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 by showing the exponential decay of the perturbation of the laminar solution below the critical Rayleigh number and of the convective solution above the Rayleigh number, in the kinetic framework.

1. Introduction. The arising of convective motions in a fluid between two thermal walls under the action of the gravity field g, when the bottom wall is hotter than the top wall, is one of the classical examples of bifurcation of a stationary solution in Fluid-Dynamics and is known as the "Benard problem". The bifurcation is driven by a parameter Ra, the Rayleigh number which is proportional to the product of the gravity and the temperature difference. It consists in the fact that, when the Rayleigh number Ra is below a critical value Ra c , the incompressible Navier-Stokes-Fourier system (INSF) in an external gravity has only the conductive solution, characterized by vanishing velocity field and a linear temperature profile. Instead, when Ra crosses the threshold Ra c convective solutions appear with non vanishing velocity field. With the increase of the Rayleigh number, a large variety of complex phenomena occur. Here we wish to restrict our attention to a small right neighborhood of Ra c , where only the first bifurcation occurs and the laminar solution bifurcates and above Ra c both the laminar and the two convective motions, corresponding to clockwise and anti-clockwise rotation, are stationary solutions, but only the last two are stable.

The analysis of the linear and non linear stability of the stationary solutions to the Benard problem, at the level of Fluid-Dynamics, has been performed in a vast literature ([4, 6, 8, 9, 10, 13, 11]). The same problem, in the framework of the Boltzmann equation, has been addressed in [START_REF] Arkeryd | Stability of the laminar solution of the Boltzmann equation for the Benard problem[END_REF][START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], where the stationary solutions to 2 L. ARKERYD, R. ESPOSITO, R. MARRA, A. NOURI the Boltzmann equation (1.1), both below and above the critical Rayleigh number, have been constructed and their asymptotic stability has been proved, without computing the rate of decay of the perturbation.

The aim of this paper is to complete the result in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] by proving exponential decay rate of the perturbation. Unfortunately, the key spectral inequality we used in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] is incorrect. Therefore, we begin with fixing this error by giving the correct inequality, then we modify consequently the proofs given in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]. This requires a slight change of perspective. As already mentioned, the Rayleigh number is proportional to the product of the gravity times the temperature difference. Therefore, in order to achieve a supercritical Rayleigh number, either we consider a sufficiently small gravity and a corresponding temperature difference, or we fix a sufficiently small temperature difference and deal with a corresponding gravity. The former point of view is the one used in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]. In this paper, due to the extra terms deriving from the corrected spectral inequality, we adopt, at least in two dimensions, the latter point of view, which requires minor modifications in several lemmas.

To be more specific, we state the main problem. We follow as closely as possible the notation of [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] to which we will also refer for many details which are just a repetition of the arguments given there.

We look for the solution to the initial-boundary-value problem for the Boltzmann equation with diffuse reflection at the boundary modelling two thermal walls the bottom one at temperature T -= 1 and the top one at themperature T + = 1-2πελ: |w z |F (t, x, ∓π, w)dw, t > 0, v z ≷ 0, x ∈ [-π, π),

∂F ∂t + 1 ε v • ∇ µ F -G ∂F ∂v z = 1 ε 2 Q(F, F ), F (0, x, z, v) = F 0 (x, z, v), (x, z) ∈ [-π, π) × (-π, π) ≡ Ω, v ∈ R 3 , (1.1) 
F (t, x, ∓π, v) = M ∓ (v)
where µ = h d is the aspect ratio of the convective cell and ∇ µ = (µ∂ x , ∂ z ). Indeed, we have rescaled the variables z to make the width of the slab 2π and the variable x so that all the functions are periodic in x with fixed period 2π. Moreover,

F 0 ≥ 0, M -= 1 2π e -v 2 2 , M + (v) = 1 2π(1 -2πελ) 2 e -v 2
2 (1-2πελ) .

The parameter ε = 0 d is the ratio between the mean free path and the width of the slab, T + and T -> T + are the temperatures on the top and bottom plates, G = 

Q(f, g)(z, v, t) = 1 2 R 3 dv * S2 dωB(ω, v -v * ) f * g + f g * -f * g -g * f .
Here h , h * , h, h * stand for h(x, z, v , t), h(x, z, v * , t), h(x, z, v, t), h(x, z, v * , t) respectively, S 2 = {ω ∈ R 3 |ω 2 = 1}, B is the differential cross section 2B(ω, V ) = |V • ω| corresponding to hard spheres, and v, v * and v , v * are pre-collisional and postcollisional velocities or conversely. Note that the boundary conditions are chosen so that the impermeability condition

R 3 dvF v z = 0 (1.2)
is formally satisfied at the boundaries.

A comment is in order about the assumptions on collision cross section and boundary conditions: The method presented here can be probably extended to collision cross sections corresponding to hard potentials with Grad angular cutoff. This would require extra technical efforts and we prefered to restrict ourselves to the simplest case. It does not seem possible to include soft potentials with cutoff and non cutoff potentials in this treatment. About boundary conditions we remark that the Benard setup requires thermal walls that could also be modeled by a combination of diffuse reflection and elastic or reverse reflection. Unfortunately the boundary terms due to elastic or reverse reflection are too singular to be treated with our methods, hence we have to confine our analysis to the purely diffusive boundary conditions. Purely elastic reflection or reverse reflection are not considered because they do not model thermal walls. We note that above definitions of the parameters correspond to the choice ε = 2Kn 6 5π where Kn is the Knudsen number. We have also set the Mach number Ma = ε 6 5 . With such a choice of the parameters, the Rayleigh number is given by (see for example [START_REF] Sone | Molecular gas dynamics, theory, techniques, and applications[END_REF])

Ra = 32Gλ, (1.3) 
independent of ε. As mentioned before (see e.g. [START_REF] Drazin | Hydrodynamic Instability[END_REF]), there is a critical value of Ra, denoted by Ra c , such that the laminar solution to the hydrodynamic equations becomes linearly unstable. In the rest of this paper λ > 0 will be a fixed value, smaller than a suitable λ 0 that will be specified later, and G will be the control parameter of the bifurcation, which will occur when G crosses the threshold G c such that 32λG c = Ra c . Moreover, we will use the notation δ = (G -G c )G -1 c , and our analysis will hold either for 0 ≤ G ≤ G c or for δ > 0 sufficiently small. We stress that the smallness of the parameters λ and δ is independent of ε, so that the results we obtain is valid also in the limit ε → 0, the hydrodynamic limit, with λ and δ small but fixed.

We now recall the Fluid-Dynamic results for the Benard problem relevant to our purposes. We refer to [START_REF] Foias | Attractors for the Bénard problem: existence and physical bounds on their fractal dimension[END_REF][START_REF] Ghidaglia | Etude d' Écoulements Fluides Visqueux Incompressibles : Comportement pour les Grands Temps et Applications aux Attracteurs[END_REF][START_REF] Iudovich | On the origin of convection[END_REF] for more details. The laminar solution to the INSF system is characterized by the temperature field T l = -λ z+π 2π and u l = 0. We write the INSF system for the deviations from the laminar solution. They are:

∂ t u + u • ∇ µ u = η∆ µ u -∇p -e z Gθ, ∂ t θ + u • ∇ µ θ + λu z = k∆ µ θ in Ω = [-π, π) × (-π, π) (1.4) ∇ µ • u = 0, with ∆ µ = µ 2 ∂ xx +∂
zz , e z the unit vector in the positive z direction, u a vector in R 2 whose components are u x and u z respectively, p is the pressure of the incompressible fluid, θ is the deviation from the linear temperature profile, η is the kinematic viscosity and k is the heat conductivity multiplied by a factor 2 5 . The INSF system (1.4) has to be solved with homogeneous boundary data:

u(x, ±π) = 0, θ(x, ±π) = 0, x ∈ [-π, π), (1.5) 
and periodic boundary conditions in the variable x. The couple h = (u, θ) denotes the solution to the problem (1.4), (1.5). For G ≤ G c , the laminar solution, h = 0 is the only steady solution and it is stable up to the critical Rayleigh number. Moreover, there is

δ 1 > 0 such that, if G ∈ (G c , G c (1 + δ))
for δ < δ 1 , then there are two periodic roll solutions, h s , with period which fixes the aspect ratio µ, rotating clockwise and anti-clockwise respectively, such that

h s = δh con + δ 2 h R , (1.6) 
where h con are the eigenvectors corresponding to the least eigenvalues of the linearization of the problem (1.4),(1.5) around the laminar solution h = 0. The remainder h R is in a suitable Sobolev space (H k (Ω)) 3 with its Sobolev norm bounded uniformly in δ: namely, there is a constant C such that, for any δ < δ 1 ,

h R H k (Ω) ≤ C. (1.7)
Furthermore, there are n 0 and ζ 1 such that if h 0 ∈ (H k (Ω)) 3 for k sufficiently large and has H k -norm smaller than n 0 , then the time dependent solution to the problem (1.4), (1.5) is such that

h(t) H k (Ω) ≤ Cδe -ζ1t (1.8)
for any k < k (see Proposition 3.1).

A stationary solution to the problem (1.1) is constructed by means of a truncated expansion in ε with remainder, so that we have the representation

F s = M + εf s + O(ε 2 ).
(1.9)

The first term of the expansion is the standard Maxwellian M

M (v) = 1 (2π) 3 2 e - |v| 2 2 ; 
(1.10) the first order correction is given by

f s = M ρ s + u s • v + T s |v| 2 -3 2 (1.11)
where, for G ≤ G c we have u s = 0, T s = T l and ρ s = -(λ + G)z is computed by using the Boussinesq condition

∇(ρ + T ) = Ge z . (1.12) 
When G > G c and δ < δ 1 , u s , T s and ρ s are computed in terms of h s . The higher order terms will be described later. Now we are in position to state the main theorem. In the statement we use the norm • 2,2 which represents the L 2 -norm on the phase space Ω × R 3 with weight M -1 , and the norm • 2,2,2 , the L 2 -norm on Ω × R 3 × R + , including also integration of all the positive times.

Theorem 1.1. There are λ 0 > 0, δ 0 > 0, ε > 0 such that, if 0 ≤ λ < λ 0 and G ∈ (0, G c (1 + δ)) with δ < δ 0 , then there is a positive, locally unique, stationary solution F s to the Boltzmann equation such that for any ε < ε 0 ,

F s -(M + εf s ) 2,2 ≤ cε 2 .
(1.13)

Furthermore, if the initial perturbation Φ ε 0 to the stationary solution is such that Section 2 is devoted to the construction of the stationary solution. In Section 3 we show the exponential decay of the perturbation.

F s + M Φ ε 0 is
2. Stationary solution. As discussed before, in this paper we want to show that a small perturbation of the stationary solution F s to the problem (1.1) decays exponentially fast, as t → +∞. However, since the paper [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] contains an inconsistency in the construction of such a stationary solution, we need to review part of the proof of the main existence result for the stationary solutions.

We recall the notation adopted for the norms: the norm in the bulk is defined, for any 1 ≤ q ≤ +∞ as

f q,2 = R 3 dvM (v) Ω dxdz|f (x, z, v)| q 2 q 1 2
.

The space of measurable functions on Ω × R 3 with the above norm finite is denoted by Lq .

The boundary norm is defined as

f q,2,∼ = sup ±   R 3 ± dv|v z |M (v) [-π,π) dx|f (x, ∓π, v)| q 2 q   1 2 
, where R 3 ± is the set of velocities such that v z ≷ 0. The set of functions on

[-π, π) × {-π} × R 3 + ∪ [-π, π) × {π} × R 3 -with bounded • 2,2,∼ -norm is denoted by L + .
The stationary solution F s corresponding to the laminar and convective solutions to the INSF system will be constructed as follows: Set

F s = M (1 + Φ ε s ). Then Φ ε s (x, z, v) = 5 n=1 ε n Φ (n) s (x, z, v) + εR s,ε (x, z, v),
where Φ

s = f s and Φ (j) (1) 
s , for j > 1 are constructed by means of a bulk-boundary layer expansion already discussed in [START_REF] Esposito | Solutions to the Boltzmann equation in the Boussinesq Regime[END_REF][START_REF] Arkeryd | Stability of the laminar solution of the Boltzmann equation for the Benard problem[END_REF][START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]. Here we summarize the relevant properties of the Φ s , n = 1, . . . , 5 and ψ n,ε can be determined so as to satisfy the boundary conditions

Φ (n) (x, ∓π, v) = M ∓ (v) M (v) wz≶0 |w z |M [Φ (n) (x, ∓π, w) -ψ nε (x, ∓π, w)]dw +ψ n,ε (x, ∓π, w), t > 0, v z ≷ 0,
and the normalization condition R 3 ×[-π,π] 2 dvdxdzΦ (n) = 0, so that the asymptotic expansion in ε for the stationary problem (1.1), truncated to the order 5 is given by

F (exp) s (x, z, v) = M (v) 1 + 5 n=1 ε 5 Φ (n) (x, z, v) .
If G ≤ G c then the functions Φ (n) 's, corresponding to the laminar solution satisfy the conditions

Φ (n) 2,2 ≤ Cλ, Φ (n) ∞,2 ≤ Cλ , n = 1, . . . , 5, (2.1) 
for a suitable constant C. Moreover if G ≥ G c and δ < δ 1 , then the Φ (j) 's differ from those of the laminar solution by O(δ) and the inequalities (2.1) are replaced by

Φ (n) 2,2 ≤ C(λ + δ), Φ (n) ∞,2 ≤ C(λ + δ) , n = 1, . . . , 5. (2.
2)

The functions ψ n,ε are such that ψ n,ε q,2,∼ , q = 2, ∞ are exponentially small as ε → 0, and

R 3 dvv z M (v)ψ n,ε = 0.
The space where the remainder will be constructed is the following:

W q,-:= {f : [-π, π] 2 × R 3 → R | ν 1 2 f ∈ Lq , ν -1 2 Df ∈ Lq , γ + f ∈ L + }, for q = 2 or q = ∞.
Here, DF denotes first order derivatives of f and γ ± f are the ingoing (resp. outgoing) trace operators defined as the restrictions of f to the ingoing (resp. outgoing

) boundary, [-π, π) × {-π} × R 3 + ∪ [-π, π) × {π} × R 3 -(resp. [-π, π) × {-π} × R 3 -∪ [-π, π) × {π} × R 3 +
). Before stating the main theorem of this section we recall the properties of the linearized Boltzmann operator L,

LR = 2M -1 Q(M, M R), defined on a suitable dense subset of H = L 2 M (R 3 ), namely L 2 (R 3
) with weight M . The space H will be equipped with the inner product (

• , • ) H = ( • √ M , • √ M ) L 2 (R 3 )
The operator L has a non trivial null space. An orthonormal basis in the null space is given by the functions

ψ 0 = 1, ψ 1 = v x , ψ 2 = v y , ψ 3 = v z and ψ 4 = 1 √ 6 (|v| 2 -3
). The orthogonal projection on the null space of L is denoted by P . For the operator L the decomposition L = -νI + K holds, where I is the identity, ν is a positive function of |v| which, for hard sphere is such that ν ∼ (1 + |v|) and K is a compact operator on H. Finally L is symmetric on H and the quadratic form associated to L is negative semi-definite in the sense that there is a positive constant C such that

-(f, Lf ) H ≤ C((1 -P )f, ν(1 -P )f ) H .

Now we state the main theorem of this section:

Theorem 2.1. There are positive ε 0 , δ 0 and λ 0 such that given λ < λ 0 , δ < δ 0 , for any ε < ε 0 there exists a stationary solution to (1.1) in the form

F s = F (exp) s + εR s,ε , with R s,ε ∈ W 2,-∩ W ∞,-. The remainder R s,ε , simply denoted by R, solves the boundary value problem v • ∇ µ R -εGM -1 ∂(M R) ∂v z = 1 ε LR + 5 n=1 ε n-1 J(Φ (n) , R) + J(R, R) + εA, (2.3) R(x, ∓π, v) = M ∓ (v) M (v) wz≶0 |w z |M (w) R(x, ∓π, w) + 1 ε ψε (x, ∓π, w) dw - 1 ε ψε (x, ∓π, v), for v z ≷ 0 and x ∈ [-π, π], (2.4 
)

where 1 ε ψε = - 5 n=1 ε n ψ n,ε , J(h, g) = 2 M Q(M h, M g), and A is a smooth function computed in terms of the Φ (j)
s 's, bounded in • q,2 , q = 2, ∞, and R 3 dvM (v)A = 0. Moreover, the remainder satisfies the impermeability conditions

R 3 dvv z R = 0 for z = ±π.
The construction of the stationary solution is obtained by an iteration scheme where, in the equation for the iterate R n+1 , the non linear term is computed in terms of R n . Therefore, the main step of the analysis is the study of the equation (2.3) where A + J(R n , R n ) is replaced by a known function.

As in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], we introduce the operator L J for fixed x, z as follows: for any f in the domain of L,

L J f = Lf + εN P f, (2.5 
) where, for a given L ∞ M (Ω × R 3 ) function q, the operator N is defined as

N f = J(q, f ).
In the rest of this section we will use the function

q = 5 n=1 ε n-1 Φ (n) s .
With this choice of the function q, we have

q ∞ ≤ C(λ + δ + ε), (2.6) 
for some constant C. In next section there will be a different choice of q, and the above estimate will be consequently modified.

The operator L J also has a non trivial null space Kern(L J ), which is spanned by the vectors ψj , j = 0, . . . , 4 as proved in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]. The vectors ψj 's differ from the ψ j 's for terms of order ε:

ψj = ψ j -εL -1 N ψ j .
(2.7) The operator P J denotes the orthogonal projector on Kern(L J ).

We underline that L J is not symmetric, so we will also consider the adjoint of L J , denoted L * J . The null space of L * J coincides with the null space of L, Kern(L). The difference P J -P is estimated as follows:

ν 1 2 (P J -P )f 2,2 ≤ Cε q ∞ f 2,2 , (2.8) 
for some constant C.

The following proposition replaces Proposition 2.1 in [2]:

Proposition 2.2. There is ε 0 > 0 such that for ε < ε 0 there are positive constants c 1 and c 2 such that

-(L J f, f ) 2,2 ≥ c 1 (ν(I -P J )f, (I -P J )f ) 2,2 -c 2 ε 2 q 2 ∞ ν 1 2 P J f 2 2,2 , (2.9) -(L * J f, f ) 2,2 ≥ c 1 (ν(I -P )f, (I -P )f ) 2,2 -c 2 ε 2 q 2 ∞ ν 1 2 P J f 2 2,2 . (2.10)
Proof. By the decomposition f = (I -P J )f + P J f , we have

-(f, L J f ) 2,2 = -((I -P J )f, L J (I -P J )f ) 2,2 -(P J f, L J (I -P J )f ) 2,2 .
The first part is bounded from below as in Proposition 2.1 of [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] by c(ν(I -P )f, (I -P )f ) 2,2 . For the second term, since (P f, L J (I -P J )f ) 2,2 = 0, we have

|(P J f, L J (I -P J )f ) 2,2 | = |((P J -P )f, L J (I -P J )f ) 2,2 | ≤ Cε q ∞ f 2,2 ν 1 2 (I -P J )f 2,2 . Then since f 2,2 = (I -P J )f 2,2 + P J f 2,2 , for any positive η, f 2,2 ν 1 2 (I -P J )f 2,2 ≤ |ν 1 2 (I -P J )f 2 2,2 (1 + 1 η ) + η 4 P J f 2 2,2 .
Thus we obtain (2.9) by choosing η

= 3C c ε q ∞ . Consequently c 1 = c 2 and c 2 = C 2 c .
The first consequence of the extra term appearing in Proposition 2.2 is in the Green inequality (2.15) of [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] which is modified as follows:

Proposition 2.3 (Green Inequality). Consider the linear problem v • ∇ µ f -εGM -1 ∂(M f ) ∂v z = 1 ε L J f + g, (2.11) 
with the prescribed inhomogeneous term g such that M gdv = 0 and prescribed incoming data

f (x, ±π, v) = p(x, ±π, v), v z ≶ 0.
(2.12) Then, for any η > 0,

γ -f 2 2,2,∼ + c 2ε ν 1 2 (I -P J )f 2 2,2 ≤ C ε ν -1 2 (I -P J )g 2 2,2 +(η + ε 2 q 2 ∞ ) P J f 2 2,2
(2.13)

+ 1 η P J g 2 2,2 + p 2 2,2,∼ .
A similar inequality holds when L J is replaced by L * J . The proof is the same as in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], taking into account the modified spectral gap inequality for L J .

The Fourier transform with respect to the variable x, F x f (sometimes just Ff for brevity) is defined as follows: for any ξ ∈ Z,

F x f (ξ) = 1 2π [-π,π] dxe -iξx f (x). For (x, z) ∈ [-π, π] 2 , f (ξ x , ξ z ) = (F x F z f )(ξ x , ξ z ). For f function of x, z and v, < f > is the zero Fourier coefficient of f : < f >:= 1 (2π) 2 [-π,π] 2 f (x, z, v)dxdz, a.a. v ∈ R 3 (2.14)
and f := f -< f >.

In the rest of this paper, constants which, independently of the parameter ε, can be made sufficiently small for the purposes of the proofs, will generically be denoted η.

The statement of Lemma 2.1 in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] holds provided that q ∞ is sufficiently small:

Lemma 2.1. Let ϕ(x, z, v) be solution to v • ∇ µ ϕ -εGM -1 ∂(M ϕ) ∂v z = 1 ε L * J ϕ + g, (2.15) 
periodic in x of period 2π, and with zero ingoing boundary values at z = -π, π.

Then, if λ + δ + is sufficiently small, it results:

ν 1 2 (I -P )ϕ 2,2 ≤ C ε ν -1 2 (I -P )g 2,2
+ P g 2,2 +ηε < P ϕ > 2 , (2.16)

P ϕ 2,2 ≤ C ν -1 2 (I -P )g 2,2 + 1 ε P g 2,2
+η < P ϕ > 2 .

(2.17)

The statement of Lemma 2.1 is still true, if we replace the operator L * J with the operator L J and the operator P with P J .

Proof. Lemma 2.1 is proved as in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]. Equation (2.21) in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] provides a bound for

P ϕ 2 2,2 in terms of ε -2 ν 1 2 (I -P )ϕ 2 2,2
. This, by the Green inequality, gives a term q 2 ∞ P ϕ 2 2,2 in the right hand side, which can be absorbed in the left hand side provided that q 2 ∞ is sufficiently small. This is true, by (2.6), provided that λ + δ + is sufficiently small.

Put H(R) = 5 n=1 ε n-1 J(Φ (n)
s , R) and decompose H in accordance with the operator L J . Set H 1 ( • ) = H( • ) -J(q, P • ) = J(q, f ) -J(q, P f ). We notice that H 1 (•) is of order zero in ε and only depends on the non-hydrodynamic projection (I -P ).

At the stage n + 1 of the iterative procedure we need to compute the remainder R n+1 , still for brevity denoted by R. We decompose it into two parts R 1 and R 2 , solutions of two different equations. The part R 1 is periodic in x and solves the boundary value problem

v • ∇ µ R 1 -εGM -1 ∂(M R 1 ) ∂v z = 1 ε L J R 1 + H 1 (R 1 ) + g, (2.18) R 1 (x, ∓π, v) = - 1 ε ψ(x, ∓π, v), v z ≷ 0,
where the incoming data are prescribed and the inhomogeneous term g includes A and the non linear term computed at the previous step. The part R 2 is discussed later. An existence proof for this problem can be obtained by the method of [START_REF] Maslova | Nonlinear evolution equations: kinetic approach[END_REF] . The nonhydrodynamic part of R 1 is estimated along the same lines of the proof of Lemma 2.1:

1 ε γ -R 1 2 2,2,∼ + c 2ε 2 ν 1 2 (I -P J )R 1 2 2,2 ≤ C ν -1 2 (I -P J )g 2 2,2 + η + λ + δ + 2ε P J R 1 2 2,2 + 1 2ηε P J g 2 2,2 + 1 ε 3 ψ 2 2,2,∼ ,
for small η > 0, by using the inequality

|(R 1 , H 1 (R 1 )) 2,2 | ≤ C( ν 1 2 (I -P J )R 1 2 2,2 +ε 2 q 2 ∞ P J R 1 2 2,2 ).
The duality technique used in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] can still be applied to estimate P J R 1 . The term H 1 (R 1 ) is treated as a perturbation, after dealing in next lemma with the system without it.

Lemma 2.2. Set h := P J R 1 . Then there are δ 0 > 0, λ 0 > 0 such that for 0 < δ < δ 0 and 0 < λ < λ 0 , and for any

G ∈ [0, G c (1 + δ)], h 2 2,2 ≤ C( ν -1 2 (I -P J )g 2 2,2 + 1 ε 2 P J g 2 2,2 + 1 ε 3 ψ 2 2,2,∼ ).
Proof of Lemma 2.2. We do not repeat the proof given in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]. We only remind that it is based on the joint analysis of the boundary value problem for R 1 and the "dual" problem for ϕ, solution to

v • ∇ µ ϕ -εGM -1 ∂(M ϕ) ∂v z = 1 ε L * J ϕ + h,
with zero ingoing boundary values at z = -π, π and ϕ a 2π-periodic function in x. By using Lemma 2.1, one is then left with a < P ϕ >-term which is the projection of < ϕ >. Now < ϕ > is the average over the variable x, and thus satisfies a one dimensional equation similar to eq. (3.5) in [START_REF] Arkeryd | Stability of the laminar solution of the Boltzmann equation for the Benard problem[END_REF]. By using the argument of Lemma 3.4 in [START_REF] Arkeryd | Stability of the laminar solution of the Boltzmann equation for the Benard problem[END_REF], we obtain

< P ϕ > 2 ≤ c < P ϕ > x 2,2 ≤ c ε h 2,2 +η ϕ 2,2 ,
where < • > x denotes the average on x.

Remark. We note that in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], instead of Lemma 3.4 in [START_REF] Arkeryd | Stability of the laminar solution of the Boltzmann equation for the Benard problem[END_REF], we used the arguments of Lemma 3.5 in the same paper, which require G small but permit any value of λ.

In the present setup the use of Lemma 3.4 in [START_REF] Arkeryd | Stability of the laminar solution of the Boltzmann equation for the Benard problem[END_REF] allows us to use G ∈ [0, G c (1 + δ)] provided that λ is sufficiently small. This is the only point where the condition G small was used in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF].

The final estimates for R 1 then follow as in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]:

Lemma 2.3.
If R 1 is a solution to the system (2.18), then, under the same conditions on the parameters as before,

ν 1 2 R 1 2,2 ≤ c ν -1 2 (I -P J )g 2,2 + 1 ε P J g 2,2 +ε -3 2 ψ 2,2,∼ , ν 1 2 R 1 ∞,2 ≤ c 1 ε ν -1 2 (I -P J )g 2,2 + 1 ε 2 P J g 2,2 +ε ν -1 2 g ∞,2 +ε -5 2 ψ 2,2,∼ . Now we discuss R 2 .
It is solution to the following boundary value problem:

v • ∇ µ R 2 -εGM -1 ∂(M R 2 ) ∂v z = 1 ε L J R 2 + H 1 (R 2 ), (2.19) R 2 (x, ∓π, v) = f -(x, ∓π, v) + M ∓ (v) M (v) wz≶0 R 2 (x, ∓π, w)|w z |M dw, v z ≷ 0. (2.20)
where

f -(x, ∓π, v) = M ∓ (v) M (v) wz≶0 R 1 (x, ∓π, w) + 1 ε ψ(x, ∓π, w) |w z |M dw, v z ≷ 0.
In order to estimate R 2 , one can use the arguments given in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], Lemmas 2.4, 2.5. Indeed the only modifications arise from the extra term in the Green inequality and they are managed by using the smallness of q given in (2.6). One thus get the final estimates for R 2 given in the following Lemma 2.4. A solution to the R 2 -problem satisfies

ν 1 2 (I -P J )R 2 2 2,2 ≤ c ε ν -1 2 (I -P J )g 2 2,2 + 1 ε P J g 2 2,2 + 1 ε 2 ψ 2 2,2,∼ , P J R 2 2 2,2 ≤ c 1 ε ν -1 2 (I -P J )g 2 2,2 + 1 ε 3 P J g 2 2,2 + 1 ε 4 ψ 2 2,2,∼ , ν 1 2 R 2 2 ∞,2 ≤ c( 1 ε 3 ν -1 2 (I -P J )g 2 2,2 + 1 ε 5 P J g 2 2,2 +ε 2 ν -1 2 g 2 ∞,2 + 1 ε 6 ψ 2 2,∼ ).
The linear estimates of Lemmas 2.2 and 2.4 are sufficient to prove the existence of the solution to the equation for the remainder. This is Theorem 2.2 in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], which we restate here: Theorem 2.2. There are positive λ 0 , δ 0 and

ε 0 such that, if λ < λ 0 , δ < δ 0 , ε < ε 0 and G ∈ [0, G c (1 + δ)], then there exists a solution R in L 2 M ([-π, π] 2 × R 3 ) to the rest term problem v • ∇ µ R -εGM -1 ∂(M R) ∂v z = 1 ε LR + 1 2 J(R, R) + H(R) + εA, (2.21) R(x, ∓π, v) = wz≶0 (R(x, ∓π, w) + 1 ε ψ(x, ∓π, w))|w z |M -dw - 1 ε ψ(x, ∓π, v), v z ≷ 0.
3. Initial boundary value problem. We now study the initial boundary value problem (1.1) for an initial datum F 0 suitably close to the stationary solution. Indeed, we introduce the perturbation Φ = M -1 (F -F s ). The equation for the perturbation Φ is:

∂Φ ε ∂t + 1 ε v • ∇ µ Φ ε - G M ∂(M Φ ε ) ∂v z = 1 ε 2 LΦ ε + 1 2 J(Φ ε , Φ ε ) + J(Φ ε s , Φ ε ) , (3.1) 
Φ ε (0, x, z, v) = ζ 0 (x, z, v), (x, z) ∈ (-π, π) 2 , v ∈ R 3 , Φ ε (t, x, ±π, v) = M ± M wz≷0 |w z |M Φ ε (t, x, ±π, w)dw, v z ≶ 0, t > 0, x ∈ [-π, π].
The initial conditions for M -1 (F (0, x, z, v) -F s (x, z, v)) = Φ ε 0 (x, z, v) are given with the initial datum Φ 0 specified as follows:

Φ ε 0 (x, z, v) = 5 n=1 ε n Φ (n) (0, x, z, v) + ε 5 p 5 (3.2)
where Φ (n) (0, x, z, v) is the n-th term of the expansion introduced in the next paragraph, computed at time t = 0, and the ε-dependent contribution p 5 is arbitrary but for having total mass dvdxdzM (v)p 5 (x, z, v) = 0 and

p 5 ∞,2 := sup ε>0   R 3 dv sup (x,z)∈[-π,π] 2 p 5 (x, z, v) 2 M   1 2 < c, (3.3) 
for some constant c. We write also the time dependent solution in terms of a truncated expansion in ε,

Φ ε (t, x, z, v) = 5 n=1 ε n Φ (n) (t, x, z, v) + εY (t, x, z, v), (x, z) ∈ Ω, v ∈ R 3 , t > 0. (3.4)
The first term of the expansion in ε is

Φ (1) = ρ + u • v + θ |v| 2 -3 2 ,
where the fields (u(t, x, z), θ(t, x, z)) are solutions of the hydrodynamic equations for the perturbation, while ρ(t, x, z) is determined by the Boussinesq condition (1.12). The hydrodynamic initial data are chosen as follows: let (u 0 , θ 0 ) be an initial perturbation of the convective solution (u s , θ s ) sufficiently small to ensure that the solution to (1.4), denoted here (ũ(t, x, z), θ(t, x, z)) = (u s (x, z) + u(t, x, z), θ s (x, z) + θ(t, x, z)), exists globally in time and converges exponentially to (u s , θ s ) as t → +∞, as stated in (1.8).

The construction of the time dependent solution is based, as the stationary solution, on an expansion which starts with the solution to the hydrodynamic equations. We need the following proposition on the stability of the hydrodynamic solution, whose proof is referred to the literature [6, 7, 8, 9, 10, 11, 13]: Proposition 3.1. For δ < δ 1 , let (u, θ) be the periodic solution of the following equation for the perturbation

∂ t u + u s • ∇ µ u + u • ∇ µ u s + u • ∇ µ u = η∆ µ u -∇ µ p -e z Gθ, ∂ t θ + u s • ∇ µ θ + u • ∇ µ θ s + λu z = 5 2 k∆ µ θ, ∇ µ • u = 0, u(x, z, 0) = u 0 (x, z), θ(x, z, 0) = θ 0 (x, z) (x, z) ∈ [-π, π] × [-π, π], u(x, -π, t) = u(x, π, t) = θ(x, -π, t) = θ(x, π, t) = 0, x ∈ [-π, π], t > 0.
If (u 0 , θ 0 ) ∈ (H k ) 3 , for k sufficiently large, and u 0 H k + θ 0 H k < n 0 , for n 0 small enough, then there is ζ 1 > 0 such that (u, θ)(x, z, t) is in (H k ) 3 for any t > 0 and lim t→∞ (e ζ1t u, e ζ1t θ) = 0 in (H k ) 3 , for any k < k.

The terms of the expansion Φ (n) , n = 1, . . . , 5 are constructed by means of an Hilbert type expansion in the bulk, corrected by a boundary layer expansion designed to restore the correct boundary conditions. For the construction of the expansion we refer to [START_REF] Esposito | Solutions to the Boltzmann equation in the Boussinesq Regime[END_REF]. To state next proposition, we need the norms

f 2t,2,2 = t 0 Ω R 3 |f (s, x, z, v)| 2 M (v)dsdxdzdv 1 2 , f ∞,∞,2 = sup t>0 R 3 sup (x,z)∈Ω |f (t, x, z, v)| 2 M (v)dv 1 2 .
Moreover f 2,2,2 is the norm f 2t,2,2 with t = +∞. We also use the boundary norms

f 2t,2,∼ = t 0 π -π vz>0 v z M (v) | f (s, x, -π, v) | 2 dvdxds 1 2 + t 0 π -π vz<0 | v z | M (v) | f (s, x, π, v) | 2 dvdxds 1 2 , f ∞,2,∼ = sup t>0 π -π vz>0 v z M (v) | f (t, x, -π, v) | 2 dxdv 1 2 + sup t>0 π -π vz<0 | v z | M (v) | f (t, x, π, v) | 2 dxdv 1 2 ,
and, as before, • 2,2,∼ corresponds to t = +∞. The estimates we need on the terms of the expansion Φ (n) are summarized in the following proposition, whose proof can be readily obtained along the lines of [5, 1]: Proposition 3.2. Assume that at time zero, for some suitably large k.

u 0 H k + θ 0 H k < n . (3.5) 
Then for δ < δ 1 and for n 0 of Proposition 3.1, it is possible to determine the functions Φ (n) , n = 1, . . . , 5 and the boundary functions ψ n,ε , n = 2, . . . , 5 in the asymptotic expansion so that the following boundary conditions are satisfied:

Φ (n) (t, x, ∓π, v) = M ∓ (v) M (v) wz≶0 |w z |M Φ (n) (t, x, ∓π, w) -ψ n,ε (t, x, ∓π, w) dw +ψ n,ε (t, x, ∓π, v), t > 0, v z ≷ 0, t > 0.
The Φ (n) satisfy the zero mass condition

R 3 ×Ωµ M Φ (n) dvdzdx = 0, t ∈ R + .
Moreover, there are constants C and C 1 such that for n = 1, . . . , 5,

e ζt Φ (n) 2,2,2 < C u 0 H k + θ 0 H k , e ζt Φ (n) ∞,∞,2 < C u 0 H k + θ 0 H k ,
and, for n = 2 . . . , 5, The remainder Y satisfies the following initial boundary value problem:

e ζt ψ n,ε 2,2,∼ < Ce -C1ε -1 , e ζt ψ n,ε ∞,2,∼ < Ce -C1ε
∂ t Y + 1 ε v • ∇ µ Y -GM -1 ∂(M Y ) ∂v z = 1 ε 2 LY + 1 2ε J(Y, Y ) + 1 ε H(Y ) + A, (3.6) 
Y (0, x, z, v) = Y 0 (x, z, v) = ε 4 p 5 (x, z, v), Y (t, x, ∓π, v) = M ∓ M wz≶0 (Y (t, x, ∓π, w) + ψ ε (t, x, ∓π, w))|w z |M dw - ψ ε (t, x, ∓π, v), x ∈ [-π, π], t > 0, v z > 0,
where ψ(t, x, ±π, v) = n ε n ψ n,ε (t, x, ±π, v). We have set

H(Y ) = J(ε -1 Φ ε s + Φ, Y ), Φ = 5 n=1 ε n-1 Φ (n) , (3.7) 
where we recall that Φ ε s is the full stationary solution constructed in Section 2, and Φ (n) are the terms of the time dependent expansion.

The inhomogeneous term A is such that

Ω dx R 3 dvA = 0.
The expression for A is given in [START_REF] Esposito | Solutions to the Boltzmann equation in the Boussinesq Regime[END_REF]. We omit it because we only use the following estimate for A, The main result of this section is the stability result:

Theorem 3.1. There are λ 0 > 0, δ 0 > 0, ε 0 > 0 (possibly smaller than those introduced in Section 2), n 0 and 

ζ > 0 such that, if λ < λ 0 , δ < δ 0 , G ∈ [0, G c (1 + δ)), 0 < ε < ε 0 , u 0 H k + θ 0 H k < n 0 , (3.9 
∂ t R -ζR + 1 ε v • ∇ µ R -GM -1 ∂(M R) ∂v z (3.11) = 1 ε 2 LR + 1 2ε e -ζt J(R, R) + 1 ε H(R)) + Ā, (3.12) R(0, x, z, v) = R 0 (x, z, v) = ε 4 p 5 (x, z, v), R(t, x, ∓π, v) = M ∓ M wz≶0 (R(t, x, ∓π, w) + ψ ε (t, x, ∓π, w))|w z |M dw - ψ ε (t, x, ∓π, v), x ∈ [-π, π], t > 0, v z > 0.
Here Ā = e ζt A and ψ(t, x, ±π, v) = e ζt ψ(t, x, ±π, v). The estimates of Proposition 3.3 imply that for any

ζ < ζ 1 Ā 2,2,2 + Ā ∞,∞,2 < Cε 3 , (3.13) and ψ 2,2,∼ + ψ ∞,2,∼ < Ce -C1ε -1 .
We follow closely the approach in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]. Therefore we will just recall the main theorems proved there, which are valid also in the present situation, and give explicitly the proofs when modifications are needed.

We decompose the operator H as in Section 2:

H(R) = J(q, P R) + H 1 (R), q = ε -1 Φ ε + Φ.
Then we define L J = L + εJ(q, P Y ). Note that Proposition 2.2 holds for the newly defined L J and that, under the assumptions of Theorem 3.1, inequality (2.6) is replaced by

q 2,2,2 ≤ C(λ + δ + ε + n 0 ), q ∞,∞,2 ≤ C(λ + δ + ε + n 0 ). (3.14)
We notice that H 1 (R) is of order zero in ε, and only depends on the nonhydrodynamic part (I -P )R. To solve the equation for R we shall use an iteration procedure based on the decomposition of R in the sum R 1 + R 2 , where R 1 and R 2 are solutions of two different problems. R 1 solves a problem with prescribed incoming data and prescribed inhomogeneous term, while R 2 solves a problem with diffusive boundary conditions plus prescribed incoming data (depending on R 1 ), zero initial condition and no inhomogeneous term. We recall that R satisfies the vanishing mass condition dxdzdvM R(x, z, v, t) = 0, t ∈ R + , so that we have also dxdzdvM R 1 (x, z, v, t) = -dxdzdvM R 2 (x, z, v, t). The equations for R 1 and R 2 are

ε ∂R 1 ∂t + v • ∇ µ R 1 -ε G M ∂(M R 1 ) ∂v z = εζR 1 + 1 ε L J R 1 + H 1 (R 1 ) + g, (3.15) R 1 (0, x, z, v) = R 0 (x, z, v), R 1 (t, x, ∓π, v) = - 1 ε ψ(t, x, ∓π, v), t > 0, v z ≷ 0. ε ∂R 2 ∂t + v • ∇ µ R 2 -ε G M ∂(M R 2 ) ∂v z = εζR 2 + 1 ε L J R 2 + H 1 (R 2 ), (3.16) R 2 (0, x, z, v) = 0, R 2 (t, x, ∓π, v) = M ∓ (v) M (v) wz≶0 R 1 (t, x, ∓π, w) + R 2 (t, x, ∓π, w) + 1 ε ψ(t, x, ∓π, w) |w z |M dw, t > 0, v z ≷ 0.
Note that we have multiplied by ε the equations for R 1 and R 2 because, in some arguments we will use the "microscopic time" τ = ε -1 t and such a rescaling corresponds just to replace ε∂ t with ∂ τ in above equations. In the problems (3.15) and (3.16) the unknown R 1 and R 2 are sought for as periodic functions in x ∈ [-π, π), and g is some given function, periodic on the same interval, such that M g(•, x, z, v)dxdzdv ≡ 0. The existence of the solution, is obtained as in [START_REF] Arkeryd | Stability of the laminar solution of the Boltzmann equation for the Benard problem[END_REF]. We start by giving a priori estimates obtained by Green's formula, for the nonhydrodynamic part of R 1 and the outgoing flux γ -R 1 ; multiply (3.15) by 2R 1 M κ, (where as in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], κ = e εG(z+π) ) integrate with respect to the variables (τ , x, z, v) over [0, T ] × [0, 2π] 2 × R 3 , integrate by parts and use the spectral inequality for L J and the bounds 1 ≤ κ(z) ≤ e 2εGπ and (3.14), to obtain, for every η 1 > 0,

γ -R 1 2 2T ,2,∼ + R 1 (T ) 2 2,2 + 1 ε ν 1 2 (I -P J )R 1 2 2T ,2,2 ≤ c R 0 2 2,2 +ε ν -1 2 (I -P J )g 2 2T , 2,2 (3.17) 
+η

P J R 1 2 2T ,2,2 + 1 2η 1 P J g 2 2T ,2,2 + 1 ε 2 ψ 2 2T ,2,∼ ,
where η = η1 2 + ε(ζ + λ + δ + + n 0 ). We consider now the so called dual problem, namely we seek for the space-periodic solutions to a linear problem in the rescaled time variable τ = ε -1 t. This problem is discussed in the following lemma, where we use the notation introduced in Section 2, but with the function q also time dependent. Next lemma follows as in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], Lemma 4.1, by taking into account the modified spectral inequality (2.9) and the consequent Green inequality.

We write the analog of (3.17) for the dual problem:

γ -ϕ 2 2T ,2,∼ + ϕ(T ) 2 2,2 + 1 ε ν 1 2 (I -P )ϕ 2 2T ,2,2 ≤ c ε ν -1 2 (I -P )h 2 2T ,2,2 +η P ϕ 2 2T ,2,2 + 1 2η 1 P h 2 2T ,2,2 ,
for any solution ϕ to (3.18) below, with vanishing initial and incoming data. Inequality (3.22) below follows as in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], page 47.

Lemma 3.1. Given a x-periodic function h of period 2π, let ϕ(τ , x, z, v) be the x-periodic function solution to

∂ τ ϕ + v • ∇ µ ϕ -εGM -1 ∂(M ϕ) ∂v z = 1 ε L * J ϕ + h, (3.18) 
with vanishing initial and incoming data. Set φ = ϕ-< ϕ >= ϕ -(2π) -2 ϕdxdz.

If the parameters λ, , δ and n 0 satisfy the assumptions of Theorem 3.1, then there exists η small such that,

ϕ ∞,2,2 + γ -ϕ 2,2,∼ ≤ c ε 1 2 ν -1 2 (I -P )h 2,2,2 (3.19) +ε -1 2 P h 2,2,2 +ηε 1 2 < P ϕ > 2,2 , ν 1 2 (I -P )ϕ 2,2,2 ≤ c ε ν -1 2 (I -P )h 2,2,2 + P h 2,2,2 (3.20) 
+ηε

< P ϕ > 2,2 , P ϕ 2,2,2 ≤ c ν -1 2 (I -P )h) 2,2,2 +ε -1 P h 2,2,2 (3.21) 
+η

< P ϕ > 2,2 , < P ϕ > 2,2 ≤ c ε h 2,2,2 +η ν 1 2 ϕ 2,2,2 . (3.22) 
An a priori bound for P J R 1 is obtained in the following lemma based on dual techniques involving the simultaneous considerations of the problems (3.18) and (3.15). Consider first the problem (3.15) without the term

H 1 (R 1 ). Lemma 3.2. Set h := P J R 1 . Then h 2 2,2,2 ≤ c( R 0 2 2,2 + ν -1 2 (I -P J )g 2 2,2,2 + 1 ε 2 P J g 2 2,2,2 + 1 ε 3 ψ 2 2,2,∼ ).
Proof of Lemma 3.2. In the variables (τ , x, z, v), the function R 1 is 2π-periodic in x and solution to (3.17) with the term H 1 (R) missing. Let ϕ be a 2π-periodic function in x, solution to (3.18) with zero initial values and ingoing boundary values at z = -π, π. We multiply the equation for ϕ by κM R 1 and the one for R 1 by κM ϕ, then sum them and integrate on the variables τ ∈ [0, T ], x ∈ [-π, π), z ∈ (-π, π) and v ∈ R 3 . Then we use the periodicity in x to cancel the terms ∂ x and take an integration by parts on the variable z. Using the equilibrium condition v • ∇ µ (κM ) + εG∂ vz (κM ) = 0, we obtain:

dτ dxdzdv M ∂ z (v z κR 1 ϕ) -εGκ∂ vz (M R 1 ϕ) + dτ dxdzκ(z)dvM ∂ τ (R 1 ϕ) = 1 ε dτ dxdzdvM κ (L J ((I -P J )R 1 )(I -P )ϕ) + ((I -P J )R 1 L * J (I -P )ϕ) + dτ dxdzdvM κ gϕ + hP J R 1 + εζ dτ dxdzdvM κϕR 1 .
We use the above equation to get an estimate for the term before the last in the r.h.s: hP J R 1 = h 2 . All the terms are estimated as in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] but we give the explicit computation here for sake of completeness. We need to track the ζ-term and take care of the terms due to the modified spectral inequality. The last term is bounded as

εζ| dτ dxdzM κdvϕR 1 | ≤ ζC R 1 2 2T ,2,2 +ε 2 ϕ 2 2T ,2,2 .
Therefore, for any arbitrary choice of K i , i = 0, 1, . . . , 4 we get, for ζ small,

h 2 2T ,2,2 ≤ K 1 2 R 1 (T , •, •) 2 2,2 + 1 2K 1 ϕ(T , •, •) 2 2,2 + K 0 2 γ -R 1 2 2T ,2,∼ + 1 2K 0 γ -ϕ 2 2T ,2,∼ + K 3 2ε + ζC ν 1 2 (I -P J )R 1 2 2T ,2,2 + 1 2K 3 ε ν 1 2 (I -P )ϕ 2 2T ,2,2 + K 4 2 ν -1 2 (I -P J )g 2 2T ,2,2 + 1 2K 4 + ε 2 ζC ν 1 2 (I -P )ϕ 2 2T ,2,2 + K 2 2 P J g 2 2T ,2,2 + 1 2K 2 + ε 2 ζC P ϕ 2 2T ,2,2 .
All the ϕ-terms computed at time T on the l.h.s can be estimated using (3.19)-(3.22) in Lemma 3.1. Using the Green inequality (3.17) to bound the R 1 -terms, we obtain, for T → ∞,

h 2 2,2,2 ≤ c (K 0 + K 1 + K 3 + εζ) R 0 2 2,2 + K 1 + K 0 + K 3 ε 2 + ζε -1 ψ 2 2,2,∼ + εK 1 + εK 0 + εK 3 + K 4 + ζ ν -1 2 (I -P J )g 2 2,2,2 + 1 εK 0 + 1 εK 1 + 1 ε 2 K 2 + 1 εK 3 + 1 K 4 + ε 2 ζ h 2 2,2,2 + K 1 + K 0 η 1 + K 3 η 1 + K 2 + εζ P J g 2 2,2,2 + ηK 0 + ηK 1 + ηK 3 + ζεη P J R 1 2 2,2,2 +η( ε K 1 + ε K 3 + ε 2 K 4 + 1 K 2 + ε 2 ζ) < P ϕ > 2 2,2 .
The term < P ϕ > is bounded by using (3.22) in Lemma 3.1 as

< P ϕ > 2 2,2 ≤ c 1 ε 2 h 2 2,2,2 .
We recall that η = η 1 + ε(ζ + λ + δ + + n 0 ). So choosing ε small, then K 1 , K 0 and K 3 (resp. K 2 ) of order ε -1 (resp. ε -2 ) times a big constant, K 4 big and η 1 , η 2 of order ε times a small constant and ζ + λ + δ + + n 0 sufficiently small, leads to

h 2 2,2,2 ≤ c 1 ε R 0 2 2,2 + ν -1 2 (I -P J )g 2 2,2,2 + 1 ε 2 P J g 2 2,2,2 + 1 ε 3 ψ 2 2,2,∼ +η < P J R 1 > 2 2,2,2 .
The final estimates for R 1 are summarized in Lemma 3.3. The solution R 1 to (3.15) satisfies

ν 1 2 R 1 2,2,2 ≤ c R 0 2,2 + √ ν(I -P J )g 2,2,2 + 1 ε P J g 2,2,2 +ε -3 2 ψ 2,2,∼ , R 1 ∞,2,2 ≤ c R 0 2,2 + √ ν(I -P J )g 2,2,2 + 1 ε P J g 2,2,2 +ε -3 2 ψ 2,2,∼ , ν 1 2 R 1 ∞,∞,2 ≤ c ε -1 R 0 2,2 + R 0 ∞,2 + 1 ε ν -1 2 (I -P J )g 2,2,2 + 1 ε 2 P J g 2,2,2 +ε ν -1 2 g ∞,∞,2 +ε -5 2 ψ 2,2,∼ + 1 ε ψ ∞,2,∼ .
Proof of Lemma 3.3. The solution R 1 of (3.15) without H 1 -term satisfies

1 √ ε γ -R 1 2,2∼ + sup t≥0 R 1 (t) 2,2 + 1 ε ν 1 2 (I -P J )R 1 2,2,2 ≤ c R 0 2,2 +ε -3 2 ψ 2,2,∼ + ν -1 2 (I -P J )g 2,2,2 + η √ ε P J R 1 2,2,2 + 1 η √ ε P J g 2,2,2 ,
with η = η + ε(ζ + λ + δ + + n 0 ), for any η > 0. Moreover, it follows from Lemma 3.2 that

P J R 1 2,2,2 ≤ c R 0 2,2 + ν -1 2 (I -P J )g 2,2,2 + 1 ε P J g 2,2,2 + 1 ε √ ε ψ 2,2,∼ .
Choosing η = √ ε leads to the first two inequalities of Lemma 3.3. The last inequality of Lemma 3.3 is obtained as in [START_REF] Arkeryd | Stability of the laminar solution of the Boltzmann equation for the Benard problem[END_REF], by studying the solution along the characteristics. Adding the term ε -1 H 1 (R 1 ) does not change these results.

The remaining part R 2 of R satisfies the problem (3.16). Its analysis is more involved and will use a careful study of the Fourier transform of R 2 . The existence for the problem (3.16) can be adapted from the corresponding study in [START_REF] Maslova | Nonlinear evolution equations: kinetic approach[END_REF], if one includes into that approach the spectral estimate for L J , and the characteristics due to the force term.

In (3.16) the given indata part is

f -(t, x, ∓π, v) = M ∓ M wz≶0 R 1 (t, x, ∓π, w) + 1 ε ψ(t, x, ∓π, w) |w z |M dw, v z ≷ 0.
By Green's formula for (3.16), and noting that H 1 (R 2 ) only depends on (I -P )R 2 , we get 

ε R 2 (t) 2 2,2 + γ -R 2 2 2t,2,∼ + c ε ν 1 2 (I-P J )R 2 2 2t,2,2 ≤ γ + R 2 2 2t,2,∼ +ε δ P J R 2
(I -P J )R 2 2 2t,2,2 ≤ 1 εη f -2 2t,2,∼ +Cε( δ + η) P J R 2 2 2t,2,2 , γ -R 2 2 2t,2,∼ ≤ 1 ε 2 f -2 2t,2,∼ +C P J R 2 2 2t,2,2 . (3.24)
The hydrodynamic estimates for R 2 are obtained in two steps: first we consider a 1-d (x-independent) case, with an inhomogeneous term g 1 which will take into account the x-dependence in later proofs,

ε ∂R 2 ∂t + v z ∂R 2 ∂z -εGM -1 ∂(M R2 ) ∂v z = 1 ε L J R 2 + H 1 (R 2 ) + g1 , (3.25) 
where g1 = g 1 + εζR 2 . The 1 -dimensional Lemma 4.4 in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] holds without changes and we just quote it without proof: Lemma 3.4.

P J R 2 2 2,2,2 ≤ c 1 ε 2 f -2 2,2∼ +c 2 ( P J R 1 2 2,2,2 + ν -1 2 g1 2 2,2 ,2 ). 
By the relation between g 1 and the Green inequality, we also have

P J R 2 2 2,2,2 ≤ c 1 ε 2 f -2 2,2∼ + P J R 1 2 2,2,2 + ν -1 2 g 1 2 2,2,2 .
Now we have to examine the 2-dimensional case. This is treated in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] in Lemma 4.5. The inclusion of the term εζR 2 can be handled as before. We sketch the approach and give the details for the R 20 -moment. Lemma 3.5. Let R 2 be solution to (3.16). Then there is c > 0 such that

P J R 2 2 2,2,2 ≤ c( 1 ε 2 f -2 2,2∼ + P J R 1 2 2,2,2 ). Proof: The equation for R2 = F x F z R 2 , the Fourier transform in x, z of R 2 , is ε ∂ ∂t R2 + iµv x ξ x R2 + iv z ξ z R2 -εGM -1 ∂ ∂v z (M R2 ) = ε -1 L J R 2 + H 1 (R 2 ) -v z r(-1) ξz + εζ R2 , (3.26)
r denoting the difference between the ingoing and outgoing boundary values,

r(x, v) = R 2 (t, x, π, v) -R 2 (t, x, -π, v). ( 3 

.27)

For any function φ(v) we denote R 2φ = dvR 2 φ(v). In particular, we denote R 20 = dvR 2 and R 24 = dvR 2 v 2 . All the functions below depend on t but we omit such a dependence.

First, we consider the case ξ x = 0. We apply Lemma 3.4 to R2 (0, ξ z , v) = dxR 2 (x, z, v). By integrating (3.16) over x and taking into account the periodic conditions in the direction x, we get the 1-dimensional equation (3.25), where the term g 1 comes from the x-dependent terms in the expansion appearing in L J . Since the limiting solution is close to the laminar 1-dimensional solution up to order δ, g 1 is of order δ and is linear in R 2 . Thus, by Lemma 3.4 we get a bound for the Fourier components P J R2 (0, ξ z ), for δ small. Then we need to estimate P J R2 (ξ x , ξ z ) for ξ x = 0. Arguments similar to those used in the proof of Lemma 4.1 in [2] (Lemma 3.1 here) imply that large values of ξ can be dealt with by taking advantage of the factor |ξ| -2 and the estimates for r due to the inequality (3.24). Therefore we need only to consider finitely many (ξ x , ξ z ) with ξ x = 0.

The strategy used in [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] and repeated here is to get estimates of all the hydrodynamic moments R 2vx , R 2vy , R 2vz , R 2v 2 in terms of R 20 which is estimated at the end.

The first moment considered is the v x -moment for ξ z = 0. Multiplying (3.26) by M and integrating over the velocity we get an equation for R20 . Multiplying the conjugate of (3.26) by v x M and integrating over the velocity we get an equation for R * 2vx (ξ x , 0). Then, we multiply the first by R * 2vx (ξ x , 0) and the second by R20 . Summing the two it results,

ε ∂ ∂t R20 (ξ x , 0) R * 2vx (ξ x , 0) = iµξ x R2vx (ξ x , 0) R * 2vx (ξ x , 0) -iµξ x R * 2v 2 x (ξ x , 0) R20 (ξ x , 0) + R * 2vx (ξ x , 0) dvM v z r + R20 (ξ x , 0) dvM v x v z r * + 2εζ R20 (ξ x , 0) R * 2vx (ξ x , 0).
We want to get an estimate of the time integral of the first term on the r.h.s. and hence of R2vx (ξ x , 0) 2 2,2,2 . To this end, we integrate over the time variable on the interval [0, t]. The integration of the time derivative produces a term at time t = 0 which vanishes because R 2 has 0 initial conditions and a term computed at time t. Such a term is estimated by using the Green inequality. The first boundary term is estimated by noticing that dvM v z r depends only on f -and the second boundary term is estimated by using (3.24). The result is

| R2vx | 2 (ξ x , 0)dt ≤ C dt | R20 | 2 (ξ x , 0) + η P R 2 2 2,2 + ν 1 2 (I -P )R 2 2 2,2 + 1 ε 2 ν 1 2 (I -P J )R 2 2 2,2 + 1 ε 2 f -2 2∼ , (3.28) 
where η is some constant that can be made small by assuming the parameters λ, ζ, δ, ε and n 0 sufficiently small. This is the simplest case, but the other moments R 2vx , for ξ z = 0, and R 2vy , R 24 are obtained by a similar approach, see [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF], and the contribution from εζR 2 produces a term of the form εζ P J R 2 2 2,2,2 which is absorbed under the smallness assumption for the parameters. We conclude: The moment R20 (ξ x , ξ z ) for ξ x = 0 requires a different analysis. Below, for any function h(t, x, z, v) we denote ĥ(σ, ξ x , ξ z , v) = F t F x F z h(σ, ξ x , ξ z , v), and ĥz (σ, ξ x , z, v) = F t F x h(σ, ξ x , z, v).

Let us start with ξ z = 0. We introduce the cutoff function β(τ ) supported in (0, +∞) with value 1 for τ > τ 0 for some positive τ 0 and consider the partial Fourier transform of βR 2 , (βR 2 ) z and the full Fourier transform βR 2 . They satisfy the equations

(iεσ + iµξ x v x ) (βR 2 ) z + v z ∂ z (βR 2 ) z = εGM -1 ∂ vz (M (βR 2 ) z ) + 1 ε L J (βR 2 ) z + H 1 (βR 2 ) z + εζ (βR 2 ) z + iε (β R 2 ) z .
(εiσ + µv x iξ x + iv z ξ z ) βR 2 + v z βr(-1) ξz = (3.30)

εM -1 G∂ vz βR 2 + ε -1 L J βR 2 + βH 1 (R 2 ) + εζ βR 2 + ε β R 2 .
When τ 0 → 0, β tends to the Heaviside function and its derivative to the δfunction in τ = 0. Thus the last term in the first of (3.30) vanishes because R 2 is initially 0. Therefore, we get

(iεσ + iµξ x v x ) Rz 2 + v z ∂ z Rz 2 = εGM -1 ∂ vz (M Rz 2 ) + 1 ε L J Rz 2 + H 1 Rz 2 + εζ Rz 2 .
Now we multiply by M and integrate on z and v. Thus we obtain: Finally, we have to deal with the |σ| < σ 1 . The right-hand sides of (3.30) contain only terms that can be estimated by contributions either involving the non hydrodynamic part or the hydrodynamic one multiplied by a small factor. Therefore, we can use the arguments of [START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF] to conclude that, for εσ ≤ σ 1 χ σ1 R20 (•, ξ x , 0) 

(iεσ -εζ) Rz 20 + iµξ x Rz 2vx + F τ F x f - vz = 0. ( 3 
ψ 2 2,2,∼ , ν 1 2 R 2 2 ∞,∞,2 ≤ c( 1 ε 2 R 2 2 ∞,2,2 + γ -R 1 2 ∞,2,∼ + 1 ε 2 ψ 2 ∞,2,∼ ) ≤ c 1 ε 3 R 0 2 2,2 + 1 ε 3 ν -1 2 (I -P J )g 2 2,2,2 + 1 ε 5 P J g 2 2,2,2 + 1 ε 6 ψ 2 2,2,∼ + R 0 2 ∞,2 +ε 2 ν -1 2 g 2 ∞,∞,2 + 1 ε 2 ψ 2 ∞,2,∼ .
Using the previous lemmas it is standard to prove the following The positivity of the solution to the problem (1.1) is obtained by a suitable modification of the argument in [START_REF] Arkeryd | Asymptotic techniques for kinetic problems of Boltzmann type, Proceedings of the 3rd edition of the summer school in "Methods and Models of kinetic theory[END_REF] to which we refer for details.

  wz≶0

  the rescaled gravity field, λ = 1 ε T--T+ 2πT-measures the rescaled temperature gradient. Moreover,

  positive and satisfies the conditions (3.2), (3.3), and the hydrodynamic perturbation satisfies the smallness assumptions in Proposition 3.1, then the positive solution to the time dependent problem (1.1) exists, and there are ζ > 0 and c independent of ε such that, for any ζ ≤ ζ, (F -F s )e ζt 2,2,2 ≤ c. (1.14)

sProposition 2 . 1 .

 21 's in the following theorem taken from[START_REF] Arkeryd | Nouri Stability for Rayleigh-Benard convective solutions of the Boltzmann equation[END_REF]: The functions Φ (n)

- 1 ,

 1 for any 0 ≤ ζ < ζ 1 , with ζ 1 the decay rate of the hydrodynamic equation given in Proposition 3.1.

Proposition 3 . 3 .

 33 There are C > 0 and C 1 > 0 such that for any 0 ≤ ζ < ζ 1 , e ζt A 2,2,2 + e ζt A ∞,∞,2 < Cε 3 , (3.8) and e ζt ψ 2,2,∼ + e ζt ψ ∞,2,∼ < Ce -C1ε -1 .

) and p 5 such that e 1 2 ζt Φ ε 2 , 2 , 2

 51222 satisfies(3.3), then the solution to the initial boundary value problem (3.1) exists and has the following decay property: there is a constant C independent of ε < Cε

  prove Theorem 3.1 the strategy we have discussed before consists in writing Φ ε , as Φ ε = Φ + εY . Since the terms of the expansion are estimated by means of Proposition 3.2, we only need to estimate the remainder term Y . Again by Proposition 3.2, Φ decays to zero exponentially in t. Therefore, to prove (3.10), we need to show that also the remainder Y decays exponentially. For this purpose, let us fix a positive ζ < ζ 1 and put R = e ζt Y . Then, R is solution of

2 2t, 2

 22 ,2 , (3.23) with δ = ζ + λ + δ + ε + n 0 . By arguing along the same lines of [2], pag. 142-143, we can estimate the outgoing flux part of R 2 appearing in the r.h.s. of (3.23) and thus obtain

∞ 0 dt | R2vz | 2 + 2 (

 022 | R2vx | 2 dt + | R2vy | 2 dt + |R 24 |

C 2 | 1 - 2 χ

 212 .31) Recall that, by the argument in the beginning of the proof, we only need to consider bounded |ξ x | and let ξx be the maximum value for |ξ x | that we have to deal with. Now we consider σ's such that |σ| > σ 1 where σ 1 is chosen so that being the constant appearing in inequality (3.29). Therefore, denoting by χ σ1 (σ) the characteristic function of [-σ 1 , σ 1 ], we havedσ(1 -χ σ1 )| Rz 20 (σ, ξ x , 0)| 2 ≤ 1 Rz 20 (σ, ξ x , 0)| 2 + C η P R χ σ1 )| Rz 20 (σ, ξ x , 0)| 2 ≤ 1 σ1 |F x R 20 (σ, ξ x , 0)| 2 + C η P R

1 2 2 2 2 , 2 , 2 ≤ c ε R 0 2 2, 2

 1222222 By summing the last two bounds, we get the estimate of R20 for ξ z = 0. Then one can repeat the same argument for ξ z = 0. The boundary term can be removed by subtracting the equation for ξ z = 0 from the second of (3.30). Using the estimate of R 20 in (3.29) the proof of the lemma is concluded.We summarize the results on R 2 in the following Lemma 3.6. If the parameters satisfy the conditions of Theorem 3.1, any solution R 2 to the problem (3.16) satisfies the a priori estimates ν (I -P J )R +ε ν -

Theorem 3 . 2 . 3 |e 1 2

 3231 There exists a solution Y to the rest term problem(3.6) such that +∞ 0 [-π,π] [-π,π] R ζt Y (t, x, z, v)| 2 M (v)dtdxdzdv < cε 7 .(3.35)Thus the proof of Theorem 3.1 is complete.
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