triangular :

Σ lj = l j + v<lj ,(v)=(lj ) c v v.
Hence, Σ w = χ w + χ ′ w , where χ ′ w is a proper polynomial of k Y of rational positive coefficients. We deduce then the support of χ w contains words which are less than w and χ w | w = 1. Thus, the proper polynomial χ w of rational positive coefficients is lower triangular :

χ w = w + v<w,(v)=(w) c v v, ⇒ ∀l ∈ LynY, χ l = l + v<l,(v)=(l) c v v.
It follows then expected results. 4. By duality, for w ∈ Y * , the proper polynomial ξ w is upper triangular. In particular, for any l ∈ LynY , the proper polynomial ξ l is upper triangular :

ξ l = l + v>l,(v)=(l) d v v.
Hence, the family {ξ l } l∈LynY is free and its elements verify an analogous of the generalized criterion of Friedrichs :

-for w ∈ LynY , one has χ w | ξ l = δ w,l , -for w = l 1 . . . l n / ∈ LynY with l 1 , . . . , l n ∈ LynY and l 1 ≥ . . . ≥ l n , one has (since l ∈ LynY )

χ l1 q . . . q χ ln | ξ l = χ w | ξ l = 0.
The polynomials ξ l 's are primitive. Actually, we have

∆ q ξ l = u∈Y + u q 1 Y * | ξ l u ⊗ 1 + v∈Y + 1 Y * q v | ξ l 1 ⊗ v + u,v∈Y + u q v | ξ l u ⊗ v + 1 Y * q 1 Y * | ξ l 1 ⊗ 1 = ξ l ⊗ 1 + 1 ⊗ ξ l .
Because, after decomposing the words u and v on the transcendence basis {χ l } l∈LynY and by the previous fact, the third sum is vanishing. The last one is also vanishing since the ξ l 's are proper. Hence, it follows the expected result.

Determination of {Σ l } l∈LynY

Following [START_REF] Reutenauer | Free Lie Algebras[END_REF], we call a standard sequence of Lyndon words to be a sequence

S = (l 1 , • • • , l k ), k ≥ 1 (6) 
if for all i, either l i to be a letter or the standard factorization σ(l i ) = (l ′ i , l ′′ i ) and l ′′ i ≥ l i+1 , • • • , l n . Note that a decreasing sequence of Lyndon words is also a standard sequence. A rise of a sequence S is an index i such that l i < l i+1 . A legal rise of sequence S is a rise of i such that l i+1 ≥ l i+2 , • • • , l k ; with the legal rise i, we define

λ i (S) = (l 1 , • • • , l i-1 , l i l i+1 , l i+2 , • • • , l n ) and ρ i (S) = (l 1 , • • • , l i-1 , l i+1 , l i , l i+2 , • • • , l n ) (7) 
We denote S ⇒ T if T = λ i (S) or T = ρ i (S) for some legal rise i; and S * ⇒ T , transitive closure of ⇒. A derivation tree T (S) of S to be a labelled rooted tree with the following properties : if S is decreasing, then T (S) is reduced to its root, labelled S; if not, T (S) is the tree with root labelled S, with left and right immediate subtree T (S ′ ) and T (S ′′ ), where S ′ = λ i (S), S ′′ = ρ i (S) for some legal rise i of S; we define Π

(S) = Π l1 . . . Π ln (Π(S) = Π l1...l k because l 1 , • • • , l k can be not a decreasing sequence). Conversely, we call a fall of sequence S is an index i such that l 1 , • • • , l i ∈ Y, l i > l i+1 . We define ρ -1 i (S) = (l 1 , • • • , l i+1 , l i , • • • , l n ). (8) 
We call a landmark of sequence S is an index i such that l

1 , • • • , l i-1 ∈ Y, l i ∈ Y * \ Y , and we define λ -1 i (S) = (l 1 , • • • , l i-1 , l ′ i , l ′′ i , l i+1 , • • • , l n ), (9) 
where σ(l i ) = (l ′ i , l ′′ i ). We will denote by S ⇐ T if T = ρ -1 i (S) or T = λ -1 i (S) for some fall or landmark i; and S * ⇐ T , transitive closure of ⇐. Similarly, we call the conversely derivation tree T -1 (S) with root labelled S, with left and right immediate subtree T -1 (S ′ ) and T -1 (S ′′ ), where S ′ = ρ -1 i (S) for some fall i, S ′′ = λ -1 i (S) for some landmark i.

Lemma 5. For each standard sequence S, Π(S) is the sum of all Π(T ) for T a leaf in a fixed derivation tree of S.

Proof. This is a consequence of the definitions of λ i (S) and ρ i (S) on ( 7), of T (S) and Π(S), and of the identity 

Π li Π li+1 = [Π li , Π li+1 ] + Π li+1 Π li = Π lili+1 + Π li+1 Π li . Example 1. Π(y 4 , y 2 , y 1 ) = Π y4y2y1 + Π y2y1 Π y4 + Π y4y1y2 + Π y2 Π y4y1 + Π y1 Π y4y2 + Π y1 Π y2 Π y4 ,
y s u = w∈Y * Σ w | u i≥1 q i-1 i! s ′ 1 +•••+s ′ i =s Π y s ′ 1 . . . Π y s ′ i Π w = w∈Y * Σ w | u i≥1 q i-1 i! s ′ 1 +•••+s ′ i =s Π y s ′ 1 . . . Π y s ′ i Π w , ⇒ Σ y1...y k | y s u = w∈Y * Σ w | u i≥1 q i-1 i! s ′ 1 +•••+s ′ i =s Σ y1•••y k | Π y s ′ 1 . . . Π y s ′ i Π w .

Conclusion

Since the pioneering works of Schützenberger and Reutenauer [START_REF] Schützenberger | Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil[END_REF][START_REF] Reutenauer | Free Lie Algebras[END_REF], the question of computing bases in duality (maybe at the cost of a more cumbersome procedure, but without inverting a Gram matrix) remained open in the case of cocommutative deformations of the shuffle product. We have given such a procedure, based on the computation of log * (I) on the letters which allows a great simplification for an interpolation between shuffle and stuffle products (this interpolation reduces to the shuffle for q = 0 and the stuffle for q = 1). Our algorithm boils down to the classical one in the case when q = 0. In the next framework, this product will be continuously deformed, in the most general way but still commutative (see [START_REF] Enjalbert | Combinatorial study of Hurwitz colored polyzêtas[END_REF] for examples).

Proof. 1 .

 1 Let us prove it by induction on the length of l : the result is immediate for l ∈ Y . The result is suppose verified for any l ∈ LynY ∩ Y k and 0 ≤ k ≤ N . At N + 1, by the standard factorization (l 1 , l 2 ) of l, one has Π l = [Π l1 , Π l2 ] and l 2 l 1 > l 1 l 2 = l. By induction hypothesis,

Theorem 1 . 1 .

 11 The family {Π l } l∈LynY forms a basis of P. 2. The family {Π w } w∈Y * forms a basis of k Y . 3. The family {Σ w } w∈Y * generate freely the quasi-shuffle algebra. 4. The family {Σ l } l∈LynY forms a transcendence basis of (k Y , q ).

Fig. 1 . 1 + 2 . 1 +

 1121 Fig. 1. Derivation tree T (y4, y2, y1)

  Lemma 3. Let S 1 , . . . , S n be proper formal power series in k Y . Let P 1 , . . . , P m be primitive elements in k Y , for the co-product ∆ .1. If n > m then S 1 q . . . q S n | P 1 . . . P m = 0. 2. If n = m then S 1 q . . . q S n | P 1 . . . P n = If n < m then, by considering the language M over the new alphabet A = {a 1 , . . . , a m } M = {w ∈ A * |w = a j1 . . . a j |w| , j 1 < . . . < j |w| , |w| ≥ 1} and the morphism µ : Q A -→ k Y given by, for any i = 1, . . . , m, µ(a i ) = P i , one has : S 1 q . . . q S n | P 1 . . . P m =

	3. w 1 ,...,wm∈M supp(w 1⊔⊔ ... ⊔⊔ wm)∋a 1 ...am	n i=1
		n
		S i | P σ(i) .
	σ∈Sn	i=1

Due to the fact this Hopf algebra is cocommutative and graded, then by the theorem of CQMM, k Y ≃ U(P).

For each w fixed, we write w form factorization of Lyndon words w = l 1 . . . l n , l 1 ≥ • • • ≥ l n , then we have

) is a standard sequence, so we obtain from Lemma 5

Consequently,

Note that, the leaves T 's of derivation tree T (S) are decreasing sequences of Lyndon words with length ≥ 2 except leaves form T = (l), where l ∈ LynY . Therefore Σ y1...y k |Π(T ) = 0 if T = (y s1 . . . y s k ). By maps ρ -1 and λ -1 , we construct a conversely derivation tree from the standard sequence of one Lyndon word S = (y s1 . . . y s k ), we take standard sequences form (y s1 , 

Examples with Maple

Σ y3y1y2y1 = 2y 3 y 2 y 2 1 + qy 3 y 2 2 + y 3 y 1 y 2 y 1 + 3q 2 y 2 3 y 1 + q 2 y 3 y 1 y 3 + q 2 2 y 3 y 4 + q 2 y 4 y 2 y 1 + q 2 4 y 4 y 3 + qy 5 y 2 1 + q 2 2 y 5 y 2 + q 2 2 y 6 y 1 + q 3 8 y 7 .