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Abstract:   
A new macroscopic approach to modelise membrane wrinkling is presented. Most of the 
studies of the literature about membrane behaviour are macroscopic and phenomenological, 
the influence of wrinkles being accounted by non-linear constitutive laws without 
compressive stiffness. The present method is multi-scale and it permits to predict the 
wavelength and the spatial distribution of wrinkling amplitude. It belongs to the family of 
Landau-Ginzburg bifurcation equations and especially it relies on the technique of Fourier 
series with slowly varying coefficients. The result is a new family of macroscopic membrane 
models that are deduced from Föppl-Von Karman plate equations. Numerical solutions are 
presented giving the size of the wrinkles as a function of the applied compressive and tensile 
stresses. 
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1. Introduction 
 
Two main classes of numerical approaches are currently used to modelise membrane 
mechanical behaviour and wrinkling. The first class of methods is based on elastic shell 
models; see for instance [1,2,3,4]. Nowadays many commercial finite element codes permit us 
to carry out such non-linear shell computations. The advantage of shell analyses is their 
capacity to describe the details of the membrane response: instability threshold, size, 
wavelength and orientation of the wrinkles...As a counterpart, the numerical model is heavy 
and especially very difficult to be controlled in cases with many wrinkles, what leads 
generally to many equilibrium solutions. These full models will be referred as “microscopic 
models” because their finite element discretisation provides a detailed response at the scale of 
the wrinkles.  
 
With the second group of numerical methods, one does not intend to fully describe the 
wrinkles, but only the decrease of stress they generate. The bending stiffness is neglected and 
the wrinkling is accounted indirectly by a non-linear constitutive law of unilateral type, where 
the compressive stresses are eliminated [5,6]. Two variants have to be mentioned: first the 



method of Roddeman [7] that splits the deformation gradient into consistent membrane part 
and wrinkling part [8,9,10,11]; second models with an internal length, like Cosserat theory 
[12,13] that avoid loss of ellipticity in case of compressive stresses. These models can be 
considered as macroscopic ones and indeed they require much less refined meshes as the 
previous ones, because the size of the macroscopic finite elements is not related to size of the 
wrinkles.   
 
In this paper, macroscopic models of  
membranes including wrinkling are deduced from the fine plate model without any 
phenomenological assumptions. The bending stiffness effects are included, not only to define 
the wrinkling wavelength, but also to predict the macroscopic evolution of the wrinkling 
pattern. The idea is to build a theory coupling pure membrane model with an envelope 
equation as in Landau-Ginzburg approach [14,15]. Nevertheless we shall not apply the 
classical Landau-Ginzburg asymptotic technique that is valid only near the bifurcation, but a 
variant where the nearly periodic fields are represented by Fourier series with slowly varying 
coefficients [16,17,18,19]. In other words we use a multi-scale method whose result is a 
generalised continuum including an internal length and where the macroscopic stresses are 
Fourier coefficients of the microscopic stress. The resulting models are macroscopic and 
require only rough meshes because their unknowns are in-plane displacements and slowly 
varying envelopes of the wrinkles.  
 
For simplicity, we limit ourselves to plane membrane, the fine model being the traditional 
Föppl-Von Karman plate equations. Two examples assess model’s ability to represent the 
behaviour of membranes in the presence of wrinkling.  
 
2. Nonlinear macroscopic models of wrinkling 
 
2.1. The full model 
 
The well known Föppl -Von Karman equations for elastic isotropic plates will be considered 
as the reference model in this paper: 
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where 2IRv)(u, ∈=u  is the in-plane displacement, w  is the deflection, N  and �  are the 

membrane stress and strain. With the vectorial notations ( )NNN( XYYX
t→N , 

)2( XYYX
t γγγ→� ), the membrane elasticity tensor is represented by the matrix 
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and a bending partben� , as follows: 
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2.2. A multiscale approach using Fourier coefficient 
 
We adapt in this 2D framework the method of Fourier series with slowly variables 
coefficients [17]. For simplicity, we suppose that the instability wavenumber Q is known and 
we only consider wrinkles in the OY-direction. Within this method, the unknown field

( )),(),(),(),(),( YXYXnYXvYXuYX γ=U , whose components are axial displacement, 
transverse displacement, membrane stress and strains, is written in the following form: 
 

C
+∞

−∞=

=
m

m imQXYXYX )exp(),(),( UU ,        (3) 

 
where the new macroscopic unknown fields ),( YXmU  vary slowly on a single period 
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X,X  of the oscillation pattern. Of course we do not need an infinite number of 

Fourier coefficients and we limit ourselves to three harmonics:  the mean field )Y,X(0U  and 

the envelope of the oscillations iQX
1 e)Y,X(U , iQX

1 e)Y,X( −U . According to (Damil and Potier-
Ferry 2010), the second harmonic should be taken into account to recover the results of the 
Landau-Ginzburg bifurcation approach. Nevertheless the rapid one-dimensional oscillations 

iQXe  are inextensional so that they do not contribute to the membrane energy. The 
macroscopic model with the second harmonic has been established, but within the 
approximation of ([17], §4.1), we have shown that 02 =N , 0w2 =  so that the second 
harmonic does not influence the macroscopic model. The details of this calculation are 
omitted. 
In principle, the mean field ),(0 YXU is real and the envelope ),(1 YXU  is complex-valued, but 

spatial evolutions of the patterns can be reasonably accounted with only two real coefficients: 
for practical finite element calculations, this simplification of two real unknowns will be done, 
even if a complex envelope can improve the treatment of boundary conditions [19].  

The derivation rules are straightforward [16] and in a first time, the derivatives of the 
envelopes are not neglected. For instance the first Fourier coefficient of the gradient of the 
deflection is given by: 
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2.3 Macroscopic membrane energy 
 
We now derive the macroscopic model and we begin with the membrane effects. We apply 
the principles established in [16][17]. The derivatives are computed exactly as in (4), but 
some simplifications will be added to obtain the simplest macroscopic model having the same 
internal length as the asymptotic Landau-Ginzburg approach. Next one could deduce the 
macroscopic model by identifying Fourier coefficients in the differential equations (1), but a 
most convenient approach consists in retaining only the harmonic of level zero to approximate 
an energy density:   
 

ωω dhdh

periodperiod
BBBB ≈ 0  ,         (5) 

where 0h represents the harmonic zero of the densityh . The rule (5) is a consequence of the 
assumption of slowly varying envelopes. For instance the energy due a higher harmonic 
vanishes if the envelope is assumed to be constant on a period:  
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First, we compute the mean value or the harmonic zero of the Lagrange strain, by using (4) 
and without any approximation:  

�
�
�
�

D

��
�
�

E

F

�
�
�
�

�

��
�
�

�

�

∂
∂
�
�

�
�
�

� −
∂
∂+

∂
∂
�
�

�
�
�

� +
∂
∂+

∂
∂

∂
∂+

∂
∂+

∂
∂

∂
∂+�

�

�
�
�

�

∂
∂+

∂
∂

+
∂
∂+�

�

�
�
�

�

∂
∂+

∂
∂

=
�
D

�
E

F

�
�

�
�

�

γ
γ
γ

=γ

Y

w
wiQ

X

w

Y

w
iQw

X

w

Y

w

X

w

X

v

Y

u
Y

w

Y

w

2

1

Y

v

iQw
X

w

X

w

2

1

X

u

2

}{

1
1

11
1

10000

2

1

2

00

2

1
1

2

00

0XY

0Y

0X

0 . (7) 

 
Next two additional simplifications will be introduced in the envelope model, in the same 
spirit as in [17]. First the displacement field is reduced to a membrane mean displacement and 
to a bending wrinkling, i.e. 01 =u , 0w0 = , which means that we only consider the influence 

of wrinkling on a flat membrane state. Second the deflection envelope is assumed to be real, 
which disregards the phase modulation of the wrinkling pattern: )Y,X(w1  is real. Hence the 

envelope of the displacement is reduced to three components )v,u( 000 =u  and 1w  that will 

be rewritten for simplicity as )v,u()v,u( 00

def

= , 1

def

ww = . Hence the simplified version of the 

mean strain field is: 
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The membrane strain formula (8) is quite similar to the strain of the initial Von Karman 
model. It can be split, first in a linear part )(uε  that is the symmetric part of the displacement 

gradient and corresponds to the pure membrane strain, second to a nonlinear part )w(wrγ  that 
is more or less equivalent to wrinkling deformation of [7] and is given by  
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The main difference with the classical Von Karman strain is the extension 22wQ  in the 
direction of the wrinkles. So, if the linear strain is compressive, the wrinkling leads to a 
decrease of the membrane strain.  
 
Last we apply the multiple scale rule (5) to the membrane energy. This leads for instance to  
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where the first approximation is deduced from (5) and from Parseval identity, truncated at 
harmonic one and the second one follows from the assumption 01 =u , 0w0 = . According to 

these rules, the membrane energy becomes: 
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2.4 Macroscopic bending energy 
 
The bending energy is reduced to a macroscopic version in the same framework: 

)0,0()v,u( 111 ==u , 0w0 = , 1w  real. The identity (5) is applied to the two terms of the 

bending energy 
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Since 1ww =  is real, one gets: 
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In the same way, the second term B

0h  is given by: 
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As in ([17], §4.3), the derivatives of order three or four in the differential equations are 
neglected because the derivatives of order two are sufficient to define a macroscopic length 
scale and to recover the Landau-Ginzburg asymptotic approach. This leads to 
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2.5  The full membrane wrinkling model 
 
The macroscopic membrane model is deduced from the total energy that is the sum of the 
membrane energy (11), of the bending energy (14) and of the energy of the applied loads. Let 
us calculate the corresponding partial differential equations in the case where all the external 
loads are apply on the boundary. In this case, the sum of bending and membrane energies is 
stationary  
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for any virtual displacement that is zero at the boundary. This gives: 
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After straightforward calculations, the differential equations of the macroscopic problem are 
the followings: 
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where the expression of the wrinkling membrane strain )w(wrγ  is given in (9). 
 
 
2.6 Comments 
 

1. The nonlinear model (17) (18) (19) couples nonlinear membrane equations with a 
bifurcation equation (19) satisfied by the envelope of wrinkling patterns. It extends the 
analysis of [17] that coupled a beam membrane with a one-dimensional Landau-
Ginzburg equation. Hence the bifurcation equation (19) is a sort of bi-dimensional 
Landau-Ginzburg equation. 
 

2. If the membrane stress is prescribed and uniform 

YYYXXX NN eeeeN ⊗+⊗=  ,       
(19) becomes identical to a linear eigenvalue problem as in a linear buckling analysis. 
In the general case, the membrane stress is unknown and (17) (18) (19) is a nonlinear 
coupled membrane-wrinkling model that can be solved by standard numerical 
techniques. In this paper, an example of numerical solution is presented in Part 3.2. 

 
3. The nonlinear model (17)(18)(19) is consistent with two ideas used in other 

macroscopic membrane models. First we have obtained a splitting between a 
membrane strain and a wrinkling strain, as in the well known theory by Roddeman et 
al [7]. Next, since we follow an approach consistent with Landau-Ginzburg theory, the 
final bifurcation equation (19) includes an internal length. As underlined in [16], the 
mechanical model is a generalized continuum and the stress is not reduced to the mean 
value of microscopic stress: the first terms of (19) contains the effect of the first 
Fourier coefficient of the bending moment. This can be qualitatively compared with 
the ideas of Banerjee et al [12,13] who introduce an internal length via Cosserat 
theory. 
 

4. The differential equations (17) (18) (19) seem quite different from the classical pure 
membrane theory that postulates a nonlinear relation between membrane stress and 
strain; see for instance [5]. Nevertheless the pure membrane theory can be consistent 
with a degenerate version of (17) (18) (19). The latter can be obtained by dropping all 
derivatives in (19) which leads to 0w)DQN( 2

X =+ . If one transforms the latter in a 
perturbed bifurcation equation as:  
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one gets the deflection as a function of one component of the membrane stress. In 
(20), δ  is a small perturbation parameter that transforms the perfect bifurcation 
equation into a perturbed bifurcation one. If one simplifies the wrinkling strain (9) as 

XX
22wr eewQ)w( ⊗=γ  and if one combines (18) and (20), one can drop the deflection 

and deduce a nonlinear relation between membrane strain )(uεεεε  and membrane stress
N :  
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3. Some analytical and numerical solutions 
 
In this Part, we present few solutions of the system (17)(18)(19). Probably, many exact or 
approximated solutions of this new system can be found. In this paper, we limit ourselves, 
first to an analytical solution of the linearised system in order  
to establish the multiple scale character of membrane wrinkling, second to some numerical 
solutions of the full nonlinear problem (17)(18)(19) to show that this macroscopic model is 
able to describe the evolution of wrinkles even with a coarse finite element mesh.  
 
3.1 An analytical solution for wrinkling initiation  
�

�

Figure 1: Rectangular membrane under biaxial load.�

Let us consider the rectangular membrane ],0[],0[ YXX LL pictured in Figure 1, which is 

submitted to a large uniform tensile stress 0 hN >= YY σ and to a small uniform compressive 

stress loading 0hN <= XX σ . The instability wavelength and the critical compressive stress 
will be deduced from the envelope equation (19). One seeks the value of the compressive 
stress at which wrinkling starts. The linearised version of the envelope equation (19) is 
rewritten as 
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If the plate is clamped, it is known [19,20] that the envelope w vanishes on the boundary, 
what leads to a linear mode in the form:  
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This leads to a classical relation between compressive stress and wavenumber.  
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Hence our approach is able to define the stability wavenumber by minimizing the stress as a 
function ofQ . For simplicity, we take into account the orders of magnitude  XQL<<1 ,

YXhDQ σσ <<≈/2 2  to simplify (22) in the following manner:     
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The minimum of the latter yields values of the wavenumber and of the critical compressive 
stress that are consistent with the results of the literature [21][22]:   
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This simple calculation brings out the multiple scale character of the wrinkling phenomenon: 
indeed, the wrinkling threshold depends on the wavelength that is a microscopic quantity, but 
this wavelength depends of the width of the plate that is a macroscopic length. Thus a full 
wrinkling analysis has to associate micro and macro scales.  

 

3.2  A numerical post-bifurcation analysis for wrinkling 
 
The partial differential system (17) (18) (19) has been discretised by standard finite elements. 
The pure membrane approach (17)(21) has also been discretised in order to evaluate the 
importance of the spatial derivatives of the envelope. Eight nodes quadrangles Q8 have been 
chosen. The details of the procedure will be presented elsewhere. 



A thin rectangular membrane under uniaxial load (see Fig. 2) is studied, as in [23,24]. The 
side lengths Lx and LY are respectively 1400mm and 200mm, and the thickness h is 0.05mm. 
The long sides are stress-free. Along the short sides, a uniform tensile stress is applied in the 
axial direction and the displacements in the X-direction are locked.  

�

Figure 2.  A rectangular membrane under uniaxial load. 

Full nonlinear analyses of this problem have been done, first by a Q8 discretisation of the new 
model (17)(18)(19), second by a Q8 discretisation of the non-linear pure membrane model 
(17)(21), last by quadratic shell elements S825 of the Abaqus code that will be considered as 
the reference. The nonlinear problems associated with the first two models have been solved 
by the Asymptotic Numerical Method [25]. In Figure 3, one sees that the post-bifurcation 
patterns obtained by the new reduced model (17)(18)(19) are quite similar as those provided 
by the full shell model. This establishes the relevance of this new reduced model to represent 
the wrinkling modes in a case with a non uniform pre-buckling stress field.  
 
 In Figure 4, we have plotted the maximal deflection as a function of the applied tensile load 
for these three models. One sees that the new reduced model (17)(18)(19) gives about the 
same bifurcation point as the reference model as well as the post-bifurcation response. As 
expected, the number of unknowns is much smaller with the envelope models that do not 
describe explicitly the full details of the wrinkles. On the contrary, the pure membrane model 
underestimates the wrinkling threshold and overestimates the wrinkling amplitude. This is 
consistent with the analytical study of §3.1 that has pointed out that the bifurcation load 
depends strongly on a macroscopic length and this influence of the macroscopic structure 
cannot be accounted if one neglects the spatial derivatives of the envelope Y)w(X, .  



 
Figure 3. Post-bifurcation pat

 
 

Figure 4. Bifurcation curves f
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