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Abstract:

A new macroscopic approach to modelise membranekiig is presented. Most of the
studies of the literature about membrane behavaoeirmacroscopic and phenomenological,
the influence of wrinkles being accounted by nowdir constitutive laws without
compressive stiffness. The present method is rea#tie and it permits to predict the
wavelength and the spatial distribution of wrinklingiplitude. It belongs to the family of
Landau-Ginzburg bifurcation equations and espscigltelies on the technique of Fourier
series with slowly varying coefficients. The resslta new family of macroscopic membrane
models that are deduced from Foppl-Von Karman piajgations. Numerical solutions are
presented giving the size of the wrinkles as atfonoof the applied compressive and tensile
stresses.
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1. Introduction

Two main classes of numerical approaches are clyrersed to modelise membrane
mechanical behaviour and wrinkling. The first clagsmethods is based on elastic shell
models; see for instance [1,2,3,4]. Nowadays mamynsercial finite element codes permit us
to carry out such non-linear shell computationse Huvantage of shell analyses is their
capacity to describe the details of the membrarspaomse: instability threshold, size,
wavelength and orientation of the wrinkles...Asoairtterpart, the numerical model is heavy
and especially very difficult to be controlled irases with many wrinkles, what leads
generally to many equilibrium solutions. These falbdels will be referred as “microscopic
models” because their finite element discretisapimvides a detailed response at the scale of
the wrinkles.

With the second group of numerical methods, onesdua intend to fully describe the
wrinkles, but only the decrease of stress they g@aeThe bending stiffness is neglected and
the wrinkling is accounted indirectly by a non-Bmeconstitutive law of unilateral type, where
the compressive stresses are eliminated [5,6]. Vav@ants have to be mentioned: first the



method of Roddeman [7] that splits the deformagoadient into consistent membrane part
and wrinkling part [8,9,10,11]; second models waih internal length, like Cosserat theory
[12,13] that avoid loss of ellipticity in case obrapressive stresses. These models can be
considered as macroscopic ones and indeed theyrgequich less refined meshes as the
previous ones, because the size of the macrostinpiecelements is not related to size of the
wrinkles.

In this paper, macroscopic models of

membranes including wrinkling are deduced from fimee plate model without any
phenomenological assumptions. The bending stiffeéfests are included, not only to define
the wrinkling wavelength, but also to predict theaamscopic evolution of the wrinkling
pattern. The idea is to build a theory couplingepmmembrane model with an envelope
equation as in Landau-Ginzburg approach [14,15]veltbeless we shall not apply the
classical Landau-Ginzburg asymptotic technique iha&alid only near the bifurcation, but a
variant where the nearly periodic fields are repnésd by Fourier series with slowly varying
coefficients [16,17,18,19]. In other words we usenalti-scale method whose result is a
generalised continuum including an internal lengtid where the macroscopic stresses are
Fourier coefficients of the microscopic stress. Thsulting models are macroscopic and
require only rough meshes because their unknowasnaplane displacements and slowly
varying envelopes of the wrinkles.

For simplicity, we limit ourselves to plane membeathe fine model being the traditional
Foppl-Von Karman plate equations. Two examplessass®del’s ability to represent the
behaviour of membranes in the presence of wrinkling

2. Nonlinear macroscopic models of wrinkling
2.1. The full model

The well known Foppl -Von Karman equations for stasotropic plates will be considered
as the reference model in this paper:

DA°w — div(NOw) =0
N=L"y
2y =0u+'Ou+0ud0u’
divN =0

(1)

where u = (u,v) JIR? is the in-plane displacementy is the deflectionN and y are the
membrane stress and strain. With the vectorial tioom (N-'(Ny, N, N,),
T-'(Yy Vv 2Yy)), the membrane elasticity tensor is represented thgy matrix

1 v 0
1ECZ 1 0 |. The corresponding enerdgl can be split into a membrane pé&t..
2

and a bending pafte, as follows:
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2.2. A multiscale approach using Fourier coefficien

We adapt in this 2D framework the method of Fourseries with slowly variables
coefficients [17]For simplicity, we suppose that the instability waumberQ is known and
we only consider wrinkles in the OY-direction. Withthis method, the unknown field
U Y) =(u(x,Y) v(X,Y) n(XY) mXY)), whose components are axial displacement,
transverse displacement, membrane stress andsstisimritten in the following form:

U(X,Y) = ZUm(X,Y)eXmeQX), ®3)

m=—oo

where the new macroscopic unknown fielthsn(X,Y) vary slowly on a single period
{X,X +%n} of the oscillation pattern. Of course we do noeden infinite number of

Fourier coefficients and we limit ourselves to thtearmonics: the mean field,(X,Y) and

the envelope of the oscillatiobs(X, Y, U, (X, Y)e . According to (Damil and Potier-

Ferry 2010), the second harmonic should be takenaocount to recover the results of the
Landau-Ginzburg bifurcation approach. Neverthelégsrapid one-dimensional oscillations

€% are inextensional so that they do not contribuietie membrane energy. The
macroscopic model with the second harmonic has besmablished, but within the
approximation of ([17], 84.1), we have shown tHd; =0, w,=0 so that the second

harmonic does not influence the macroscopic modlee details of this calculation are
omitted.

In principle, the mean field),(X,Y) is real and the envelope(X,Y) is complex-valued, but

spatial evolutions of the patterns can be reasgratdounted with only two real coefficients:
for practical finite element calculations, this pirfication of two real unknowns will be done,
even if a complex envelope can improve the treatroeboundary conditions [19].

The derivation rules are straightforward [16] amaifirst time, the derivatives of the
envelopes are not neglected. For instance theHagtier coefficient of the gradient of the
deflection is given by:

ow,

{(Ow)} =4 X

+iQw,
w,
aY

(4)



2.3 Macroscopic membrane energy

We now derive the macroscopic model and we bedin the membrane effects. We apply
the principles established in [16][17]. The denves are computed exactly as in (4), but
some simplifications will be added to obtain th@glest macroscopic model having the same
internal length as the asymptotic Landau-Ginzbygra@ach. Next one could deduce the
macroscopic model by identifying Fourier coefficiem the differential equations (1), but a
most convenient approach consists in retaining tréyharmonic of level zero to approximate
an energy density:

J [~ [[nge )

period period

where h, represents the harmonic zero of the derisityrhe rule (5) is a consequence of the

assumption of slowly varying envelopes. For inséattte energy due a higher harmonic
vanishes if the envelope is assumed to be consteatperiod:

jjhn(X,Y)epran)da)z h,(X.,Y) jjexp@an)da): 0 (6)

period period

First, we compute the mean value or the harmonic aéthe Lagrange strain, by using (4)

and without any approximation:
2

2
au, +1(awoj +|6w1 iow,
y ox 2 ax ) |oX
X0 2 2
ov, 1 6W0j |ow|
= = += + 7
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Next two additional simplifications will be introdad in the envelope model, in the same
spirit as in [17]. First the displacement fieldésluced to a membrane mean displacement and

to a bending wrinkling, i.e;, =0,w, =0, which means that we only consider the influence
of wrinkling on a flat membrane state. Second tefedtion envelope is assumed to be real,
which disregards the phase modulation of the wirigkpattern:w,(X,Y) is real. Hence the

envelope of the displacement is reduced to thregpoaentsu, = (u,,v,) and w, that will

def def
be rewritten for simplicity a@u,v) = (u,,v,) W =w,. Hence the simplified version of the

mean strain field is:



6u ow
R IR

def ov _ (ow ?
vt ={vo} = v [an : (8)

6u 6v 26W6_W
aY OX 0X oY

The membrane strain formula (8) is quite similarthe strain of the initial Von Karman
model. Itcan be split, first in a linear pagfu) that is the symmetric part of the displacement
gradient and corresponds to the pure membrane ss@tond to a nonlinear part' (w) that

is more or less equivalent to wrinkling deformatairj7] and is given by

5o
oX

I ow)’
{y"(w)} = (an . 9)

ow dw
oX oY

The main difference with the classical Von Karmarais is the extensiorQ’w? in the

direction of the wrinkles. So, if the linear stras compressive, the wrinkling leads to a

decrease of the membrane strain.

Last we apply the multiple scale rule (5) to thembeane energy. This leads for instance to
[[rao= [[bz-2rb0= [[rico 10)

period period period

where the first approximation is deduced from (B3 &rom Parseval identity, truncated at
harmonic one and the second one follows from tiseraptioru, =0, w, =0. According to
these rules, the membrane energy becomes:

[ du (6Wj2 5 2]2 ( ov (awjzjz
+Q°w +
oX o0X aY oY

28(0) = E0 200 5[ S S T, (1)

oX 0Y ) o0XadY

2\{@{6"") L ow Zj(av (aw”
X | aX ay  \avy




2.4 Macroscopic bending energy

The bending energy is reduced to a macroscopicioversn the same framework:
u, = (u,v,)=(00), w,=0, w, real. The identity (5) is applied to the two terwofsthe
bending energy

2w ow ([ ow Y
h=(Aw)? - 21—V - =h* - 2(1-Vv)h®.
(fwy" -2 )[axzavz (axavn =v)

Hence

hg =2(Aw),(Aw)_; = 2(Aw),

ow,
X

|2

2 .

= 2|AWl -Q’w, +2iQ

Sincew =w, is real, one gets:
A 2,12 o OW ’
hy =2(Aw - QW)=+ 8Q°| — | . (12)
oX
In the same way, the second tehthis given by:

0°w 0°w ow Y’ ow )\’
hS = -Q’w - -2Q° — | . 13
° Z(ax2 Q Javz z(axavj ZQ(an 13)

As in ([17], 84.3), the derivatives of order three four in the differential equations are
neglected because the derivatives of order twcsaffecient to define a macroscopic length
scale and to recover the Landau-Ginzburg asympapticoach. This leads to

Epen(W) = H{Q“Wz - 2QwAw + @2[3—;”) + 2(1-v2)Q2{W Ow +("Wj }dw (14)

av? lay

2.5 The full membrane wrinkling model

The macroscopic membrane model is deduced fromoatia¢ energy that is the sum of the
membrane energy (11), of the bending energy (14 )ohnhe energy of the applied loads. Let
us calculate the corresponding partial differerg@lations in the case where all the external
loads are apply on the boundary. In this casestime of bending and membrane energies is
stationary

OE, .+ O0F, ., =0,

ben

for any virtual displacement that is zero at therfwzwy. This gives:



OF, ., + [[N:0y"dw=0 (15)
[[N:dedw=0. (16)

After straightforward calculations, the differetguations of the macroscopic problem are
the followings:

divN =0 a7)

N=L":[g(u)+y" (w)] (18)
,0°W , 0°wW 4 v ok _

-6DQ e 2DQ 32 +(DQ" + N, Q°)w —div(NIOw) =0, (29)

where the expression of the wrinkling membranérstyd’ (w) is given in (9).

2.6 Comments

1. The nonlinear model (17) (18) (19) couples nonline®mbrane equations with a
bifurcation equation (19) satisfied by the enveloparinkling patterns. It extends the
analysis of [17] that coupled a beam membrane \waitbne-dimensional Landau-
Ginzburg equation. Hence the bifurcation equatid®) (is a sort of bi-dimensional
Landau-Ginzburg equation.

2. If the membrane stress is prescribed and uniform
N=N,e e +N,e, e, ,
(19) becomes identical to a linear eigenvalue gnobés in a linear buckling analysis.
In the general case, the membrane stress is unkandi(17) (18) (19) is a nonlinear
coupled membrane-wrinkling model that can be solmd standard numerical
techniques. In this paper, an example of numesichition is presented in Part 3.2.

3. The nonlinear model (17)(18)(19) is consistent witho ideas used in other
macroscopic membrane models. First we have obtamesplitting between a
membrane strain and a wrinkling strain, as in tled Wwnown theory by Roddeman et
al [7]. Next, since we follow an approach consisteith Landau-Ginzburg theory, the
final bifurcation equation (19) includes an intdrfemgth. As underlined in [16], the
mechanical model is a generalized continuum andttiess is not reduced to the mean
value of microscopic stress: the first terms of (t8htains the effect of the first
Fourier coefficient of the bending moment. This ¢enqualitatively compared with
the ideas of Banerjee et al [12,13] who introduceirgernal length via Cosserat
theory.

4. The differential equations (17) (18) (19) seem eulifferent from the classical pure
membrane theory that postulates a nonlinear reldigiween membrane stress and
strain; see for instance [5]. Nevertheless the pugenbrane theory can be consistent
with a degenerate version of (17) (18) (19). Thieetecan be obtained by dropping all
derivatives in (19) which leads N, + DQ?)w =0. If one transforms the latter in a

perturbed bifurcation equation as:



(Nx +DQ%)w=4J (20)

one gets the deflection as a function of one corapbof the membrane stress. In
(20), 0 is a small perturbation parameter that transfothes perfect bifurcation
equation into a perturbed bifurcation one. If omapdifies the wrinkling strain (9) as

y"(w) = Q°w’¢, Oe, and if one combines (18) and (20), one can drepi#flection
and deduce a nonlinear relation between membraai® ${u) and membrane stress
N:

QZJZ

8(U)+Wex Ley =(Lm)_]-'N . (21)

3. Some analytical and numerical solutions

In this Part, we present few solutions of the sys{&7)(18)(19). Probably, many exact or
approximated solutions of this new system can bedoln this paper, we limit ourselves,
first to an analytical solution of the linearisggt®m in order

to establish the multiple scale character of membrarinkling, second to some numerical
solutions of the full nonlinear problem (17)(18)J18 show that this macroscopic model is
able to describe the evolution of wrinkles everhveitcoarse finite element mesh.

3.1 An analytical solution for wrinkling initiation

| | |

Ny

|

Nx

Ly

— e
[ -—
— & — Ny
— S ———

Lx

]

Figure 1: Rectangular membrane under biaxial load.

Ny

Let us consider the rectangular membré®é « ]x[0,L,] pictured in Figure 1, which is
submitted to a large uniform tensile stréss=ho, >0and to a small uniform compressive
stress loadindg\x =hoy <0. The instability wavelength and the critical coegsive stress
will be deduced from the envelope equation (19)e &eeks the value of the compressive

stress at which wrinkling starts. The linearisetsian of the envelope equation (19) is
rewritten as



2 2 2
~ep2 2V (ZDQ + haY)a—"zH DQ*w=hlo, | sz—a—"z"
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If the plate is clamped, it is known [19,20] thia¢ tenvelope w vanishes on the boundary,
what leads to a linear mode in the form:

w(X,Y) =sin(7X / Ly )sin(zX /L) .

This leads to a classical relation between compessress and wavenumber.

GDQZi +(2DQ? + hay)iz +DQ*
& Ly
o @) = > , (22)
Q +L7

Hence our approach is able to define the stahildyenumber by minimizing the stress as a
function ofQ . For simplicity, we take into account the ordefrsnagnitude 1<<QL, ,

2DQ?/h=|oy|<<0, to simplify (22) in the following manner:

o, * D
7% |(Q=—%— —Q?
oxlQ@=5 7 R (23)
The minimum of the latter yields values of the waw@ber and of the critical compressive
stress that are consistent with the results oftinature [21][22]:
X 032—

=412720-v?) J_ ,/T

(W= =2 D195‘/hL €/7

T
- T [Eo, L

J3a-v?) Ly

This simple calculation brings out the multiplelsazharacter of the wrinkling phenomenon:
indeed, the wrinkling threshold depends on the \eangth that is a microscopic quantity, but
this wavelength depends of the width of the plag is a macroscopic length. Thus a full
wrinkling analysis has to associate micro and macedes.

ax

3.2 A numerical post-bifurcation analysis for wrirkling

The partial differential system (17) (18) (19) he®n discretised by standard finite elements.
The pure membrane approach (17)(21) has also beeretised in order to evaluate the
importance of the spatial derivatives of the enpeldEight nodes quadrangles Q8 have been
chosen. The details of the procedure will be priestalsewhere.



A thin rectangular membrane under uniaxial loae (Sg. 2) is studied, as in [23,24]. The
side lengths J.and Ly are respectively 1400mm and 200mm, and the thgskhas 0.05mm.
The long sides are stress-free. Along the shorssale@niform tensile stress is applied in the
axial direction and the displacements in the X-ation are locked.

1]

Ly

Figure 2. A rectangular membrane under uniaxiadlo

Full nonlinear analyses of this problem have bearedbrst by a Q8 discretisation of the new
model (17)(18)(19), second by a Q8 discretisatibti® non-linear pure membrane model
(17)(21), last by quadratic shell elements S82thefAbaqus code that will be considered as
the reference. The nonlinear problems associatddtiag first two models have been solved
by the Asymptotic Numerical Method [25]. In Figureddie sees that the post-bifurcation
patterns obtained by the new reduced model (1 (2Bare quite similar as those provided
by the full shell model. This establishes the reteeaof this new reduced model to represent
the wrinkling modes in a case with a non uniform-puckling stress field.

In Figure 4, we have plotted the maximal deflat@s a function of the applied tensile load
for these three models. One sees that the newedduodel (17)(18)(19) gives about the
same bifurcation point as the reference model disase¢he post-bifurcation response. As
expected, the number of unknowns is much smallér thie envelope models that do not
describe explicitly the full details of the wrinkleOn the contrary, the pure membrane model
underestimates the wrinkling threshold and overestes the wrinkling amplitude. This is
consistent with the analytical study of §3.1 thas pointed out that the bifurcation load
depends strongly on a macroscopic length andrfiseince of the macroscopic structure
cannot be accounted if one neglects the spatialatetes of the envelop&X,Y) .
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Figure 3. Posbifurcation patterns obtained with the envelope mcanda full shell mode
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Figure 4 Bifurcation curvesfor the tensile problem of Figure 3, with te different model

4. Last comments

A new wrinkling modelhas been presented in this paper. Theroach is analog t
bifurcation analyses fanstability patterns via Land-Ginzburg thecry. The final mode
(17) (18) (19) issimple: tie first equations (0) (18 are membrane eiations including a
additional wrinkling menbrane strain and they are coupled va sort of Lande
Ginzburg envelope quation (19). For this first paper about 1 new macroscopi
approach of membranerinkling, two solutions have been presed. First an analyti
solution of a clamped :ctangular membrane illustratthat memkane wrinkling i a
multi-scale problem tharequires consistent mulieale approachesecond a numeric
solution in a case with non uniform pr-buckling stress has showhe relevance of th
new reduced model ai the necessity of accounting some sp derivatives of tr
envelope. Likely this ggroach can have alternative applicationr instance for thir
films on a compliant sultrate [2€ or for flathess defects induced tolling process [27]
but this could require sce modifications to account for variable wile orientations
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