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Abstract

We prove existence results concerning equations of the type −∆pu = P (u)+µ for p > 1 and
Fk[−u] = P (u) + µ with 1 ≤ k < N

2 in a bounded domain Ω or the whole R
N , where µ is a

positive Radon measure and P (u) ∼ eau
β

with a > 0 and β ≥ 1. Sufficient conditions for exis-
tence are expressed in terms of the fractional maximal potential of µ. Two-sided estimates on
the solutions are obtained in terms of some precise Wolff potentials of µ. Necessary conditions
are obtained in terms of Orlicz capacities. We also establish existence results for a general Wolff
potential equation under the form u = WR

α,p[P (u)] + f in R
N , where 0 < R ≤ ∞ and f is a

positive integrable function.
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1 Introduction

Let Ω ⊂ R
N be either a bounded domain or the whole R

N , p > 1 and k ∈ {1, 2, ..., N}. We
denote by

∆pu := div
(

|∇u|p−2 ∇u
)

the p-Laplace operator and by

Fk[u] =
∑

1≤j1<j2<...<jk≤N

λj1λj2 ...λjk

the k-Hessian operator where λ1, ..., λN are the eigenvalues of the Hessian matrix D2u. Let µ
be a positive Radon measure in Ω; our aim is to study the existence of nonnegative solutions to
the following boundary value problems if Ω is bounded,

−∆pu = P (u) + µ in Ω,
u = 0 on ∂Ω,

(1.1)

and
Fk[−u] = P (u) + µ in Ω,

u = ϕ on ∂Ω,
(1.2)

where P is an exponential function. If Ω = R
N , we consider the same equations, but the

boundary conditions are replaced by infRN u = 0. When P (r) = rq with q > p − 1, Phuc and
Verbitsky published a seminal article [20] on the solvability of the corresponding problem (1.1).
They obtained necessary and sufficient conditions involving Bessel capacities or Wolff potentials.
For example, assuming that Ω is bounded, they proved that if µ has compact support in Ω it is
equivalent to solve (1.1) with P (r) = rq, or to have

µ(E) ≤ cCap
Gp,

q
q+1−p

(E) for all compact set E ⊂ Ω, (1.3)

where c is a suitable positive constant and CapGp,
q

q+1−p
a Bessel capacity, or to have

∫

B

(

W2R
1,p[µB](x)

)q
dx ≤ Cµ(B) for all ball B s.t. B ∩ suppµ 6= ∅, (1.4)

where R = diam(Ω). Other conditions are expressed in terms of Riesz potentials and maximal
fractional potentials. Their construction is based upon sharp estimates of solutions of the non-
homogeneous problem

−∆pu = ω in Ω,
u = 0 on ∂Ω,

(1.5)

for positive measures ω. We refer to [4, 5, 6, 7, 9, 13, 23] for the previous studies of these and
other related results. Concerning the k-Hessian operator in a bounded (k−1)-convex domain Ω,
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they proved that if µ has compact support and ||ϕ||L∞(∂Ω) is small enough, the corresponding
problem (1.2) with P (r) = rq with q > k admits a nonnegative solution if and only if

µ(E) ≤ cCap
G2k,

q
q−k

(E) for all compact set E ⊂ Ω, (1.6)

or equivalently
∫

B

[

W2R
2k

k+1 ,k+1
[µB(x)]

]q

dx ≤ Cµ(B) for all ball B s.t. B ∩ suppµ 6= ∅. (1.7)

The results concerning the linear case p = 2 and k = 1, can be found in [2, 3, 28]. The main
tools in their proofs are derived from recent advances in potential theory for nonlinear elliptic
equations obtained by Kilpelainen and Malý [15, 16], Trudinger and Wang [24, 25, 26], and
Labutin [18] thanks to whom the authors first provide global pointwise estimates for solutions
of the homogeneous Dirichlet problems in terms of Wolff potentials of suitable order.

For s > 1, 0 ≤ α < N
s , η ≥ 0 and 0 < T ≤ ∞, we recall that the T -truncated Wolff potential

of a positive Radon measure µ is defined in R
N by

WT
α,s[µ](x) =

∫ T

0

(

µ(Bt(x))

tN−αs

)
1

s−1 dt

t
, (1.8)

the T -truncated Riesz potential of a positive Radon measure µ by

ITα [µ](x) =

∫ T

0

µ(Bt(x))

tN−α

dt

t
, (1.9)

and the T -truncated η-fractional maximal potential of µ by

Mη
α,T [µ](x) = sup

{

µ(Bt(x))

tN−αhη(t)
: 0 < t ≤ T

}

, (1.10)

where hη(t) = (− ln t)−ηχ(0,2−1](t) + (ln 2)−ηχ[2−1,∞)(t). If η = 0, then hη = 1 and we denote
by Mα,T [µ] the corresponding T -truncated fractional maximal potential of µ. We also denote
by Wα,s[µ] (resp Iα[µ], Mη

α[µ] ) the ∞-truncated Wolff potential (resp Riesz Potential, η−
fractional maximal potential) of µ. When the measures are only defined in an open subset
Ω ⊂ R

N , they are naturally extended by 0 in Ωc. For l ∈ N
∗, we define the l-truncated

exponential function

Hl(r) = er −
l−1
∑

j=0

rj

j!
, (1.11)

and for a > 0 and β ≥ 1, we set
Pl,a,β(r) = Hl(ar

β). (1.12)

We put

Qp(s) =











∞
∑

q=l

s
βq

p−1

q
βq
p−1 q!

if p 6= 2,

Hl(s
β) if p = 2,

(1.13)
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Q∗
p(r) = max {rs −Qp(s) : s ≥ 0} is the complementary function to Qp, and define the corre-

sponding Bessel and Riesz capacities respectively by

Cap
Gαp,Q∗

p
(E) = inf

{∫

RN

Q∗
p(f)dx : Gαp ∗ f ≥ χE , f ≥ 0, Q∗

p(f) ∈ L1(RN )

}

, (1.14)

and

CapIαp,Q∗

p
(E) = inf

{
∫

RN

Q∗
p(f)dx : Iαp ∗ f ≥ χE , f ≥ 0, Q∗

p(f) ∈ L1(RN )

}

, (1.15)

where Gαp(x) = F−1
(

(1 + |.|2)−
αp
2

)

(x) is the Bessel kernel of order p and Iαp(x) = (N −

αp)−1|x|−(N−αp).

The expressions a ∧ b and a ∨ b stand for min{a, b} and max{a, b} respectively. We denote
by Br the ball of center 0 and radius r > 0. Our main results are the following theorems.

Theorem 1.1 Let 1 < p < N , a > 0, l ∈ N
∗ and β ≥ 1 such that lβ > p− 1. Let Ω ⊂ R

N be a
bounded domain. If µ is a nonnegative Radon measure in Ω, there exists M > 0 depending on
N, p, l, a, β and diam (Ω) (the diameter of Ω) such that if

||M
(p−1)(β−1)

β

p,2 diam (Ω)[µ]||L∞(RN ) ≤ M,

and ω = M ||M
(p−1)(β−1)

β

p,2 diam(Ω)[1]||
−1
L∞(RN ) + µ with cp = 1 ∨ 4

2−p
p−1 , then Pl,a,β

(

2cpK1W
2 diam (Ω)
1,p [ω]

)

is integrable in Ω and the following Dirichlet problem

−∆pu = Pl,a,β(u) + µ in Ω,
u = 0 on ∂Ω,

(1.16)

admits a nonnegative renormalized solution u which satisfies

u(x) ≤ 2cpK1W
2 diam (Ω)
1,p [ω](x) ∀x ∈ Ω. (1.17)

The role of K1 = K1(N, p) will be made explicit in Theorem 3.4.
Conversely, if (1.16) admits a nonnegative renormalized solution u and Pl,a,β(u) is integrable

in Ω, then for any compact set K ⊂ Ω, there exists a positive constant C depending on N, p, l, a, β
and dist (K, ∂Ω) such that

∫

E

Pl,a,β(u)dx+ µ(E) ≤ CCapGp,Q∗

p
(E) for all Borel sets E ⊂ K. (1.18)

Furthermore, u ∈ W 1,p1

0 (Ω) for all 1 ≤ p1 < p.

When Ω = R
N , we have a similar result provided µ has compact suppport.

Theorem 1.2 Let 1 < p < N , a > 0, l ∈ N
∗ and β ≥ 1 such that lβ > N(p−1)

N−p and R > 0. If

µ is a nonnegative Radon measure in R
N with supp (µ) ⊂ BR there exists M > 0 depending on

N, p, l, a, β and R such that if

||M
(p−1)(β−1)

β
p [µ]||L∞(RN ) ≤ M,
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and ω = M ||M
(p−1)(β−1)

β
p [χBR

]||−1
L∞(RN )

χBR
+ µ, then Pl,a,β (2cpK1W1,p[ω]) is integrable in R

N

and the following problem

−∆pu = Pl,a,β(u) + µ in D′(RN ),
infRN u = 0,

(1.19)

admits a p-superharmonic solution u which satisfies

u(x) ≤ 2cpK1W1,p[ω](x) ∀x ∈ R
N , (1.20)

(cp and K1 as in Theorem 1.1).
Conversely, if (1.19) has a solution u and Pl,a,β(u) is locally integrable in R

N , then there
exists a positive constant C depending on N, p, l, a, β such that

∫

E

Pl,a,β(u)dx+ µ(E) ≤ CCapIp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (1.21)

Furthermore, u ∈ W 1,p1

loc (RN ) for all 1 ≤ p1 < p.

Concerning the k-Hessian operator we recall some notions introduced by Trudinger and
Wang [24, 25, 26], and we follow their notations. For k = 1, ..., N and u ∈ C2(Ω) the k-Hessian
operator Fk is defined by

Fk[u] = Sk(λ(D
2u)),

where λ(D2u) = λ = (λ1, λ2, ..., λN ) denotes the eigenvalues of the Hessian matrix of second
partial derivatives D2u and Sk is the k-th elementary symmetric polynomial that is

Sk(λ) =
∑

1≤i1<...<ik≤N

λi1 ...λik .

It is straightforward that
Fk[u] =

[

D2u
]

k
,

where in general [A]k denotes the sum of the k-th principal minors of a matrix A = (aij). In
order that there exists a smooth k-admissible function which vanishes on ∂Ω, the boundary ∂Ω
must satisfy a uniformly (k-1)-convex condition, that is

Sk−1(κ) ≥ c0 > 0 on ∂Ω,

for some positive constant c0, where κ = (κ1, κ2, ..., κn−1) denote the principal curvatures of ∂Ω
with respect to its inner normal. We also denote by Φk(Ω) the class of upper-semicontinuous
functions Ω → [−∞,∞) which are k-convex, or subharmonic in the Perron sense (see Definition
5.1). In this paper we prove the following theorem (in which expression E[q] is the largest integer
less or equal to q)

Theorem 1.3 Let k ∈ {1, 2, ...,E[N/2]} such that 2k < N , l ∈ N
∗, β ≥ 1 such that lβ > k

and a > 0. Let Ω be a bounded uniformly (k-1)-convex domain in R
N . Let ϕ be a nonnegative

continuous function on ∂Ω and µ = µ1 + f be a nonnegative Radon measure where µ1 has
compact support in Ω and f ∈ Lq(Ω) for some q > N

2k . Let K2 = K2(N, k) be the constant K2
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which appears in Theorem 5.3. Then, there exist positive constants b, M1 and M2 depending on
N, k, l, a, β and diam (Ω) such that, if max∂Ω ϕ ≤ M2 and

||M
k(β−1)

β

2k,2diam (Ω)[µ]||L∞(RN ) ≤ M1,

then Pl,a,β

(

2K2W
2 diam (Ω)
2k

k+1 ,k+1
[µ] + b

)

is integrable in Ω and the following Dirichlet problem

Fk[−u] = Pl,a,β(u) + µ in Ω,
u = ϕ texton ∂Ω,

(1.22)

admits a nonnegative solution u, continuous near ∂Ω, with −u ∈ Φk(Ω) which satisfies

u(x) ≤ 2K2W
2diam (Ω)
2k

k+1 ,k+1
[µ](x) + b ∀x ∈ Ω. (1.23)

Conversely, if (1.22) admits a nonnegative solution u, continuous near ∂Ω, such that −u ∈
Φk(Ω) and Pl,a,β(u) is integrable in Ω, then for any compact set K ⊂ Ω, there exists a positive
constant C depending on N, k, l, a, β and dist(K, ∂Ω) such that there holds

∫

E

Pl,a,β(u)dx+ µ(E) ≤ CCap
G2k,Q∗

k+1
(E) ∀E ⊂ K,E Borel, (1.24)

where Qk+1(s) is defined by (1.13) with p = k + 1, Q∗
k+1 is its complementary function and

CapG2k,Q∗

k+1
(E) is defined accordingly by (1.14).

The following extension holds when Ω = R
N .

Theorem 1.4 Let k ∈ {1, 2, ...,E[N/2]} such that 2k < N , l ∈ N
∗, β ≥ 1 such that lβ > Nk

N−2k

and a > 0, R > 0. If µ is a nonnegative Radon measure in R
N with supp (µ) ⊂ BR there exists

M > 0 depending on N, k, l, a, β and R such that if

||M
k(β−1)

β

2k [µ]||L∞(RN ) ≤ M,

and ω = M ||M
k(β−1)

β

2k [χBR
]||−1

L∞(RN )χBR
+ µ, then Pl,a,β

(

2K2W 2k
k+1 ,k+1[ω]

)

is integrable in R
N

(K2 as in Theorem 1.3) and the following Dirichlet problem

Fk[−u] = Pl,a,β(u) + µ in R
N ,

infRN u = 0,
(1.25)

admits a nonnegative solution u with −u ∈ Φk(RN ) which satisfies

u(x) ≤ 2K2W 2k
k+1 ,k+1[ω](x) ∀x ∈ R

N . (1.26)

Conversely, if (1.25) admits a nonnegative solution u with −u ∈ Φk(RN ) and Pl,a,β(u)
locally integrable in R

N , then there exists a positive constant C depending on N, k, l, a, β such
that there holds

∫

E

Pl,a,β(u)dx+ µ(E) ≤ CCapI2k,Q∗

k+1
(E) ∀E ⊂ R

N , E Borel. (1.27)

where CapI2k,Q∗

k+1
(E) is defined accordingly by (1.15).
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The four previous theorems are connected to the following results which deals with a class
of nonlinear Wolff integral equations.

Theorem 1.5 Let α > 0, p > 1, a > 0, ε > 0, R > 0, l ∈ N
∗ and β ≥ 1 such that lβ > p−1 and

0 < αp < N . Let f be a nonnegative measurable in R
N with the property that µ1 = Pl,a+ε,β(f)

is locally integrable in R
N and µ ∈ M

+(RN ). There exists M > 0 depending on N,α, p, l, a, β, ε
and R such that if

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ M and ||M
(p−1)(β−1)

β

αp,R [µ1]||L∞(RN ) ≤ M, (1.28)

then there exists a nonnegative function u such that Pl,a,β(u) is locally integrable in R
N which

satisfies
u = WR

α,p[Pl,a,β(u) + µ] + f in R
N , (1.29)

and
u ≤ F := 2cpW

R
α,p[ω1] + 2cpW

R
α,p[ω2] + f, Pl,a,β (F ) ∈ L1

loc(R
N ), (1.30)

where ω1 = M ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN )

+ µ and ω2 = M ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN )

+ µ1.

Conversely, if (1.29) admits a nonnegative solution u and Pl,a,β(u) is locally integrable in
R

N , then there exists a positive constant C depending on N,α, p, l, a, β and R such that there
holds
∫

E

Pl,a,β(u)dx+

∫

E

Pl,a+ε,β(f)dx + µ(E) ≤ CCap
Gαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (1.31)

When R = ∞ in the above theorem, we have a similar result provided f and µ have compact
support in R

N .

Theorem 1.6 Let α > 0, p > 1, a > 0, ε > 0, R > 0, l ∈ N
∗ and β ≥ 1 such that 0 < αp < N

and lβ > N(p−1)
N−αp . There exists M > 0 depending on N,α, p, l, a, β, ε and R such that if f is a

nonnegative measurable function in R
N with support in BR such that µ1 = Pl,a+ε,β(f) is locally

integrable in R
N and µ is a positive measure in R

N with support in BR which verify

||M
(p−1)(β−1)

β
αp [µ]||L∞(RN ) ≤ M and ||M

(p−1)(β−1)
β

αp [µ1]||L∞(RN ) ≤ M, (1.32)

then there exists a nonnegative function u such that Pl,a,β(u) is integrable in R
N which satisfies

u = Wα,p[Pl,a,β(u) + µ] + f in R
N , (1.33)

and
u ≤ F := 2cpWα,p[ω1] + 2cpWα,p[ω2] + f, Pl,a,β (F ) ∈ L1(RN ), (1.34)

where ω1 = M ||M
(p−1)(β−1)

β
αp [χBR

]||−1
L∞(RN )

χBR
+µ and ω2 = M ||M

(p−1)(β−1)
β

αp [χBR
]||−1

L∞(RN )
χBR

+
µ1.

Conversely, if (1.33) admits a nonnegative solution u such that Pl,a,β(u) is integrable in R
N ,

then there exists a positive constant C depending on N,α, p, l, a, β such that there holds
∫

E

Pl,a,β(u)dx +

∫

E

Pl,a,β(f)dx+ µ(E) ≤ CCapIαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (1.35)
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As an application of the Wolff integral equation we can notice that α = 1, equation (1.33) is
equivalent to

−∆p(u − f) = Pl,a,β(u) + µ in R
N .

When α = 2k
k+1 and p = k + 1, it is equivalent to

Fk[−u+ f ] = Pl,a,β(u) + µ in R
N .

If p = 2 equation (1.33) becomes linear. If we set γ = 2α, then

Wα,2[ω](x) =

∫ ∞

0

ω(Bt(x))
dt

tN−γ+1

=

∫

RN

(

∫ ∞

|x−y|

dt

tN−γ+1

)

dµ(y)

= 1
N−γ

∫

RN

dω(y)

|x− y|N−γ

= Iγ ∗ ω,

where Iγ is the Riesz kernel of order γ. Thus (1.33) is equivalent to

(−∆)α(u− f) = Pl,a,β(u) + µ in R
N .

Remark 1.7 In case Ω is a bounded open set, uniformly bounded of sequence {un} (2.22)
is essential for the existence of solutions of equations (1.16), (1.22) and (1.29). Moreover,
conditions lβ > p − 1 in Theorem 1.1, 1.5 and lβ > k in Theorem 1.3 is necessary so as to
get (2.22) from iteration schemes (2.27). Besides, in case Ω = R

N , equation (1.19) in Theorem
1.2 ( (1.25) in Theorem 1.4, (1.33) in Theorem 1.6 resp.) has nontrivial solution on R

N if and

only if lβ > N(p−1)
N−p ( lβ > Nk

N−2k , lβ > N(p−1)
N−αp resp.). In fact, here we only need to consider

equation (1.19). Assume that lβ ≤ N(p−1)
N−p , using Holder inequality we have Pl,a,β(u) ≥ cuγ

where p− 1 < γ ≤ N(p−1)
N−p , so we get from Theorem (3.4).

u ≥ KW1,p[cu
γ + µ] in R

N

for some constant K. Therefore, we can verify that
∫

E

uγdx+ µ(E) ≤ CCapIp, γ
γ−p+1

(E) ∀E ⊂ R
N , E Borel.

see Theorem 2.7, where C is a constant and Cap
Ip,

γ
γ−p+1

is a Riesz capacity.

Since N ≤ pγ
γ−p+1 (⇔ p− 1 < γ ≤ N(p−1)

N−p ), CapIp, γ
γ−p+1

(E) = 0 for all Borel set E, see [1].

Immediately, we deduce u ≡ 0 and µ ≡ 0.

2 Estimates on potentials and Wolff integral equations

We denote by Br(a) the ball of center a and radius r > 0, Br = Br(0) and by χE the charac-
teristic function of a set E. The next estimates are crucial in the sequel.
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Theorem 2.1 Let α > 0, p > 1 such that 0 < αp < N .
1. There exists a positive constant c1, depending only on N,α, p such that for all µ ∈ M

+(RN )
and q ≥ p− 1, 0 < R ≤ ∞ we have

(c1q)
− q

p−1

∫

RN

(

IRαp[µ](x)
)

q
p−1 dx ≤

∫

RN

(

WR
α,p[µ](x)

)q
dx ≤ (c1q)

q

∫

RN

(

IRαp[µ](x)
)

q
p−1 dx,

(2.1)
2. Let R > 0. There exists a positive constant c2, depending only on N,α, p,R such that for all
µ ∈ M

+(RN ) and q ≥ p− 1 we have

(c2q)
− q

p−1

∫

RN

(Gαp[µ](x))
q

p−1 dx ≤

∫

RN

(

WR
α,p[µ](x)

)q
dx ≤ (c2q)

q

∫

RN

(Gαp[µ](x))
q

p−1 dx,

(2.2)
where Gαp[µ] := Gαp ∗ µ denotes the Bessel potential of order αp of µ.

3. There exists a positive constant c3, depending only on N,α,R such that for all µ ∈ M
+(RN )

and q ≥ 1 we have

c−q
3

∫

RN

(Gα[µ](x))
q
dx ≤

∫

RN

(

IRα [µ](x)
)q

dx ≤ cq3

∫

RN

(Gα[µ](x))
q
dx. (2.3)

Proof. Note that WR
α
2 ,2[µ] = IRα [µ]. We can find proof of (2.3) in [8, Step 3, Theorem 2.3]. By

[8, Step 2, Theorem 2.3], there is c4 > 0 such that
∫

RN

(

WR
α,p[µ](x)

)q
dx ≥ cq4

∫

RN

(Mαp,R[µ](x))
q

p−1 dx ∀q ≥ p−1, 0 < R ≤ ∞ and µ ∈ M
+(RN ).

(2.4)
We recall that Mαp,R[µ] = M0

αp,R[µ] by (1.10). Next we show that for all q ≥ p− 1, 0 < R ≤ ∞

and µ ∈ M
+(RN ) there holds

∫

RN

(Mαp,R[µ](x))
q

p−1 dx ≥ (c5q)
−q
∫

RN

(

WR
α,p[µ](x)

)q
dx, (2.5)

for some positive constant c5 depending on N,α, p. Indeed, we denote µn by χBn
µ for n ∈ N

∗.
By [17, Theorem 1.2] or [8, Proposition 2.2], there exist constants c6 = c6(N,α, p) > 0, a =
a(α, p) > 0 and ε0 = ε(N,α, p) such that for all n ∈ N

∗, t > 0, 0 < R ≤ ∞ and 0 < ε < ε0,
there holds

∣

∣

{

WR
α,pµn > 3t

}∣

∣ ≤ c6 exp
(

−aε−1
) ∣

∣

{

WR
α,pµn > t

}∣

∣+
∣

∣

∣

{

(Mαp,Rµn)
1

p−1 > εt
}∣

∣

∣
.

Multiplying by qtq−1 and integrating over (0,∞), we obtain
∫ ∞

0

qtq−1
∣

∣

{

WR
α,pµn > 3t

}∣

∣ dt ≤ c6 exp
(

−aε−1
)

∫ ∞

0

qtq−1
∣

∣

{

WR
α,pµn > t

}∣

∣ dt

+

∫ ∞

0

qtq−1
∣

∣

∣

{

(Mαp,Rµn)
1

p−1 > εt
}∣

∣

∣ dt,

which implies

εq
(

3−q − c6 exp
(

−aε−1
))

∫

RN

(

WR
α,p[µn](x)

)q
dx ≤

∫

RN

(Mαp,Rµn)
q

p−1 dx.
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We see that sup
0<ε<ε0

εq
(

3−q − c6 exp
(

−aε−1
))

≥ (c7q)
−q for some constant c7 which does not

depend on q. Therefore (2.5) follows by Fatou’s lemma. Hence, it is easy to obtain (2.1) from
(2.4) and (2.5). At end, we obtain (2.2) from (2.1) and (2.3).

The next result is proved in [8].

Theorem 2.2 Let α > 0, p > 1, 0 ≤ η < p − 1, 0 < αp < N and L > 0. Set δ =

1
2

(

p−1−η
12(p−1)

)
p−1

p−1−η

αp log(2). Then there exists C(L) > 0, depending on N , α, p, η and L such

that for any R ∈ (0,∞], µ ∈ M
+(RN ), any a ∈ R

N and 0 < r ≤ L, there holds

1

|B2r(a)|

∫

B2r(a)

exp



δ

(

WR
α,p[µBr(a)](x)

)
p−1

p−1−η

||Mη
αp,R[µBr(a)]||

1
p−1−η

L∞(Br(a))



 dx ≤ C(L), (2.6)

where µBr(a) = χBr(a)µ. Furthermore, if η = 0, C is independent of L.

Theorem 2.3 Let α > 0, p > 1 with 0 < αp < N , β ≥ 1 and R > 0. Assume µ ∈ M
+(RN )

satisfies

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ 1, (2.7)

and set ω = ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN ) + µ. Then there exist positive constants C, δ0 and c

independent on µ such that exp
(

δ0
(

WR
α,p [ω]

)β
)

is locally integrable in R
N ,

∥

∥

∥WR
α,p

[

exp
(

δ0
(

WR
α,p [ω]

)β
)]∥

∥

∥

L∞(RN )
≤ C, (2.8)

and
WR

α,p

[

exp
(

δ0
(

WR
α,p [ω]

)β
)]

≤ cWR
α,p[ω] in R

N . (2.9)

Proof. Let δ be as in Theorem 2.2. From (2.7), we have

||M
(p−1)(β−1)

β

αp,R [ω]||L∞(RN ) ≤ 2.

Let x ∈ R
N . Since ω(Bt(y)) ≤ 2tN−αph (p−1)(β−1)

β

(t), for all r ∈ (0, R) and y ∈ R
N we have

WR
α,p [ω] (y) = Wr

α,p [ω] (y) +

∫ R

r

(

ω(Bt(y))

tN−αp

)
1

p−1 dt

t

≤ Wr
α,p [ω] (y) + 2

1
p−1

∫ 2−1

r∧2−1

(− ln t)−
β−1
β

dt

t
+ 2

1
p−1

∫ R∨2−1

2−1

(− ln t)−
β−1
β

dt

t

≤ Wr
α,p [ω] (y) + c8(− ln(r ∧ 2−1))

1
β + c8.

Thus,
(

WR
α,p [ω] (y)

)β
≤ 3β−1

(

Wr
α,p [ω] (y)

)β
+ c9 ln

(

1

r ∧ 2−1

)

+ c9. (2.10)
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Let θ ∈ (0, 2−
β

p−1 ], since exp (a+b
2 ) ≤ exp (a) + exp (b) for all a, b ∈ R, we get from (2.10)

exp
(

θδ3−β
(

WR
α,p [ω] (y)

)β
)

≤ exp
(

δ2−
β

p−1
(

Wr
α,p [ω] (y)

)β
)

+ c10 exp

(

θc11 ln

(

1

r ∧ 2−1

))

= exp
(

δ2−
β

p−1
(

Wr
α,p [ω] (y)

)β
)

+ c10
(

r ∧ 2−1
)−θc11

. (2.11)

For r > 0, 0 < t ≤ r, y ∈ Br(x) there holds Bt(y) ⊂ B2r(x). Thus, W
r
α,p[ω] = Wr

α,p[ωB2r(x)] in

Br(x). Then, using (2.6) in Theorem 2.2 with η = (p−1)(β−1)
β and L = 2R we get

∫

Br(x)

exp
(

δ2−
β

p−1
(

Wr
α,p [ω]

)γ
)

=

∫

Br(x)

exp
(

δ2−
β

p−1
(

Wr
α,p

[

ωB2r(x)

])γ
)

≤ c12r
N .

Therefore, taking θ = 2−
β

p−1 ∧ αp
2c11

, we deduce from (2.11)

WR
α,p

[

exp
(

θδ3−β
(

WR
α,p [ω]

)γ
)]

(x) ≤

∫ R

0

(

c12r
αp + c13

(

r ∧ 2−1
)−θc11

rαp
)

1
p−1 dr

r

≤

∫ R

0

(

c12r
αp + c13

(

r ∧ 2−1
)−αp

2 rαp
)

1
p−1 dr

r

≤ c14.

Hence, we get (2.8) with δ0 =
(

2−
β

p−1 ∧ αp
2c11

)

δ3−β; we also get (2.9) since WR
α,p[ω] ≥ c15 for

some positive constant c15 > 0.

We recall that Hl and Pl,a,β have been defined in (1.11) and (1.12).

Theorem 2.4 Let α > 0, p > 1, l ∈ N
∗ and β ≥ 1 such that 0 < αp < N , lβ > N(p−1)

N−αp and

R > 0. Assume that µ ∈ M
+(RN ) has support in BR and verifies

||M
(p−1)(β−1)

β
αp [µ]||L∞(RN ) ≤ 1, (2.12)

and set ω = ||M
(p−1)(β−1)

β
αp [χBR

]||−1
L∞(RN )

χBR
+ µ. Then there exist C = C(N,α, p, l, β, R) > 0

and δ1 = δ1(N,α, p, l, β, R) > 0 such that Hl

(

δ1 (Wα,p[ω])
β
)

is integrable in R
N and

Wα,p

[

Hl

(

δ1 (Wα,p[ω])
β
)]

(x) ≤ CWα,p[ω](x) ∀ x ∈ R
N . (2.13)

Proof. We have from (2.12)

||M
(p−1)(β−1)

β
αp [ω]||L∞(RN ) ≤ 2. (2.14)

In particular, ω(BR) ≤ c16. Let δ1 > 0 and x ∈ R
N fixed. We split the Wolff potential Wα,p[ω]

into lower and upper parts defined by

Lt
α,p[ω](x) =

∫ +∞

t

(

ω(Br(x))

rN−αp

)
1

p−1 dr

r
,
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and

Wt
α,p[ω](x) =

∫ t

0

(

ω(Br(x))

rN−αp

)
1

p−1 dr

r
.

Using the convexity we have

Hl

(

δ1 (Wα,p[ω])
β
)

≤ Hl

(

δ12
β
(

Lt
α,p[ω]

)β
)

+Hl

(

δ12
β
(

Wt
α,p[ω]

)β
)

.

Thus,

Wα,p

[

Hl

(

δ1 (Wα,p[ω])
β
)]

(x) ≤ c17

∫ +∞

0

(

ω1
t (Bt(x))

tN−αp

)
1

p−1 dt

t
+c17

∫ +∞

0

(

ω2
t (Bt(x))

tN−αp

)
1

p−1 dt

t
,

where dω1
t = Hl

(

δ12
β
(

Lt
α,p[ω]

)β
)

dx and dω2
t = Hl

(

δ12
β
(

Wt
α,p[ω]

)β
)

dx. Inequality (2.13)

will follows from the two inequalities below,

∫ +∞

0

(

ω1
t (Bt(x))

tN−αp

)
1

p−1 dt

t
≤ c18Wα,p[ω](x), (2.15)

and
ω2
t (Bt(x)) ≤ c18ω(B4t(x)). (2.16)

Step 1: Proof of (2.15). Since Br(y) ⊂ B2r(x) for y ∈ Bt(x) and r ≥ t, there holds

Lt
α,p[ω](y) ≤

∫ +∞

t

(

ω(B2r(x))

rN−αp

)
1

p−1 dr

r
= 2

N−αp
p−1 L2t

α,p[ω](x).

It follows
ω1
t (Bt(x)) ≤ |B1(0)|t

NHl

(

δ1c19
(

L2t
α,p[ω](x)

)β
)

.

Thus,
∫ +∞

0

(

ω1
t (Bt(x))

tN−αp

)
1

p−1 dt

t
≤ c20

∫ ∞

0

At(x)dt, (2.17)

where

At(x) =
(

tαpHl

(

δ1c19
(

L2t
α,p[ω](x)

)β
))

1
p−1 1

t
.

Since Hl(s) ≤ sl exp(s) for all s ≥ 0,

At(x) ≤ c21

(

tαp
(

L2t
α,p[ω](x)

)lβ
exp

(

δ1c19
(

L2t
α,p[ω](x)

)β
))

1
p−1 1

t

= c21t
αp
p−1−1

(

L2t
α,p[ω](x)

)

lβ−p+1
p−1 exp

(

δ1c22
(

L2t
α,p[ω](x)

)β
)

L2t
α,p[ω](x).

Now we estimate L2t
α,p[ω].
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Case 1: t ∈ (0, 1). From (2.14) we deduce

L2t
α,p[ω](x) ≤

∫ 1/2

t/2

(

ω(Bs(x))

sN−αp

)
1

p−1 ds

s
+

∫ ∞

1/2

(

ω(Bs(x))

sN−αp

)
1

p−1 ds

s

≤ c23

∫ 1/2

t/2

(−ln(s))−1+ 1
β
ds

s
+

∫ ∞

1/2

(

ω(BR)

sN−αp

)
1

p−1 ds

s

≤ c24 (− ln(t/2))
1
β ,

which implies

At(x) ≤ c25t
αp
p−1−1 (− ln(t/2))

lβ−p+1
β(p−1) exp (δ1c26(− ln(t/2)))L2t

α,p[ω](x)

= c27t
αp
p−1−1 (− ln(t/2))

lβ−p+1
β(p−1) t−δ1c26L2t

α,p[ω](x).

We take δ1 ≤ 1
2c26

(

αp
p−1 − 1

)

and obtain

At(x) ≤ c28L
2t
α,p[ω](x) ∀t ∈ (0, 1). (2.18)

Case 2: t ≥ 1. We have

L2t
α,p[ω](x) ≤

∫ ∞

2t

(

ω(BR)

sN−αp

)
1

p−1 ds

s
= c29t

−N−αp
p−1 ,

thus

At(x) ≤ c30t
αp
p−1−1t

− (lβ−p+1)(N−αp)

(p−1)2 exp
(

δ1c31t
− β(N−αp)

p−1

)

L2t
α,p[ω](x)

≤ c32t
−1−γL2t

α,p[ω](x),

where γ = 1
p−1

(

lβ(N−αp)
p−1 −N

)

> 0.

Therefore, At(x) ≤ c33(t ∨ 1)−1−γL2t
α,p[ω](x) for all t > 0. Therefore, from (2.17)

∫ +∞

0

(

ω1
t (Bt(x))

tN−αp

)
1

p−1 dt

t
≤ c34

∫ ∞

0

(t ∨ 1)−1−γL2t
α,p[ω](x)dt.

Using Fubini Theorem we get

∫ +∞

0

(

ω1
t (Bt(x))

tN−αp

)
1

p−1 dt

t
≤ c34

∫ ∞

0

∫ t/2

0

(s ∨ 1)−1−γds

(

ω(Bt(x))

tN−αp

)
1

p−1 dt

t

≤ c35

∫ ∞

0

(

ω(Bt(x))

tN−αp

)
1

p−1 dt

t

= c35Wα,p[µ](x),

which follows (2.15).
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Step 2: Proof of (2.16). For t > 0, r ≤ t and y ∈ Bt(x) we have Br(y) ⊂ B2t(x), thus

ω2
t (Bt(x)) =

∫

Bt(x)

Hl

(

δ12
β
(

Wt
α,p[ωB2t(x)](y)

)β
)

dy.

By Theorem 2.2 there exists c36 > 0 such that for 0 < δ1 ≤ c36, 0 < t < 2R, z ∈ R
N ,

∫

B4t(z)

exp
(

δ12
β
(

Wα,p[ωB2t(z)](y)
)β
)

dy ≤ c37t
N . (2.19)

We take 0 < δ1 ≤ c36.

Case 1: x ∈ BR. If 0 < t < 2R, from (2.19) we get

ω2
t (Bt(x)) ≤ c37t

N ≤ c38ω(B4t(x)).

If t ≥ 2R, since for any |y| ≥ 2R,

Wα,p[ω](y) =

∫ ∞

|y|/2

(

ω(Bt(y))

tN−αp

)
1

p−1 dt

t
≤ c39

∫ ∞

|y|/2

t−1−N−αp
p−1 dt ≤ c40|y|

−N−αp
p−1 ,

and thanks to (2.19) we have

ω2
t (Bt(x)) ≤

∫

B2R

exp
(

δ12
β (Wα,p[ωBR

](y))
β
)

dy +

∫

RN\B2R

Hl

(

δ12
β (Wα,p[ω](y))

β
)

dy

≤ c41R
N +

∫

RN\B2R

Hl

(

c42|y|
− β(N−αp)

p−1

)

dy

≤ c43 + c43

∫

RN\B2R

|y|−
lβ(N−αp)

p−1 dy = c43 + c44R
N− lβ(N−αp)

p−1

≤ c45|B4t(x) ∩BR| ≤ c46ω(B4t(x)).

From this we also have Hl

(

δ1 (Wα,p[ω])
β
)

∈ L1(RN ).

Case 2: x ∈ R
N\BR. If |x| > R + t then ω2

t (Bt(x)) = 0. Next we consider the case R < |x| ≤
R+ t. If 0 < t < 2R, we have Bt/2((R − t

2 )
x
|x|) ⊂ B4t(x) ∩BR; thus from (2.19) we get

ω2
t (Bt(x)) ≤ c47t

N = c48

∣

∣

∣

∣

Bt/2

(

(R−
t

2
)
x

|x|

)∣

∣

∣

∣

≤ c48 |B4t(x) ∩BR| ≤ c49ω(B4t(x)).

If t ≥ 2R, as in Case 1 we also obtain ω2
t (Bt(x)) ≤ c50ω(B4t(x)) since BR ⊂ B4t(x). Hence, we

get (2.16). Therefore, the result follows with δ1 =
(

1
2c26

(

αp
p−1 − 1

))

∧ c36.

In the next result we obtain estimate on a sequence of solutions of Wolff integral inequations
obtained by induction.
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Theorem 2.5 Assume that the assumptions on α, p, l, a, β, ε, f , µ1 and µ of Theorem 1.5
are fulfilled and R,K are positive real numbers. Suppose that {um} is a sequence of nonnegative
measurable functions in R

N that satisfies

um+1 ≤ KWR
α,p[Pl,a,β(um) + µ] + f ∀m ∈ N,

u0 ≤ KWR
α,p[µ] + f.

(2.20)

Then there exists M > 0 depending on N,α, p, l, a, β, ε,K and R such that if

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ M and ||M
(p−1)(β−1)

β

αp,R [µ1]||L∞(RN ) ≤ M,

there holds
Pl,a,β

(

4cpKWR
α,p[ω1] + 4cpKWR

α,p[ω2] + f
)

∈ L1
loc(R

N ), (2.21)

and
um ≤ 2cpKWR

α,p[ω1] + 2cpKWR
α,p[ω2] + f ∀m ∈ N, (2.22)

where

ω1 = M ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN ) + µ, (2.23)

ω2 = M ||M
(p−1)(β−1)

β

αp,R [1]||−1
L∞(RN ) + µ1, (2.24)

and cp = 1 ∨ 4
2−p
p−1 .

Furthermore, if f ≡ 0 then (2.21) and (2.22) are satisfied with ω2 ≡ 0.

Proof. The proof is based upon Theorems 2.3 and 2.4. Set ca,ε = 2

(

1−
(

a
a+ε

)1/β
)−1

and

a = a (4ca,εcpK)
β
. If 0 < M ≤ 1 we define ω1 and ω2 by (2.23) and (2.24) respectively. We now

assume

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ M and ||M
(p−1)(β−1)

β

αp,R [µ1]||L∞(RN ) ≤ M.

We prove first that

WR
α,p

[

Hl

(

a
(

WR
α,p[ωi]

)β
)]

≤ WR
α,p[ωi] for i = 1, 2. (2.25)

By Theorem 2.3, there exist c, δ0 > 0 independent on µ such that exp
(

δ0
(

WR
α,p

[

M−1ωi

])β
)

is

locally integrable in R
N and

WR
α,p

[

exp
(

δ0
(

WR
α,p

[

M−1ωi

])β
)]

≤ cWR
α,p[M

−1ωi] in R
N .

Since θ−lHl(s) ≤ Hl(θ
−1s) for all s ≥ 0 and 0 < θ ≤ 1, it follows

WR
α,p

[

M− 1
2 (

βl
p−1+1)Hl

(

δ0M
− 1

2 (
β

p−1−
1
l )
(

WR
α,p[ωi]

)β
)]

≤ WR
α,p

[

Hl

(

δ0M
− β

p−1
(

WR
α,p[ωi]

)β
)]

≤ WR
α,p

[

exp
(

δ0
(

WR
α,p[M

−1ωi]
)β
)]

≤ cM− 1
p−1WR

α,p[ωi].
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Hence,

WR
α,p

[

Hl

(

δ0M
− 1

2 (
β

p−1−
1
l )
(

WR
α,p[ωi]

)β
)]

≤ cM
1

2(p−1) (
βl

p−1−1)WR
α,p[ωi].

Therefore (2.25) is achieved if we prove

a ≤ δ0M
− 1

2 (
β

p−1−
1
l ) and cM

1
2(p−1) (

βl
p−1−1) ≤ 1,

which is equivalent to

M ≤
(

δ0a
−1
)( 1

2 (
β

p−1−
1
l ))

−1

∧ c−(
1

2(p−1) (
βl

p−1−1))
−1

.

Thus, we choose M = 1∧
(

δ0a
−1
)( 1

2 (
β

p−1−
1
l ))

−1

∧ c−(
1

2(p−1) (
βl

p−1−1))−1

; we obtain (2.25) and the

fact that Hl

(

a
(

WR
α,p[ωi]

)β
)

∈ L1
loc(R

N ).

Now, we prove (2.22) by induction. Clearly, (2.22) holds with m = 0. Next we assume that
(2.22) holds with m = n, and we claim that

un+1 ≤ 2cpKWR
α,p[ω1] + 2cpKWR

α,p[ω2] + f. (2.26)

In fact, since (2.22) holds with m = n and Pl,a,β is convex, we have

Pl,a,β (un) ≤ Pl,a,β

(

4cpKWR
α,p[ω1] + 4cpKWR

α,p[ω2] + f
)

≤ Pl,a,β

(

4ca,εcpKWR
α,p[ω1]

)

+ Pl,ε,a

(

4ca,εcpKWR
α,p[ω2]

)

+ Pl,a,β

(

(

1 +
ε

a

)1/β

f

)

= Hl

(

a
(

WR
α,p[ω1]

)β
)

+Hl

(

a
(

WR
α,p[ω2]

)β
)

+ Pl,a+ε,β(f).

From this we derive (2.21). By the definition of un+1 and the sub-additive property of WR
α,p[.],

we obtain

un+1 ≤ KWR
α,p

[

Hl

(

a
(

WR
α,p[ω1]

)β
)

+Hl

(

a
(

WR
α,p[ω2]

)β
)

+ Pl,a+ε,β(f) + µ
]

+ f

≤ cpKWR
α,p

[

Hl

(

a
(

WR
α,p[ω1]

)β
)]

+ cpKWR
α,p

[

Hl

(

a
(

WR
α,p[ω2]

)β
)]

+ cpKWR
α,p [Pl,a+ε,β(f)] + cpKWR

α,p [µ] + f.

Hence follows (2.26) from (2.25). This completes the proof of the theorem.

The next result is obtained by an easy adaptation of the proof Theorem 2.5.

Theorem 2.6 Assume that the assumptions on α, p, a, l, β, ε, f , µ1 and µ of Theorem 1.6
are fulfilled and R,K are positive real numbers. Suppose that {um} is a sequence of nonnegative
measurable functions in R

N that satisfies

um+1 ≤ KWα,p[Pl,a,β(um) + µ] + f ∀m ∈ N,

u0 ≤ KWα,p[µ] + f.
(2.27)
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Then there exists M > 0 depending on N,α, p, l, a, β, ε,K and R such that if

||M
(p−1)(β−1)

β
αp [µ]||L∞(RN ) ≤ M and ||M

(p−1)(β−1)
β

αp [µ1]||L∞(RN ) ≤ M,

there holds
Pl,a,β (4cpKWα,p[ω3] + 4cpKWα,p[ω4] + f ) ∈ L1(RN ), (2.28)

and
um ≤ 2cpKWα,p[ω3] + 2cpKWα,p[ω4] + f ∀m ∈ N, (2.29)

where

ω3 = M ||M
(p−1)(β−1)

β
αp [χBR

]||−1
L∞(RN )χBR

+ µ, (2.30)

and

ω4 = M ||M
(p−1)(β−1)

β
αp [χBR

]||−1
L∞(RN )χBR

+ µ1. (2.31)

Furthermore, if f ≡ 0 then (2.28) and (2.29) are satisfied with ω4 ≡ 0.

Let P ∈ C(R+) be a decreasing positive function. The (α, P )-Orlicz-Bessel capacity of a
Borel set E ⊂ R

N is defined by (see [1, Sect 2.6])

Cap
Gα,P (E) = inf

{∫

RN

P (f) : Gα ∗ f ≥ χE , f ≥ 0, P (f) ∈ L1(RN )

}

,

and the (α, P )-Orlicz-Riesz capacity

CapIα,P (E) = inf

{∫

RN

P (f) : Iα ∗ f ≥ χE , f ≥ 0, P (f) ∈ L1(RN )

}

.

Theorem 2.7 Let α > 0, p > 1, a > 0, c > 0, l ∈ N
∗ and β ≥ 1 such that lβ > p − 1 and

0 < αp < N . Let µ ∈ M
+(RN ).

1. Let 0 < R ≤ ∞. If u is a nonnegative Borel function in R
N such that Pl,a,β(u) is locally

integrable in R
N and

u(x) ≥ cWR
α,p[Pl,a,β(u) + µ](x) ∀x ∈ R

N , (2.32)

then the following statements holds.
(i) If R < ∞, there exists a positive constant C1 depending on N,α, p, l, a, β, c and R such that

∫

E

Pl,a,β(u)dx+ µ(E) ≤ C1CapGαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (2.33)

(ii) If R = ∞, there exists a positive constant C2 depending on N,α, p, l, a, β, c such that
∫

E

Pl,a,β(u)dx+ µ(E) ≤ C2CapIαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel. (2.34)

2. Let Ω be a bounded domain in R
N , µ ∈ M

+(Ω) and δ ∈ (0, 1). If u is a nonnegative Borel
function in Ω such that Pl,a,β(u) is locally integrable in Ω and

u(x) ≥ cWδd(x,∂Ω)
α,p [Pl,a,β(u) + µ](x) ∀x ∈ Ω, (2.35)
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then, for any compact set K ⊂ Ω, there exists a positive constant C3 depending on N,α, p, l, a, β, c, δ
and dist(K, ∂Ω) such that

∫

E

Pl,a,β(u)dx + µ(E) ≤ C3CapGαp,Q∗

p
(E) ∀E ⊂ K,E Borel, (2.36)

where Q∗
p is the complementary function to Qp.

Proof. Set dω = Pl,a,β(u)dx+ dµ.
1. We have

Pl,a,β

(

cWR
α,p[ω]

)

dx ≤ dω in R
N .

Let Mω denote the centered Hardy-Littlewood maximal function which is defined for any f ∈
L1
loc(R

N , dω) by

Mωf(x) = sup
t>0

1

ω(Bt(x))

∫

Bt(x)

|f |dω.

If E ⊂ R
N is a Borel set, we have

∫

RN

(MωχE)
lβ

p−1Pl,a,β

(

cWR
α,p[ω]

)

dx ≤

∫

RN

(MωχE)
lβ

p−1 dω.

Since Mω is bounded on Ls(RN , dω), s > 1, we deduce from Fefferman’s result [11] that

∫

RN

(MωχE)
lβ

p−1Pl,a,β

(

cWR
α,p[ω]

)

dx ≤ c51ω(E),

for some constant c51 only depends on N and lβ
p−1 . Since MωχE ≤ 1, we derive

(MωχE(x))
lβ

p−1Pl,a,β

(

cWR
α,p[ω](x)

)

≥ Pl,a,β

(

c (MωχE(x))
1

p−1 WR
α,p[ω](x)

)

≥ Pl,a,β

(

cWR
α,p[ωE](x)

)

,

where ωE = χEω. Thus

∫

RN

Pl,a,β

(

cWR
α,p[ωE ]

)

dx ≤ c51ω(E) ∀E ⊂ R
N , E Borel. (2.37)

From (2.1), (2.2) and (2.3) we get

∫

RN

Pl,a,β

(

cWR
α,p[ωE ](x)

)

dx ≥

∫

RN

Qp (c52Gαp[ωE](x)) dx if R < ∞,

and
∫

RN

Pl,a,β

(

cWR
α,p[ωE](x)

)

dx ≥

∫

RN

Qp (c53Iαp[ωE ](x)) dx if R = ∞,

where Qp is defined by (1.13) and c52 = (c2β)
−1a

p−1
β cp−1 if p 6= 2, c52 = c−1

3 a
1
β c if p = 2

(the constants c2, c3 defined in (2.2) and (2.3), depend on R, therefore c52 = c52(rK)) and

18



c53 = (c1β)
−1a

p−1
β cp−1 if p 6= 2, c53 = a

1
β c if p = 2. Thus, from (2.37) we obtain that for all

Borel set E ⊂ R
N there holds

∫

RN

Qp (c52Gαp[ωE](x)) dx ≤ c51ω(E) if R < ∞,

and
∫

RN

Qp (c53Iαp[ωE ](x)) dx ≤ c51ω(E) if R = ∞.

We recall that Q∗
p(s) = supt>0{st−Qp(t)} satisfies the sub-additivity ∆2-condition (see Chapter

2 in [19]).
(i) We assume R < ∞. For every f ≥ 0, Q∗

p(f) ∈ L1(Ω) such that Gαp ∗ f ≥ χE , we have

ω(E) ≤

∫

RN

Gαp ∗ fdωE = (2c51)
−1

∫

RN

(c52Gαp [ωE ])
(

2c51c
−1
52 f

)

dx

≤ (2c51)
−1

∫

RN

Qp (c52Gαp [ωE ]) dx+ (2c51)
−1

∫

RN

Q∗
p

(

2c51c
−1
52 f

)

dx

≤ 2−1ω(E) + c54

∫

RN

Q∗
p (f) dx,

the last inequality following from the ∆2-condition. Notice that c54, as well as the next constant
c55, depends on rK . Thus,

ω(E) ≤ 2c54

∫

RN

Q∗
p (f) dx.

Then, we get
ω(E) ≤ c55CapGαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel.

Which implies (2.33).
(ii) We assume R = ∞. For every f ≥ 0, Q∗

p(f) ∈ L1(Ω) such that Iαp ∗ f ≥ χE , since
Iαp ∗ ωE = Iαp[ωE], as above we have

ω(E) ≤

∫

RN

Iαp ∗ fdωE =

∫

RN

(Iαp ∗ ωE) fdx =

∫

RN

Iαp [ωE ] fdx

≤ 2−1ω(E) + c56

∫

RN

Q∗
p (f) dx,

Then, it follows (2.34).
2. Let K ⊂ Ω be compact. Set rK = dist(K, ∂Ω) and ΩK = {x ∈ Ω : d(x,K) < rK/2}. We
have

Pl,a,β

(

cWδd(x,∂Ω)
α,p [ω]

)

dx ≤ dω in Ω.

Thus, for any Borel set E ⊂ K

∫

Ω

(MωχE)
lβ

p−1Pl,a,β

(

cWδd(x,∂Ω)
α,p [ω]

)

dx ≤

∫

Ω

(MωχE)
lβ

p−1 dω.
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As above we get

∫

Ω

Pl,a,β

(

cWδd(x,∂Ω)
α,p [ωE ](x)

)

dx ≤ c51ω(E) ∀E ⊂ K,E Borel. (2.38)

Note that if x ∈ Ω and d(x, ∂Ω) ≤ rK/8, then Bt(x) ⊂ Ω\ΩK for all t ∈ (0, δd(x, ∂Ω)); indeed,
for all y ∈ Bt(x)

d(y, ∂Ω) ≤ d(x, ∂Ω) + |x− y| < (1 + δ)d(x, ∂Ω) <
1

4
rK ,

thus

d(y,K) ≥ d(K, ∂Ω)− d(y, ∂Ω) >
3

4
rK >

1

2
rK ,

which implies y /∈ ΩK . We deduce that

Wδd(x,∂Ω)
α,p [ωE ](x) ≥ W

δ
8 rK
α,p [ωE ](x) ∀x ∈ Ω,

and

W
δ
8 rK
α,p [ωE ](x) = 0 ∀x ∈ Ωc.

Hence we obtain from (2.38),

∫

RN

Pl,a,β

(

cW
δ
8 rK
α,p [ωE ](x)

)

dx ≤ c51ω(E) ∀E ⊂ K, E Borel. (2.39)

As above we also obtain

ω(E) ≤ c57CapGαp,Q∗

p
(E) ∀E ⊂ K, E Borel,

where the positive constant c57 depends on rK . Inequality (2.36) follows and this completes the
proof of the Theorem.

Proof of Theorem 1.5. Consider the sequence {um}m≥0 of nonnegative functions defined
by u0 = f and

um+1 = WR
α,p[Pl,a,β(um)] + f in R

N ∀m ≥ 0.

By Theorem 2.5, there exists M > 0 depending on N,α, p, l, a, β, ε and R such that if (1.28)
holds, then {um}m≥0 is well defined and (2.21) and (2.22) are satisfied. It is easy to see that
{um} is nondecreasing. Hence, thanks to the dominated convergence theorem, we obtain that
u(x) = lim

m→∞
um(x) is a solution of equation (1.29) which satisfies (1.30).

Conversely, we obtain (1.31) directly from Theorem 2.7, Part 1, (i).

Proof of Theorem 1.6. The proof is similar to the previous one by using Theorem 2.6 and
Theorem 2.7, Part 1, (ii).
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3 Quasilinear Dirichlet problems

Let Ω be a bounded domain in R
N . If µ ∈ Mb(Ω), we denote by µ+ and µ− respectively its

positive and negative parts in the Jordan decomposition. We denote by M0(Ω) the space of
measures in Ω which are absolutely continuous with respect to the cΩ1,p-capacity defined on a
compact set K ⊂ Ω by

cΩ1,p(K) = inf

{∫

Ω

|∇ϕ|pdx : ϕ ≥ χK , ϕ ∈ C∞
c (Ω)

}

.

We also denote Ms(Ω) the space of measures in Ω with support on a set of zero cΩ1,p-capacity.
Classically, any µ ∈ Mb(Ω) can be written in a unique way under the form µ = µ0 + µs where
µ0 ∈ M0(Ω) ∩Mb(Ω) and µs ∈ Ms(Ω). It is well known that any µ0 ∈ M0(Ω) ∩Mb(Ω) can be
written under the form µ0 = f − div g where f ∈ L1(Ω) and g ∈ Lp′

(Ω,RN ).
For k > 0 and s ∈ R we set Tk(s) = max{min{s, k},−k}. If u is a measurable function

defined in Ω, finite a.e. and such that Tk(u) ∈ W 1,p
loc (Ω) for any k > 0, there exists a measurable

function v : Ω → R
N such that ∇Tk(u) = χ|u|≤kv a.e. in Ω and for all k > 0. We define the

gradient ∇u of u by v = ∇u. We recall the definition of a renormalized solution given in [10].

Definition 3.1 Let µ = µ0 + µs ∈ Mb(Ω). A measurable function u defined in Ω and finite
a.e. is called a renormalized solution of

−∆pu = µ in Ω,
u = 0 on ∂Ω,

(3.1)

if Tk(u) ∈ W 1,p
0 (Ω) for any k > 0, |∇u|p−1 ∈ Lr(Ω) for any 0 < r < N

N−1 , and u has the property

that for any k > 0 there exist λ+
k and λ−

k belonging to M
+
b ∩M0(Ω), respectively concentrated on

the sets u = k and u = −k, with the property that µ+
k ⇀ µ+

s , µ
−
k ⇀ λ−

s in the narrow topology
of measures and such that

∫

{|u|<k}

|∇u|p−2 ∇u.∇ϕdx =

∫

{|u|<k}

ϕdµ0 +

∫

Ω

ϕdλ+
k −

∫

Ω

ϕdλ−
k ,

for every ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Remark 3.2 We recall that if u is a renormalized solution to problem (3.1), then |∇u|p

(|u|+1)r ∈

L1(Ω) for all r > 1. From this it follows by Hölder’s inequality that u ∈ W 1,p1

0 (Ω) for all
1 ≤ p1 < p provided ea|u| ∈ L1(Ω) for some a > 0. Furthermore, u ≥ 0 a.e. in Ω if µ ∈ M

+
b (Ω).

The following general stability result has been proved in [10, Th 4.1].

Theorem 3.3 Let µ = µ0 + µ+
s − µ−

s , with µ0 = F − div g ∈ M0(Ω) and µ+
s , µ

−
s belonging to

M
+
s (Ω). Let µn = Fn − div gn + ρn − ηn with Fn ∈ L1(Ω), gn ∈ (Lp′

(Ω))N and ρn, ηn belonging
to M

+
b (Ω). Assume that {Fn} converges to F weakly in L1(Ω), {gn} converges to g strongly in

(Lp′

(Ω))N and (div gn) is bounded in Mb(Ω); assume also that {ρn} converges to µ+
s and {ηn}

to µ−
s in the narrow topology. If {un} is a sequence of renormalized solutions of (3.1) with data

µn, then, up to a subsequence, it converges a.e. in Ω to a renormalized solution u of problem
(3.1). Furthermore, Tk(un) converges to Tk(u) in W 1,p

0 (Ω) for any k > 0.
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We also recall the following estimate [20, Th 2.1].

Theorem 3.4 Let Ω be a bounded domain of R
N . Then there exists a constant K1 > 0,

depending on p and N such that if µ ∈ M
+
b (Ω) and u is a nonnegative renormalized solution of

problem (3.1) with data µ, there holds

1

K1
W

d(x,∂Ω)
3

1,p [µ](x) ≤ u(x) ≤ K1W
2 diam (Ω)
1,p [µ](x) ∀x ∈ Ω, (3.2)

where the positive constant K1 only depends on N, p.

Proof of Theorem 1.1. Let {um}m∈N be a sequence of nonnegative renormalized solutions
of the following problems

−∆pu0 = µ in Ω,
u0 = 0 on ∂Ω,

and, for m ∈ N,
−∆pum+1 = Pl,a,β(um) + µ in Ω,

um+1 = 0 on ∂Ω.

Clearly, we can assume that {um} is nondecreasing, see [21]. By Theorem 3.4 we have

χΩu0 ≤ K1W
R
1,p[µ],

χΩum+1 ≤ K1W
R
1,p[Pl,a,β(um) + µ] ∀m ∈ N,

where R = 2 diam (Ω). Thus, by Theorem 2.5 with f ≡ 0, there exists M > 0 depending on
N, p, l, a, β,K1 and R such that Pl,a,β(4cpK1W

R
1,p[ω]) ∈ L1(Ω) and

um(x) ≤ 2cpK1W
R
1,p[ω](x) ∀x ∈ Ω,m ∈ N, (3.3)

provided that

||M
(p−1)(β−1)

β

p,R [µ]||L∞(RN ) ≤ M,

where ω = M ||M
(p−1)(β−1)

β

p,R [1]||−1
L∞(RN )

+ µ and cp = 1 ∨ 4
2−p
p−1 . This implies that {um} is well

defined and nondecreasing. Thus {um} converges a.e in Ω to some function u which satisfies
(1.17) in Ω. Furthermore, we deduce from (3.3) and the monotone convergence theorem that
Pl,a,β(um) → Pl,a,β(u) in L1(Ω). Finally, by Theorem 3.3 we obtain that u is a renormalized
solution of (1.16).
Conversely, assume that (1.16) admits a nonnegative renormalized solution u. By Theorem 3.4
there holds

u(x) ≥
1

K1
W

d(x,∂Ω)
3

1,p [Pl,a,β(u) + µ](x) for all x ∈ Ω.

Hence, we achieve (1.18) from Theorem 2.7, Part 2.

Applications. We consider the case p = 2, β = 1. Then l = 2 and

Pl,a,β(r) = ear − 1− ar.
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If Ω is a bounded domain in R
N , there exists M > 0 such that if µ is a positive Radon measure

in Ω which satisfies

µ(Bt(x)) ≤ MtN−2 ∀t > 0 and almost all x ∈ Ω,

there exists a positive solution u to the following problem

−∆u = eau − 1− au+ µ in Ω,
u = 0 on ∂Ω.

Furthermore

u(x) ≤ K(N)

∫ 2 diamΩ

0

ω(Bt(x))

tN−1
dt = K(N)

∫ 2 diam (Ω)

0

µ(Bt(x))

tN−1
dt+ b ∀x ∈ Ω.

where b = 2K(N)M ||M2,2diam (Ω)[1]||
−1
L∞(RN )

|B1|(diamΩ)2. In the case N = 2 this result has

already been proved by Richard and Véron [22, Prop 2.4].

4 p-superharmonic functions and quasilinear equations in

R
N

We recall some definitions and properties of p-superharmonic functions.

Definition 4.1 A function u is said to be p-harmonic in R
N if u ∈ W 1,p

loc (R
N ) ∩ C(RN ) and

−∆pu = 0 in D′(RN ). A function u is called a p-supersolution in R
N if u ∈ W 1,p

loc (R
N ) and

−∆pu ≥ 0 in D′(RN ).

Definition 4.2 A lower semicontinuous (l.s.c) function u : RN → (−∞,∞] is called p-super-
harmonic if u is not identically infinite and if, for all open D ⊂⊂ R

N and all v ∈ C(D),
p-harmonic in D, v ≤ u on ∂D implies v ≤ u in D.

Let u be a p-superharmonic in R
N . It is well known that u∧k ∈ W 1,p

loc (R
N ) is a p-supersolution

for all k > 0 and u < ∞ a.e in R
N , thus, u has a gradient (see the previous section). We also

have |∇u|p−1 ∈ Lq
loc(R

N ), |∇u|p

(|u|+1)r ∈ L1
loc(R

N ) and u ∈ Ls
loc(R

N ) for 1 ≤ q < N
N−1 and r > 1,

1 ≤ s < N(p−1)
N−p (see [14, Theorem 7.46]). In particular, if ea|u| ∈ L1

loc(R
N ) for some a > 0, then

u ∈ W 1,p1

loc (RN ) for all 1 ≤ p1 < p by Hölder’s inequality. Thus for any 0 ≤ ϕ ∈ C1
c (Ω), by the

dominated convergence theorem,

〈−∆pu, ϕ〉 =

∫

RN

|∇u|p−2∇u∇ϕdx = lim
k→∞

∫

RN

|∇(u ∧ k)|p−2∇(u ∧ k)∇ϕ ≥ 0.

Hence, by the Riesz Representation Theorem we conclude that there is a nonnegative Radon
measure denoted by µ[u], called Riesz measure, such that −∆pu = µ[u] in D′(RN ).

The following weak convergence result for Riesz measures proved in [27] will be used to prove
the existence of p-superharmonic solutions to quasilinear equations.
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Theorem 4.3 Suppose that {un} is a sequence of nonnegative p-superharmonic functions in
R

N that converges a.e to a p-superharmonic function u. Then the sequence of measures {µ[un]}
converges to µ[u] in the weak sense of measures.

The next theorem is proved in [20]

Theorem 4.4 Let µ be a measure in M
+(RN ). Suppose that W1,p[µ] < ∞ a.e. Then there

exists a nonnegative p-superharmonic function u in R
N such that −∆pu = µ in D′(RN ),

infRN u = 0 and
1

K1
W1,p[µ](x) ≤ u(x) ≤ K1W1,p[µ](x), (4.1)

for all x in R
N , where the constant K1 is as in Theorem 3.4. Furthermore any p-superharmonic

function u in R
N , such that infRN u = 0 satisfies (4.1) with µ = −∆pu.

Proof of Theorem 1.2. Let {um}m∈N be a sequence of p-superharmonic solutions of the
following problems

−∆pu0 = µ in D′(RN ),
infRN u0 = 0,

and, for m ∈ N,
−∆pum+1 = Pl,a,β(um) + µ in D′(RN ),
infRN um+1 = 0.

Clearly, we can assume that {um} is nondecreasing. By Theorem 4.4 we have

u0 ≤ K1W1,p[µ],

um+1 ≤ K1W1,p[Pl,a,β(um) + µ] ∀m ∈ N.

Thus, by Theorem 2.6 with f ≡ 0, there exists M > 0 depending on N, p, l, a, β,K1 and R such
that Pl,a,β(4cpK1W1,p[ω]) ∈ L1(RN ) and

um ≤ 2cpK1W1,p[ω] ∀m ∈ N, (4.2)

provided that

||M
(p−1)(β−1)

β
p [µ]||L∞(RN ) ≤ M,

where ω = M ||M
(p−1)(β−1)

β
p [χBR

]||−1
L∞(RN )

χBR
+ µ. This implies that {um} is well defined and

nondecreasing. Thus, {um} converges a.e in R
N to some p-superharmonic function u which

satisfies (1.20) in R
N . Furthermore, we deduce from (4.2) and the monotone convergence the-

orem that Pl,a,β(um) → Pl,a,β(u) in L1(RN ). Finally, by Theorem 4.3 we conclude that u is a
p-superharmonic solution of (1.19).
Conversely, assume that (1.19) admits a nonnegative renormalized solution u. By Theorem 4.4
there holds

u(x) ≥
1

K1
W1,p[Pl,a,β(u) + µ](x) for all x ∈ R

N .

Hence, we obtain (1.21) from Theorem 2.7, Part 1, (ii).
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5 Hessian equations

In this section Ω ⊂ R
N is either a bounded domain with a C2 boundary or the whole R

N . For
k = 1, ..., N and u ∈ C2(Ω) the k-hessian operator Fk is defined by

Fk[u] = Sk(λ(D
2u)),

where λ(D2u) = λ = (λ1, λ2, ..., λN ) denotes the eigenvalues of the Hessian matrix of second
partial derivative D2u and Sk is the k-th elementary symmetric polynomial that is

Sk(λ) =
∑

1≤i1<...<ik≤N

λi1 ...λik .

We can see that
Fk[u] =

[

D2u
]

k
,

where for a matrix A = (aij), [A]k denotes the sum of the k-th principal minors. We assume
that ∂Ω is uniformly (k-1)-convex, that is

Sk−1(κ) ≥ c0 > 0 on ∂Ω,

for some positive constant c0, where κ = (κ1, κ2, ..., κn−1) denote the principal curvatures of ∂Ω
with respect to its inner normal.

Definition 5.1 An upper-semicontinuous function u : Ω → [−∞,∞) is k-convex (k-subharmonic)

if, for every open set Ω′ ⊂ Ω
′
⊂ Ω and for every function v ∈ C2(Ω′)∩C(Ω′) satisfying Fk[v] ≤ 0

in Ω′, the following implication is true

u ≤ v on ∂Ω′ =⇒ u ≤ v in Ω′.

We denote by Φk(Ω) the class of all k-subharmonic functions in Ω which are not identically
equal to −∞.

The following weak convergence result for k-Hessian operators proved in [25] is fundamental in
our study.

Theorem 5.2 Let Ω be either a bounded uniformly (k-1)-convex in R
N or the whole R

N . For
each u ∈ Φk(Ω), there exist a nonnegative Radon measure µk[u] in Ω such that

1 µk[u] = Fk[u] for u ∈ C2(Ω).

2 If {un} is a sequence of k-convex functions which converges a.e to u, then µk[un] ⇀ µk[u] in
the weak sense of measures.

As in the case of quasilinear equations with measure data, precise estimates of solutions of
k-Hessian equations with measures data are expressed in terms of Wolff potentials. The next
results are proved in [25, 18, 20].

Theorem 5.3 Let Ω ⊂ R
N be a bounded C2, uniformly (k-1)-convex domain. Let ϕ be a

nonnegative continuous function on ∂Ω and µ be a nonnegative Radon measure. Suppose that
µ can be decomposed under the form

µ = µ1 + f
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where µ1 is a measure with compact support in Ω and f ∈ Lq(Ω) for some q > N
2k if k ≤ N

2 ,

or p = 1 if k > N
2 . Then there exists a nonnegative function u in Ω such that −u ∈ Φk(Ω),

continuous near ∂Ω and u is a solution of the problem

Fk[−u] = µ in Ω,
u = ϕ on ∂Ω.

Furthermore, any nonnegative function u such that −u ∈ Φk(Ω) which is continuous near ∂Ω
and is a solution of above equation, satisfies

1

K2
W

d(x,∂Ω)
8

2k
k+1 ,k+1

[µ] ≤ u(x) ≤ K2

(

W2diamΩ
2k

k+1 ,k+1
[µ](x) + max

∂Ω
ϕ

)

, (5.1)

where K2 is a positive constant independent of x, u and Ω.

Theorem 5.4 Let µ be a measure in M
+(RN ) and 2k < N . Suppose that W 2k

k+1 ,k+1[µ] < ∞

a.e. Then there exists u, −u ∈ Φk(RN ) such that infRN u = 0 and Fk[−u] = µ in R
N and

1

K2
W 2k

k+1 ,k+1[µ](x) ≤ u(x) ≤ K2W 2k
k+1 ,k+1[µ](x), (5.2)

for all x in R
N , where the constant K2 is the one of the previous Theorem. Furthermore, if

u is a nonnegative function such that infRN u = 0 and −u ∈ Φk(RN ), then (5.2) holds with
µ = Fk[−u].

Proof of Theorem 1.3. We defined a sequence of nonnegative functions um, continuous near
∂Ω and such that −um ∈ Φk(Ω), by the following iterative scheme

Fk[−u0] = µ in Ω,
u0 = ϕ on ∂Ω,

(5.3)

and, for m ≥ 0,
Fk[−um+1] = Pl,a,β(um) + µ in Ω,

um+1 = ϕ on ∂Ω.
(5.4)

Clearly, we can assume that {um} is nondecreasing, see [21]. By Theorem 5.3 we have

χΩu0 ≤ K2W
R
2k

k+1 ,k+1
[µ] + b0,

χΩum+1 ≤ K2W
R
2k

k+1 ,k+1
[Pl,a,β(um) + µ] + b0,

(5.5)

where b0 = K2 max∂Ω ϕ and R = 2 diam (Ω).
Then, by Theorem 2.5 with f = b0 and ε = a, there exists M1 > 0 depending on N, k, l, a, β,K2

and R such that Pl,a,β

(

4K2W
R
2k

k+1 ,k+1
[ω1] + 2g + b0

)

∈ L1(Ω) and

um(x) ≤ 2K2W
R
2k

k+1 ,k+1
[ω1](x) + g + b0 ∀x ∈ Ω, ∀m ≥ 0, (5.6)

provided that

||M
k(β−1)

β

2k,R [µ]||L∞(RN ) ≤ M1 and ||M
k(β−1)

β

2k,R [Pl,2a,β(b0)]||L∞(RN ) ≤ M1,
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where ω1 = M1||M
(p−1)(β−1)

β

2k [1]||−1
L∞(RN )

+ µ, ω2 = M1||M
(p−1)(β−1)

β

2k [1]||−1
L∞(RN )

+ Pl,2a,β(b0) and

g = 2K2W
R
2k

k+1 ,k+1
[ω2].

Since ω2 is constant, g has the same property and actually g = K2(|B1|ω2)
1
kR2. On the other

hand, one can find constantsM2 depending onN, k, l, a, β,R andM1 such that if max∂Ω ϕ ≤ M2,

then ||M
k(β−1)

β

2k,R [Pl,2a,β(b0)]||L∞(RN ) ≤ M1.

Hence, we deduce from (5.6) that Pl,a,β

(

2K2W
R
2k

k+1 ,k+1
[µ] + b

)

∈ L1(Ω) and

um(x) ≤ 2K2W
R
2k

k+1 ,k+1
[µ](x) + b ∀x ∈ Ω, ∀m ≥ 0, (5.7)

for some constant b (= 2g+ b0) depending on N, k, l, a, β,R and M1. Note that because we can
write

ω = Pl,a,β(um) + µ = (µ1 + χΩδ
Pl,a,β(um)) + ((1 − χΩδ

)Pl,a,β(um) + f) ,

where Ωδ = {x ∈ Ω : d(x, ∂Ω) > δ} and δ > 0 is small enough and since um is continuous near
∂Ω, then ω satisfies the assumptions of the data in Theorem 5.3. Therefore the sequence {um}
is well defined and nondecreasing. Thus, {um} converges a.e in Ω to some function u for which
(1.23) is satisfied in Ω. Furthermore, we deduce from (5.7) and the monotone convergence
theorem that Pl,a,β(um) → Pl,a,β(u) in L1(Ω). Finally, by Theorem 5.2, we obtain that u
satisfies (1.22) and (1.23).
Conversely, assume that (1.22) admits nonnegative solution u, continuous near ∂Ω, such that
−u ∈ Φk(Ω) and Pl,a,β(u) ∈ L1(Ω). Then by Theorem 5.3 we have

u(x) ≥
1

K2
W

d(x,∂Ω)
8

2k
k+1 ,k+1

[Pl,a,β(u) + µ](x) for all x ∈ Ω.

Using the part 2 of Theorem 2.7, we conclude that (1.24) holds.

Proof of Theorem 1.4. We define a sequence of nonnegative functions um with −um ∈
Φk(RN ), by the following iterative scheme

Fk[−u0] = µ in R
N

infRN u0 = 0,
(5.8)

and, for m ≥ 0,
Fk[−um+1] = Pl,a,β(um) + µ in R

N

infRN um+1 = 0.
(5.9)

Clearly, we can assume that {um} is nondecreasing. By Theorem 5.4, we have

u0 ≤ K2W 2k
k+1 ,k+1[µ],

um+1 ≤ K2W 2k
k+1 ,k+1[Pl,a,β(um) + µ].

(5.10)

Thus, by Theorem 2.6 with f ≡ 0, there exists M > 0 depending on N, k, l, a, β and R such

that Pl,a,β

(

4K2W 2k
k+1 ,k+1[ω]

)

∈ L1(RN ),

um ≤ 2K2W 2k
k+1 ,k+1[ω] ∀m ≥ 0, (5.11)
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provided that ||M
k(β−1)

β

2k [µ]||L∞(RN ) ≤ M, where ω = M ||M
k(β−1)

β

2k [χBR
]||−1

L∞(RN )
χBR

+ µ.

Therefore the sequence {um} is well defined and nondecreasing. By arguing as in the proof of
theorem 1.3 we obtain that u satisfies (1.25) and (1.26).
Conversely, assume that (1.25) admits a nonnegative solution u and −u ∈ Φk(RN ) such that
Pl,a,β(u) ∈ L1

loc(R
N ), then by Theorem 5.4 we have

u ≥
1

K2
W 2k

k+1 ,k+1[Pl,a,β(u) + µ].

Using the part 1, (ii) of Theorem 2.7, we conclude that (1.27) holds.
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