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Dual bases for non commutative symmetric and
quasi-symmetric functions via monoidal factorization
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Abstract. In this work, an effective construction, via Schiitzenberger’s monoidal factorization, of
dual bases for the non commutative symmetric and quasi-symmetric functions is proposed.
Keywords : Non commutative symmetric functions, Quasi-symmetric functions, Lyndon words,
Lie elements, Monoidal factorization, Transcendence bases.

1 Introduction

Originally, “symmetric functions” are thought of as “functions of the roots of some polynomial” [5].
The factorization formula
Pla)= ] (X-a)=3 X" (1) 4,(0(P)) (1)
a€O(P) j=0

where O(P) is the (multi-)set of roots of P (a polynomial) invites to consider A;(7) as a “multiset

(endo)functor”! rather than a function K™ — K (K is a field where P splits). But, here, Ax(X) = 0
whenever |X| < k and one would like to get the universal formulas i.e. which hold true whatever the
cardinality of |X|. This set of formulas is obtained as soon as the alphabet is infinite and, there, this
calculus appears as an art of computing symmetric functions without using any variable?. With this point
of view, one sees that the algebra of symmetric functions comes equipped with many additional structures
[5,8-11] (comultiplications, A-ring, transformations of alphabets, internal product, ...). For our concern
here, the most important of these features is the fact that the (commutative) Hopf algebra of symmetric
functions is self-dual.

At the cost of losing self-duality, features of the (Hopf) algebra of symmetric functions carry over to the
noncommutative level [5]. This loss of self-duality has however a merit : allowing to separate the two
sides in the factorization of the diagonal series®, thus giving a meaning to what could be considered a
complete system of local coordinates for the Hausdorff group of the stuffle Hopf algebra. Indeed, the
elements of the Hausdorff group of the (shuffle or stuffle) algebras excatly are, through the isomorphism
A((Y)) ~ (A(Y'))*, the characters of the algebra. Then, applying S®Id (S € Haus(#)) to the factorization

Y
Z wew = H exp(s; ® pr) (2)
weY* leLynY

and using the fact that S is a (continuous) character, one gets a decomposition of S through this complete
system of local coordinates :

N
5= Y (s wyw=[] es((s]s)n) 3
weyY* leLynY

This fact is better understood when one considers Sweedler’s dual of the (shuffle of stuffle) Hopf algebra
‘H, which contains as well Haus(#H) and its Lie algebra, the space of infinitesimal characters. Such a
character is here a series T such that (as a linear form)

AT)=T@e+exT (4)

! We will not touch here on this categorical aspect.

2 see http://mathoverflow.net/questions/123926 /reference-request-lascouxs-formulas-for-chern-classes-of-tensor-
products-and-sy /1241724124172

3 Schiitzenberger’s monoidal factorization [1, 14, 4].
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and one sees from this definition that such a series, as well as the characters, satisfies an identity of the
type

N
2.9 =5V ws? (5)
=1

i ,S,L-(Z))lSiSN. Then in (3), the character S is factorized as an (infinite)
product of elementary characters®. This shows firstly, one can reconstruct a character from its projection
onto the free Lie algebra® and secondly, we have at hand a resolution of unity from the process

for some finite double family (S )

character — projection — (coordinates) splitting — exponentials — infinite product (6)

and the key point of this resolution is exactly the system of coordinate forms provided by the dual family
of any PBW homogeneous basis.

This paper is devoted to a detailed exposition of the machinery and morphisms surrounding this resolution
(Equation (2)) and it is structured as follows : in Section 2, we give a reminder on noncommutative
symmetric and quasi-symmetric functions, in Section 3, we focus on the combinatorial aspects of the
quasi-shuffle Hopf algebra will be introduced to obtain, via Schiitzenberger’s monoidal factorization, a
pair of bases in duality for the noncommutative symmetric and quasi-symmetric functions, encoded by
words.

2 Background

2.1 Some notations and statistics about compositions

For any composition I = (i1, ...,ix) of strictly positive integers®, called the parts of I, the mirror image
of I, denoted by I, is the composition (ig, ..., i1). Let I = (iy, ..., i) € (N4)*, the length and the weight
of T are defined respectively as the numbers [(I) = k and w(I) = i1 + ... + ix. The last part and the
product of the partial sum of the entries of I are defined respectively as the numbers Ip(I) = i and
mu(I) = i1(i1 +i2) ... (41 + ...+ ix). One defines also

k
w(I) = H ip and sp(I) = w(I)I(I)!. (7)

Let J be a composition which is finer than I and let J = (Ji,...,Ji) be the decomposition of J such
that, for any p=1,...,k,w(Jp) = ip. One defines

k k

WLn =TT, w0 =1Tw, D) =] w5, sp(0) = [T sp). (8)

=1 i=1

2.2 Noncommutative symmetric functions

Let k be a commutative Q-algebra. The algebra of noncommutative symmetric functions, denoted by
Symy = (k(S1,S52,...),e, 1), introduced in [5], is the free associative algebra generated by an infinite
sequence {Sy,}n>1 of non commuting inderminates also called complete homogenous symmetric functions.
Let ¢ be another variable commuting with all the {S,}n>1. Introducing the ordinary generating series

ot) =1+ Spt", (9)

n>1
other noncommutative symmetric functions can be derived by the following relations

d .

50t = o()y(t) =7 (t)o(t), (10)
4 which are exponentials of rank one infinitesimal characters

5 the map S — Y tecyny (S | s1) pu is the projection onto the free Lie algebra parallel to the space generated by
the non-primitive elements of the PBW basis

i.e. I is an element of the monoid (N4)* and the empty composition will be denoted here by 0.

At) = o(=t)7", o(t) = exp(2(1)),

6
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where @, A\, ¢ are respectively the following ordinary generating series

B(t) = Z@n%, M) =1+ Ant™ p(t) =Y Tt" . (11)

n>1 n>1 n>1

The noncommutative symmetric functions {A, },>1 are called elementary functions. The elements {¥, },,>1
(vesp. {Pn}n>1) are called power sums of the first kind (resp. second kind).

Let I = (i1,...,ix) € (N;)*, one defines the products of complete and elementary symmetric functions,
and the products of power sums as follows [5]

St =8, ...8,, A=A, .. A, V=v,. 9,6 o=0¢,...0,. (12)
and it is established that
ST =" (1)@ A and AT =" (—1)!D D g7, (13)
J=I JrI
w.]
I_ I_ (D)= J
sh=3%" A and W' = "(~1) Ip(J,1)S7, (14)
J-I JrI
@7 (1)
ST=N" — _ando! =) (-1~ L g/ (15)
; sp(J, 1) ; I(J, 1)
v/ -
AT =" (=)D —— and ' = (—1) (], 1) A7 (16)
J=1 mu(J, J=1
&7 7w(I)
AI — (_1)w(.])7l(1) and @I — (_1)w(J)fl(I) A'], (17)
; sp(J, 1) ; I(J, 1)

The families {S*} e, )+ {A ey {®' e,y and {®'} e, ) are then homogencous bases of
Symy. Recall that S = A? = ¢ = @0 = 1.

The k-algebra Symy possesses a finite-dimensional grading by the weight function defined, for any
composition I = (i1,...,4), by the number w(S;) = w(I). Its homogeneous component of weight n
(free and finite-dimensional) will be denoted by Symy,, and one has

Symy = klgym, @ @ Symy,,. (18)
n>1

One can also endow Symy with a structure of Hopf algebra, the coproduct A, being defined by one of
the following equivalent formulae, with the convention that Sop = S =1 and Ay = \? =1 [5]

ASy =8 @8 iand AA, =) A ® Ay, (19)
=0 =0
AV, =10V, +¥,®1and AP, =1 P, +D, ® 1. (20)

In other words, for the coproduct A,, the power sums of the first kind {¥,,},,>1 and of the second kind
{®,,}n>1 are primitive. The noncommutative symmetric function S; = A, is primitive but {S,},>2 and
{An}n>2 are neither primitive nor group-like. Moreover, by (13), (14) and (15), one has

S1=4A =&, =V (21)
With the concatenation, the coproduct A, and the counit e defined by
VIe (Ny)*, e(8") = (8" |1), (22)

one gets the bialgebra, (k(Si,Ss,...),e,1, A, ¢), over the k-algebra Symy. This algebra, N-graded by
the weight is, as we will see in Theorem 2, the concatenation Hopf algebra.
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2.3 Quasi-symmetric functions

Let us consider also an infinite sequence {M,},>1 of non commuting inderminates generating the free
associative algebra” QSymy = (k(Mi, My,...),e,1) and define the elements {M;} e, )« as follows

M@:landVI:(il,...,ik)E(N_,_)*, MI:Mil---Mik- (23)

The elements { M7}, )+ of QSymy are also called the monomial quasi-symmetric functions. They are
homogeneous polynomials of degree w(I). This family is then an homogeneous basis of QSymy.
With the pairing

VI,J € (Ny)*, (ST | My)exi = 61,4, (24)
one constructs the bialgebra dual to Symy, (k(Mi, Ma,...),*,1, A,, ), over the k-algebra QSymy. Here,

1. the coproduct A, is defined by

VI € (N-i-)*a A'(MI) = Z MII & Mfza (25)
11,12€(N+)*,Il,12:l

2. the counit ¢ is defined by
VI € (Ny)*, e(Mp) = (M;[1), (26)

3. the product x is the commutative product associated to the coproduct A, and is defined, for any
composition I € (N;)*, by

M]*M@:M@*M[:M[ (27)
and for any composition I = (4,1') and J = (j,J') € (N4)*
Mpx My = MZ‘(M[/ *M.]) + Mj(M[ *MJ/) + MiJrj(MI/ *MJ/). (28)

Since the bialgebra QSymy is N-graded by the weight (as the dual of the N-graded bialgebra Symy) :

QSymy = klgsym, ® @ QSymy,, (29)

n>1
then it is, in fact, the convolution Hopf algebra. Indeed, one can check that, for any K, I,J € (N1 )*,

(ASE | Mr @ My)exs = (SE | My x My)exe and (AgMp | ST @ 87V exe = (Mg | ST8 ) ere.  (30)

3 Noncommutative symmetric, quasi-symmetric functions, and monoidal
factorization

3.1 Combinatorics on shuffle and stuffle Hopf algebras

Let Y = {y;}i>1 be a totally ordered alphabet®. The free monoid and the set of Lyndon words, over Y,
are denoted respectively by Y* and LynY [1,14,4]. The neutral element of Y* is denoted by 1y-.

Let u =y, ...y;, € Y™, the length and the weight of u are defined respectively as the numbers [(u) = k
and w(u) =41 + ...+ ig.

Let us define the commutative product over kY, denoted by p, as follows [3]

YYn,Ym €Y, ,U(ynvym) = Yn+m, (31)

" We here use the symbol = to warn the reader that the structure of free algebra is used to construct the basis
of QSymy which will be later free as a commutative algebra (with the stuffle product) and by no means as a
noncommutative algebra (with the concatenation product).

Sbyy1>y2>y3>....
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or by its associated coproduct, A, defined by

n—1
Vyn €Y, Ay =Y 4 @ Yns (32)
1=1
satisfying,
Va,y,z €Y, (Ayz|y®z) = (2| uy,2)). (33)

Let k(Y') be equipped by

1. The concatenation (or by its associated coproduct, A,).
2. The shuffle product, i.e. the commutative product defined by [15]

YVweY™, wwlys =1y ww=w, (34)
Vo,y € Y,Vu,v € Y™, zuw yv = x(uw yv) + y(ru w v) (35)

or by its associated coproduct, 4 ,,, defined, on the letters, by
Vyr €Y, ALy =y ®1+1Qy (36)
and extended by morphism. It satisfies
Yu,v,w € Y™, (ALw|u®v) = (w|uwov). (37)

3. The quasi-shuffle product, i.e. the commutative product defined by [12], for any w € Y*,

wie ly« = 1y« wmw = w, (38)

and, for any y;,y; € Y,Vu,v € Y*,
yiue y;v = y;(yiuw o) +yi(uw y;v) + u(yi, y;) (v o), (39)
= y;(Yiu = v) + yi(uw y;0) + yig; (w0 v) (40)

or by its associated coproduct, A, defined, on the letters, by
Vyr €Y, Awyr = AL yr + Ayyk (41)
and extended by morphism. It satisfies
Yu,v,w €Y", (Apw|u®v) = (w|uwwv). (42)

Note that Ay and A, are morphisms for the concatenation (by definition) whereas Ay is not a
morphism for the product of kY (for example Ay (y?) = y1 ® y1, whereas A, (y1)? = 0).

Hence, with the counit e defined by
VP e k(Y), e(P)=(P | 1ly~), (43)
one gets two pairs of mutually dual bialgebras
Ho, = (k(Y),0,1,A, ,e)and H' = (k(Y),w, 1, As,e), (44)
Huw = (k(Y), 0,1, Ay, e) and HYy = (k(Y), 1,1, A, e). (45)

Let us then consider the following diagonal series®

D, = Z wwand Dy = Z w R w. (46)
weY* weY*

® We use two notations for the same combinatorial object in order to stress the fact that the treatment will be
slightly different.
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Here, in D ,, and D, the operation on the right factor of the tensor product is the concatenation, and
the operation on the left factor is the shuffle and the quasi-shuffle, respectively.

By the Cartier-Quillen-Milnor-Moore theorem (see [3]), the connected N-graded, co-commutative Hopf
algebra H ,, is isomorphic to the enveloping algebra of the Lie algebra of its primitive elements which is
equal to Liex(Y) :

Ho, 2 ULiex(Y)) and HY = U(Liex(Y))V. (47)
Hence, let us consider
1. the PBW-Lyndon basis {py }wey~ for U(Liex(Y)) constructed recursively as follows [4]

Py =Yy fory ey,
P = [p_s,pT] ~ for [ € LynY, standard factorization of | = (s,7),
pw=pp .. forw=11" .. OF > > gl L € LynY,

2. and, by duality'®, the linear basis {s, wey~ for (k(Y),w, 1y+), i.e.

Yu,v € Y™, (py | Sv) = Oup- (48)
It can be shown that this basis can be computed recursively as follows [15]
Sy =1, for y €Y,
S| = YSu, for | = yu € LynY,
1 W i . .
Sw = mSll “Lu ...u_JSlk 'k forw:lzll...l;’“,ll > .. >lk.

Hence, we get Schiitzenberger’s factorization of D,

N
D, = H exp(s; @p) € HY @H.,.
leLynY

Similarly, by the Cartier-Quillen-Milnor-Moore theorem (see [3]), the connected N-graded, co-commutative
Hopf algebra H 4+ is isomorphic to the enveloping algebra of its primitive elements :

Prim(H ) = Im(my) = spany {7 (w)|w € Y™}, (49)

where, for any w € Y*, 7y (w) is obtained as follows [13]

(-1t
ﬂl(w):erZT Z (w | uy . wug) Uy ..U (50)

k>2 ur,.up €Y+
note that the eq. 50 is equivalent to the following identity which will be used later on

w:Z% o wluw s (). m(ug). (51)

k>0 UL,..., U €EY*

In particular, for any yx € Y, the primitive polynomial 71 (y) is given by

1 -1
Fl(yk):yk+z(+ > Ui (52)
1>2 J1endg>1
a1t =k
As previously, (52) is equivalent to
1
=0 2. ms) M) (53)
k>1 s+ tsp=n
Hence, by introducing the new alphabet Y = {g},ey = {m1(y)}yey, one has
Huw 2ULiex(Y)) 2 UPrim(Hw ) and Hy 2 U(Liex (Y)Y 2 UPrim(H ws))Y. (54)
By considering

19 The dual family (i.e. the set of coordinate forms) of a basis lies in the algebraic dual which is here the space of
noncommutative series, but as the enveloping algebra under consideration is graded in finite dimensions (here
by the multidegree), these series are in fact (multihomogeneous) polynomials.
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1. the PBW-Lyndon basis {II }wey~ for U(Prim(H 1)) constructed recursively as follows [13]

II, = m(y) for y €Y,
I, = [H_s, II,] - for I € LynY, standard factorization of | = (s,7),
m, = 1IIj} Hf; forw =13 ... 0511 > ... > g, li..., Il € LynY,

2. and, by duality!!, the linear basis { X, }wey~ for (k(Y), wi, 1y+), i.e.
Yu,v € Y™, (I, | Xy) = duv- (55)

It can be shown that this basis can be computed recursively as follows [2, 13]

Xy =y for y €Y,
1
2 = E ﬁys’l-‘rvvv-‘rs; Yy, for l=ys, -+ ys, € LynY,
{8l s, s hl1 > 2In €LynY
(ysq wysk)j:(ysrl st s sln)
1 A [ESw) 7 A
Ew:mzll tLl...LuElk k fOI”LU:lll...lkk,ll>...>lk,

we get the following extended Schiitzenberger’s factorization of Dy [2,13]

N
Duw = [] ep(Zi®ll) € HudHuw. (56)
leLynY

3.2 Encoding noncommutative symmetric and quasi-symmetric functions by words

Proposition 1. Let Y(t) be the following ordinary generating series of {yn}tn>1 :

V() =14 yat" € QY)1].

n>1
Then Y(t) is group-like, for the coproduct A s .
Proof. We have successively ((here, in order to make complete the correspondence S, we put yo = 1)

A Y(t) Z< > ys®yr>t" S W t) @ (ue ).
n>0 “r+s=n n>071+s=n

It follows then A, V() = V()@Y (t) meaning (with e()(t)) = 1) that Y(¢) is group-like.
Proposition 2. Let G be the Lie algebra generated by {(log) | t")}n>1. Then we have G = Prim(H 1 ).
Proof. The power series log) € Q(Y')[t] is primitive then by expanding log Y, we get successively

10g37(t):Z 1k7 <Zynt”> Z%< > ysl---ysn>tk-

k>1 n>1 k>1 S1seees sn 21
S1+...+sn=k

By (52), we get, for any n > 1, (log Y | t") = m1(y,) and since {m1(yn)}n>1 generates freely Prim(H 1+)
[13], the expected result follows.

In virtue of (52) and (53), we also have

Corollary 1.

n>1 s14++sp=n
- n 1 n
YO =1t (T X ml) - mln )
n>1 k>1 S1+-+sp=n

L idem.
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Corollary 2. Let us write the (group-like) power series Y =1 and its differentiation as follows

V)P =14 X, t" € QY)[t] and Yt = -y~ Yy

n>1
Then, for any n > 1, one has
n n
Z%‘Xnﬂ' =0 and ZXz'ynﬂ' =0.
i=1 i=1

Proof. Using the identities YY~! = Y71 = 1y, the results follow immediately by identification of the
coefficients of ¢" and by differentiation, respectively.

Corollary 3. There exists two (unique and primitive) generating series L and R € Q(Y)[t] satisfying
Y =LY = YR. Moreover, if

L= 100t and 1) = 1,

n>1 n>1
Then, for any n > 1,
n—1 n—1
nYy = Z Liyn—l—i and NnYn = Z yiRn—l—ia

i=0 i=0
n—1 n—1

Ln =Y (i+ 1)y Xn1-i and Ry = (i + 1) Xp_1_igit1.
i=0 =0

Proof. On the one hand, by Proposition 1, one has
Ly =3 ny, v
dt n>1 ! '

On the other hand, such generating series exist since

Y=LY and) =JYR,
e L=YYland R=Y"1Y.

Hence, identifying the coefficients of ¢" in these identities, the expected results follows.
Moreover, since Ay commutes with d/dt and it is a morphism for the concatenation then

Aw L= (YOY +YY)(Y71@y1) = Yy~ 1oyy=—t + YY1eYY—! = YY 1oy + 1y. @YY,

AwR= Y10V RV + YY) =Y 1YY Y+ Y Yoy 'Y =Y 1 Yoly: + 1y-0Y ' Y.
Hence, Ay L = 1y+®L + L®ly« and A R = 1y-®R + R®1y- meaning that L and R are primitive.
More generally, with the notations of Corollary 3, one has

Proposition 3. For any k > 1, there exist two unique generating series Ly, Ry € Q(Y)[t] such that
V®) = £,V = YRy, The families {Li}r>1 and {Ri}k>1 are defined recursively as follows

Li=Land Ly =Ly 1+ Lx 1L,
Ri=Rand Ry = Rp—1 + RRy_1.

Proof. On the one hand, by Proposition 1, one has, as in Corollary 3,
d*
SRV = D (g 77
n>k
where (n)r =n(n —1)...(n — k) is the Pochhammer symbol. On the other hand, by induction
— For k =1, it is Corollary 3.
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— Suppose the property holds for any 1 <n <k — 1.
— For n = k, such generating series exist since, by induction hypothesis,

Yk = .ﬁ.qu + Ekfl.).) = LY+ Lr1LY = (L1 + Ekfl'L)ya
VFE = YRy—1 +YRik—1 = YRRj—1 + YRi—1 = V(RRi—1 + Ri—1).

Hence, L = E.k—l + Li_1L and Ry = RRyk—1 + Rk—l-

Corollary 4. For any proper power series A, B, let ady B be the iterated Lie brackets defined recursively
by ady B = B and adf}""1 B = [ad’, B], for n > 1. Then, with notations of Corollary 3, one has
adﬁ)gy R n ad,ﬁ)gy £k;
P D ELRVE T e R

! n!
n>0 n>0

Proof. Since LY = YRy, then L = YR Y ~! = exp(log V)R, exp(—log V) = exp(adiog y)Rx and then
Ri =YV 1LY = exp(—log V)L, exp(log V) = exp(ad_10gy)Lk. Expanding exp, the results follow.

Proposition 4. Let G be the Lie algebra generated by {Ry}n>1 (resp. {Ln}tn>1). Then G = Prim(H ).
Proof. By Corollary 3, one has on the one hand,

Z(Aan)tnfl =1y ® (Z Ry, tnl) + (Z Ry t"l) R 1y« = Z(1Y* Q@ R, + R, ® 1y«)t" L.
n>1 n>1 n>1 n>1

Thus, by identifying the coefficients of t*~! in the first and last sums, on has A w R, = ly- @R, + R, ®
1y, meaning that R, is primitive. On the other hand, according to basic properties of quasi-determinants
([6,7], see also [5]), one has

Ri Ry ... Roy RiRy... Ry

gy = | "1 F1 - By Rnoa| _|=1Ri.. Roo Ry
" 10 -2... Rooz Ryo 0 — ...3R,_3 3R,
0 0...—n+1 R 00... -1 4R

Hence, for any J = (j1,...,j,) € (N;)*, by denoting R/ = R;, ... Rj,, one obtains
R’ R, R’
P I R DR )
w(J)=n w(J)=n,l(J)>1

It means y,, is triangular and homogeneous in weight in { Ry }x>1. Conservely, R, is also triangular and
homogeneous in weight in {yx }x>1. The Ry’s are then linearly independent and constitute a new alphabet.
In the same way, the L;’s are primitive and linearly independent. The expected results follow .

Definition 1. Let us define the families {Hfus)}wey*, for S=1L or R, of Hww as follows

I =L, if S=L or R, if S=R, for y, €Y,

HZ(S) = [HS(S), HT(S)], forl € LynY, with standard factorization of | = (s,1),
oy = @y (@), forw =10 1% 1y >...>l,ly...,lx € LynY.

Proposition 5. Then, the families {Hl(s)}lecyny (resp. {H&S)}wey*), for S = L or R, are bases of
Prim(H ) (resp. H i ), these bases are homogeneous in weight.

Proof. These results (homogeneity, primitivity, linear independence) can be proved by induction on the
length of Lyndon words.

Definition 2. Let {E&S)}wey* be the family of HY., obtained by duality with {Hq(us)}wey* :

Yu,v € Y*, (IT9 | 9 = §,.,.

Theorem 1. 1. The family {Hl(s)}lez:yny forms a basis of the Lie algebra generated by Prim(H ).
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2. The family {Hq(us)}wey* forms a basis of U(Prim(H v )).
3. The family {Z&S)}wey* freely generates the quasi-shuffle algebra.
4. The family {El(s)}legyny forms a transcendence basis of the quasi-shuffle algebra.

Proof. The family {IT, Z(S)}le cyny Of primitive upper triangular homogeneous in weight polynomials is free
and the first result follows. The second is a direct consequence of the Poincaré-Birkhoff-Witt theorem.
By the Cartier-Quillen-Milnor-Moore theorem, we get the third one and the last one is obtained as a

consequence of the constructions of {Zl(s)}legyny and {Z&S)}wey*.
Corollary 5.

N
D = H eXp(Zl(S) ®Hl(s)).
leLynY
Note that any word v = wy;, ...¥y;, € Y™ corresponds one by one to a composition of integers I =
(i1,...,1%) € (N4)* (and the empty word 1y« corresponds to the empty composition (}). Note also that
noncommutative symmetric functions and quasi-symmetric functions can be indexed by words in Y*
instead of by composions in (N4 )*. Indeed, let J be a composition, finer than I, associated to the word
v and let J = (J1,...,Ji) be the decomposition of J such that, for any p = 1,...,k,w(Jp) = i, and J,
is associated to the word u, whose w(up) =1p. Then v < u = u; ... u; is a unique factorization and this
will be denoted as a bracketing of the word v.

Ezxample 1. One has

- (1a252) = (L (15 1) 2) 1
- (L,2,2)=2(L,2,(1,1)=(1
1), (1

1,2
< L1) «— y1y2y2 = y1y2(y1y1) = Y1yt Y1
~(1,2,2) =< (1,(1, 1

1)) - (71, ,1,1,1) <= yayaye =X y1(y1y1) (Y1y1) = y1y1y1yiy-
Hence, we can state the following
Definition 3. Let S and M be the following linear maps
S:(k(Y), e, 1, Ay, e) — (k(S51,52,...),e,1, A, ¢€),
U=y .Y, — S(u) = Slin) = G, - Si
M (k(Y), w1, A, e) — (K(My, Ma,...), %, 1, Ae ),

U= Yy .Y, —> M(u) = M,,..iny = Miy ... M,
Theorem 2. The maps S and M are isomorphisms of Hopf algebras.
Corollary 6. Let G be the Lie algebra generated by {II,}yecy. Then, we have Symy = U(G).

Corollary 7. The families {M(1) }iecyny and {M(XZ)) liecyny are transcendence bases of the free com-
mutative k-algebra QSymy,.

Corollary 8. Let w =iy ...i; € Y™ associated to I = (i1,...,i;) € (N3)*. Then, we have
@I
(1)

Proof. On the one hand, the power series J,log) and L, R € k(Y)[t] are summable. On the other hand,
by (9) and (10), since S is continuous and commutes with log, one can deduce

o) = SY) =1+ S,

ST = S(w), =8(m(yiy) - -m(yi,)), ¥ =S(Ry).

k>1
S ZE = loga(t) = S(log V(1) = 3 Sm ()t
k>1 k>1

Sowmth Tt = pt)= S(R(t) =Y SR,

k>1 k>1

St lur = gr(t) = S(L() =D S(Li)thh

k>1 k>1

Thus, the expected result follows immediately.
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3.3 Dual bases for noncommutative symmetric and quasi-symmetric functions via
Schiitzenberger’s monoidal factorization

Definition 4. With the notations of (56), let us consider the following noncommutative generating series
{M(w)twey+ and {S(w)}wey-
M= Y Mw)weQSym(Y) andS= Y S(w)w € Symy (V).
weyY* wEY *
Proposition 6. For the coproduct A, using (56), we obtain

1. The noncommutative generating series M is group-like.
2. The noncommutative generating series log M is primitive.

Proof. 1. It follows Friedrichs’ criterion [13].
2. By using the previous result and by applying the log map on the power series M, we get the expected

result.

Corollary 9.

¢
M= ] epM(2) M) e QSym(Y) andlogM = > M(w) m(w) € QSymy((Y).
leLynY weyY*

Proof. The first identity is equivalent to the image of the diagonal series D+, by the tensor M ® Id.
The second one is then equivalent to the image of log M by the tensor Id ® m;. It is also equivalent to the
image of D by the tensor M ® 7.

Finally, using (56) we deduce the following property which completes the formulae (120) given in [5] :
Corollary 10. We have

¢ \
S Mw)Sw) = [ expM(z)sn)= [ expME*) s,
weY ™ leLynY leLynY
¢ \
= Z My, Sy = H exp(Myx, Sp,) = H exp(ME;S) SHl(S)).
weY* leLynY leLynY

Proof. By Theorem 2, it is equivalent to the image of the diagonal series D, by the tensor M ® S, or
equivalently it is equivalent to the image of the power series M by the tensor Id ® 7.

Note that these formulas are universal for any pair of bases in duality, compatible with monoidal factor-
ization of Y*, and they do not depend on the specific alphabets, usually denoted by A and X, used to
define S(A) € Symy(A) and M(X) € QSymy(X).

Ezample 2 (Cauchy type identity, [5]). Let A be a noncommutative alphabet and X a totally ordered
commutative alphabet. The symmetric functions of the noncommutative alphabet X A are defined by
means of

o(XA;t) =) Su(XA)t H o(A;at).
n>0 rxeX

Let {Ur}rew,)- and {Vi}rem, )~ be two linear bases of Symy(A4) and QSymy(X) respectively. The
duality of these bases means that'?

o(XA;1) = Z Mi(X Z Vi(X) Ur(A).

Ie(Ny)* Ie(Ny)*

Typically, the linear basis {Ur}re(n,)- is the basis of ribbon Schur functions {Rr} e, )+, and, by duality,
{Vi}1e,)- is the basis of quasi-ribbon Schur functions {Fr}rea, )~ :

sxan= ¥ o] ¥ )= ¥ | 5 mr= 3 Reor).

Te(Ny)* 1.IE0 )" JE(NL) el JE(NL)*

Also, if one specializes the alphabets of the quasi-symmetric functions {M7}ren,)- and {Fr}rem,)- to
the commutative alphabet X, = {1,¢,¢?, ...}, then the generating series o0(X,4;t) can be viewed as the
image of the diagonal series D by the tensor f ® S, where f : z; — ¢'t, and one has

12 4 e. the formulae (120) given in [5].
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Ezample 3 (Generating series of the analog Hall-Littlewood functions, [5]). Let X, = 1/(1 — q) denotes
the totally ordered commutative alphabet X, = {--- < ¢" < --- < ¢ < 1}. The complete symmetric
functions of the noncommutative alphabet A/(1—q) are given by the following ordinary generating series

+—

A - an(ﬁ)tn =] o4 q™).

1 _ )
q n>0 n>0

o

1f‘q;1):HZSiqm: > [ > q"”1+~-+"r“]sf(A> > Mi(X)5'(4),

n>04>0 T=(i1,.rir)E(N3)* “ny>.>n,>1 Te(Ny)*

by specializing each letter z; € X to ¢* in the quasi-symmetric function M;(X).

4

Conclusion

Once again, the Schiitzenberger’s monoidal factorization plays a central role in the construction of pairs
of bases in duality, as exemplified for the (mutually dual) Hopf algebras of quasi-symmetric functions
(QSymy) and of noncommutative symmetric functions (Symy), obtained as isomorphical images of the
quasi-shuffle Hopf algebra (H 4 ) and its dual (HY,, ), by M and S respectively.
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