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Abstract

We prove existence results concerning equations of the type —A,u = P(u) + p for p > 1
and Fi[—u] = P(u) + p with 1 <k < ¥ in a bounded domain €, where y is a positive Radon
measure and P(u) ~ e’ with a > 0 and 8 > 1. Sufficient conditions for existence are ex-
pressed in terms of the fractional maximal potential of u. Two-sided estimates on the solutions
are obtained in terms of some precise Wolff potentials of p. Necessary conditions are obtained
in terms of Orlicz capacities. We also establish existence results for a general Wolff potential
equation under the form u = Wip [P(u)] + f.

2010 Mathematics Subject Classification. 31C15, 32 F10, 35J92, 35R06, 46E30.

Key words: quasilinear elliptic equations, Hessian equations, Wolff potential, maximal functions, Borel measures,

Orlicz capacities.

*E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
YE-mail address: Laurent.Veron@lmpt.univ-tours.fr

20

23

24



1 Introduction

Let Q C RY be either a bounded domain or the whole RV, p > 1 and k € {1,2,..., N}. We
denote by

Apu = div (|vu|”‘2 Vu)

the p-Laplace operator and by

Frlu] = > Ajr Az -+ Aji

1<j1<j2<...<jr <N

the k-Hessian operator where A1, ..., Ay are the eigenvalues of the Hessian matrix D?u. Let o
be a positive Radon measure in 2; our aim is to study the existence of positive renormalized
solutions to the following boundary value problems if ) is bounded,

—Apu = Pu)+p in Q,

u=20 on 0, (1.1)
" [~ = P
Fy|—u]l =P(u) + p in Q,
U= on 0, (1.2)

where P is an exponential function. If Q@ = RY, we consider the same equations, but the
boundary conditions are replaced by infgy v = 0. When P(r) = r? with ¢ > p — 1, Phuc and
Verbitsky published a seminal article [20] on the solvability of the corresponding problem (1.1).
They obtained necessary and sufficient conditions involving Bessel capacities or Wolff potentials.
For example, assuming that {2 is bounded, they proved that if u has compact support in €2 it is
equivalent to solve (1.1) with P(r) = r4, or to have

wE)<cC, _»_(E) for all compact set E C €2, (1.3)

q+1—-p

where c is a suitable positive constant and C, A Bessel capacity, or to have
'q+1-—p

/B (W2E[up(2)]]" de < Cu(B)  for all ball B s.t. BN suppu # 0, (1.4)

where R = diam(2). Other conditions are expressed in terms of Riesz potentials and maximal
fractional potentials. Their construction is based upon sharp estimates of solutions of the non-
homogeneous problem
—-Ayu=w in Q,
u=20 on 012, (1.5)

for positive measures w. We refer to [4, 5, 6, 7, 9, 13, 23] for the previous studies of these and
other related results. Concerning the k-Hessian operator in a bounded (k —1)-convex domain 2,
they proved that if 4 has compact support and ||p|[ 1@y is small enough, the corresponding
problem (1.2) with P(r) = r? with ¢ > k admits a positive solution if and only if

u(E) < Cop, 2 (E) for all compact set F C , (1.6)



or equivalently

/B [W%ﬁkﬂ[ug(x)] e < Cu(B) for all ball B s.t. BN suppy # 0. (1.7)
The results concerning the linear case p = 2 and k = 1, can be found in [2, 3, 29]. The main
tools in their proofs are derived from recent advances in potential theory for nonlinear elliptic
equations obtained by Kilpelainen and Maly [15, 16], Trudinger and Wang [25, 26, 27], and
Labutin [18] thanks to whom the authors first provide global pointwise estimates for solutions
of the homogeneous Dirichlet problems in terms of Wolff potentials of suitable order.

Fors>1,0<a< %, n>0and 0 < T < oo, we recall that the T'-truncated Wolff potential
of a positive Radon measure y is defined in RY by

T B %1
W) = [ (482) 7 (19)

the T-truncated Riesz potential of a positive Radon measure p by

T
121 (x) = / B (2) (1.9)
and the T'-truncated n-fractional mazimal potential of p by
M7 [u)(2) = sup { FEE 0 <t < T, (1.10)

where h,(t) = (—Int)™"x(0,2-11(t) + (In2)""x[2-1 00y (t). If n = 0, then h, = 1 and we denote
by M, r[u] the corresponding T'-truncated fractional mazimal potential of fr. We also denote by
W slu] (vesp In[p], Mqlu] ) the oo-truncated Wolff potential (resp Riesz Potential, fractional
mazximal potential) of . When the measures are only defined in an open subset Q C RV, they
are naturally extended by 0 in €. For [ € N*, we define the [-truncated exponential function

-1

Hl(r):eTerj (1.11)

ﬁa

§=0
and for a > 0 and 8 > 1, we set
Piap(r) = Hi(ar?). (1.12)
We put
00 _Bq_
Yt ifp#2
Qp(s) =14 a=la?~1g! (1.13)

Qy(r) = max{rs — Q,(s) : s > 0} is the complementary function to @),, and define the corre-

sponding Bessel and Riesz capacities respectively by

capa,.q;(E) = inf{ Qy(f)dz : Gy * f > xe, f = 0,Q5(f) € Ll(RN)} ; (1.14)

RN
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and

capr, s (E) = inf{ Q1(f)da: I+ f > xer f = 0,Q3(F) € Ll(M)} , (1.15)

RN
where G,(z) = F~! ((1+ |.|2)’§) (x) is the Bessel kernel of order p and I,(z) = (N —
p)HalmV,

The expressions a A b and a V b stand for min{a, b} and max{a, b} respectively. Our main
results are the following theorems.

Theorem 1.1 Let 1 <p< N, a>0,l €N and 8 > 1 such that I3 >p —1. Let Q C RN be a
bounded domain. If p is a nonnegative Radon measure in S, there exists M > 0 depending on
N,p,l,a,8 and diam (Q) (the diameter of Q1) such that if

eoi)F-1)
||Mp,2 diam (£2) [.U]”Lao(RN) <M,

(p=1)(B—1)

—_ . 2-p 2 diam (Q
and w = M||Mp,2diim(ﬂ)[1]||L°1°(]RN) + p with ¢y =1V A49=1, then P, (2cpK1W17p ( )[w])
is integrable in Q and the following Dirichlet problem
—Apu= P gpu)+p in §,
u=0 on 0f2, (1.16)
admits a nonnegative renormalized solution u which satisfies
u(e) < 26, KiWT 9" PDlw)(z) Vo e Q. (1.17)

The role of K1 = K1(N,p) will be made explicit in Theorem 3.5.
Conversely, if (1.16) admits a nonnegative renormalized solution u and Py 4 g(u) is integrable

in ), then for any compact set K C ), there exists a positive constant C depending on N, p,l,a, 3
and dist (K, 0Q) such that

/ P p(u)dr + p(E) < Ceapg,,q:(E)  for all Borel sets E C K. (1.18)
B

Furthermore, u € VVOMO1 (Q) for all1 <p; <p.
When © = RY, we have a similar result provided p has compact suppport.

Theorem 1.2 Let1<p<N,a>o,ZeNandﬁz1suchthatm>%jp}> and R > 0. If

 is a nonnegative Radon measure in RY with supp () C Br(0) there exists M > 0 depending
on N,p,l,a,8 and R such that if

(p-1(B-1)
IMp 7 [l poe ry < M,
(p=1)(8-1)
and w = M||M, * [XBR(O)]”ZOlO(]RN)XBR(O) + 1, then P o5 (2¢, K1 W1 p[w]) is integrable in
RN and the following problem
— Agu=Pragu) +pin D/RY),

infgry u =0, (1.19)



admits a p-superharmonic solution u which satisfies
u(r) < 2¢, Ky Wi plw](z) Vo € RY, (1.20)

(cp and Ky as in Theorem 1.1).
Conversely, if (1.19) has a solution u and P, 4 5(u) is locally integrable in RN, then there
exists a positive constant C' depending on N,p,l,a, 8 such that

/ P ap(u)dr + p(E) < Ceapr, @ (E) VE C RN, E Borel. (1.21)
E

Furthermore, u € VVll’p1 (RN) for all 1 < py < p.

oc

Concerning the k-Hessian operator we recall some notions notions introduced by Trudinger
and Wang [25, 26, 27], and we follow their notations. For k = 1,...,N and u € C?(Q) the
k-Hessian operator Fy is defined by

Fi[u] = Sk(A(D*u)),

where A\(D?u) = A\ = (A1, A2, ..., \y) denotes the eigenvalues of the Hessian matrix of second
partial derivatives D?u and Sy is the k-th elementary symmetric polynomial that is

Se(\) = > Aiy i -

1<i1 <...<ix <N

It is straightforward that
Filu] = [DQULC’

where in general [A], denotes the sum of the k-th principal minors of a matrix A = (a;;). In
order that there exists a smooth k-admissible function which vanishes on 0f2, the boundary 0S2
must satisfy a uniformly (k-1)-convex condition, that is

Sk—1(k) > ¢o > 0 on 09,

for some positive constant cg, where k = (k1, K2, ..., Kkn—1) denote the principal curvatures of 92
with respect to its inner normal. We also denote by ®*(Q) the class of upper-semicontinuous
functions Q — [— 00, 00) which are k-convex, or subharmonic in the Perron sense (see Definition
5.1). In this paper we prove the following theorem (in which expression E[q] is the largest integer
less or equal to ¢q)

Theorem 1.3 Let k € {1,2,...,E[N/2]} such that 2k < N, 1 € N*, 8 > 1 such that I8 > k
and a > 0. Let Q be a bounded uniformly (k-1)-convexr domain in RN . Let ¢ be a nonnegative
continuous function on Q) and p = uy + f be a nonnegative Radon measure where uy has
compact support in Q and f € L1(Q) for some q > % Let K2 = Ko(N, k) be the constant Ko
which appears in Theorem 5.3. Then, there exist positive constants b, My and My > 0 depending
on N, k,l,a,B and diam (Q) such that, if maxgn ¢ < My and

KB-1)
ML, 5 i @l Loy < My,




then Py 43 (2K2W2 diam (2) (1] + b) 1s integrable in Q0 and the following Dirichlet problem

o k1
Fl—u] = Pas(w) +p  in O,
U= on 0%, (1.22)
admits a nonnegative solution u, continuous near 0S), with —u € ®*(Q) which satisfies
u(z) < 2K2W2§i_2“?fl [W](z) +b  Vz e (1.23)
k+1°

Conversely, if (1.22) admits a nonnegative solution w, continuous near 0L, such that —u €
®F(Q) and P4 p(u) is integrable in Q, then for any compact set K C (Q, there exists a positive
constant C' depending on N, k,l,a,8 and dist(K,00) such that there holds

/ Ppap(u)dz + p(E) < Ceapa,,;,, (E) VE C K, E Borel, (1.24)
E

where Qr11(s) is defined by (1.13) with p = k + 1, Q. 1is its complementary function and
CapGs,,Q;, , (E) is defined accordingly by (1.14).

The following extension holds when = RV,

Theorem 1.4 Let k € {1,2,...,E[N/2]} such that 2k < N, | € N*, B > 1 such that I3 > &

and a > 0, R > 0. If u is a nonnegative Radon measure in RY with supp (1) C Br(0) there
exists M > 0 depending on N, k,l,a,8 and R such that if

E(B—1)

M, " [l e rvy < M.

(p=1)(B-1)
and w = M||M,, * [XBR(O)]HZOlO(]RN)XBR(O) + u, then P qp (2K2Wk27f17k_+1[W]) is integrable

in RN (K, as in Theorem 1.3) and the following Dirichlet problem

Fy[~u] = Pias(u) +p in RY,

infgy u =0, (1.25)
admits a nonnegative solution u with —u € ®F(RN) which satisfies
u(r) < 2KoW 2 g [w](z) Vo€ RV, (1.26)

Conversely, if (1.25) admits a nonnegative solution u with —u € ®*(RN) and P4 5(u)
locally integrable in RN, then there exists a positive constant C' depending on N, k,1,a,3 and R
such that there holds

/ Prap(u)de + p(E) < Ceapr,, @z, (E) VE C RY | E Borel. (1.27)
B

where Capr,,,Q;.,, (E) is defined accordingly by (1.15) with p =k + 1.



The four previous theorems are connected to the following results which deals with a class
of nonlinear Wolff integral equations.

Theorem 1.5 Leta>0,p>1,a>0,c >0, R>0,l € N* and 8 > 1 such that I8 > p—1 and
0 <ap < N. Let f be a nonnegative measurable in RN with the property that uy = P a4c 5(f)
is locally integrable in RN and u € MT(RY). There exists M > 0 depending on N,,p,l,a, 3, ¢
and R such that if

(P*l)ﬂ(ﬂfl) (P*l)ﬂ(ﬁfl)
IM,, 7" [Wlle@yy <M and M., 5" [mlllre@y) <M,

then there exists a nonnegative function u such that Py o g(u) is locally integrable in RN which
satisfies

u=WZ [Pasu)+pl+f in RY, (1.28)
and
w S Fim 26, WE fun] + 2, WE ws] + £, PLas (F) € Li(RY), (1.20)
(p=1)(B—=1) (p=1)(B—1)
where wy = M||Map,RB [1]||Z°1°(RN) + p and wy = M||Map,RB [1]||Z°1°(RN) + p1.

Conversely, if (1.28) admits a nonnegative solution w and Py 4 g(u) is locally integrable in
RN, then there exists a positive constant C depending on N, o, p,l,a,3 and R such that there
holds

/ P, o p(u)dx +/ Prates(f)de + p(E) < Ceapg,,,,q:(E) VE C RN, E Borel.  (1.30)
E E

When R = oo in the above theorem, we have a similar result provided f and u have compact
support in RV,

Theorem 1.6 Leta>0,p>1,a>0,e6>0, R>0,l € N* and f > 1 such that 0 < ap < N
and I > J\][V(I_’—;;). There exists M > 0 depending on N,a,p,l,a,B,c and R such that if f is a
nonnegative measurable function in RN with support in Br(0) such that that p, = Piates(f)
is locally integrable in RN and p is a positive measure in R with support in Br(0) which verify

(P*l)ﬂ(ﬂfl) (P*l)ﬂ(ﬁfl)
|[Mayp W@y <M and  [[Map (1]l oo mrvy < M,

then there exists a nonnegative function u such that P, , g(u) is integrable in RN which satisfies
u=WaplPap()+pl+f in RY, (1.31)

and
u < Fi=20,Wq plwi] + 26, W plwa] + f,  Pras(F) € L'(RY), (1.32)
(pfl)ﬂ(ﬂfl) . (P*l)ﬁ(ﬂfl) .
wherewy = M||Map X BRI Lo vy X Br(0)+1 andwy = M|[Mayp XBrO)| L @y )XBr©0)+
M1
Conversely, if (1.31) admits a nonnegative solution u such that P, o g(u) is integrable in RN,
then there exists a positive constant C depending on N, «a,p,l,a, 8 such that there holds

/ P, o p(u)dx +/ Pras(f)dr + p(E) < Ceapy,,.qs(E) VE C RN, E Borel. (1.33)
B B



As an application of the Wolff integral equation we can notice that a = 1, equation (1.31) is
equivalent to
—Ap(u—f) = Prapu) in RY.

When a = ;—fl and p = k + 1, it is equivalent to

Fr(—u+ f) =P qp(u) in RV,
If p = 2 equation (1.31) becomes linear. If we set v = 2«, then

Woalid@) = [ (B x5

([ )

_ / dp(y)
Ry [z —y[N=Y

=1,*p
where I, is the Riesz kernel of order . Thus (1.31) is equivalent to

(=A)*(u—f) = Prap(u) in RV,

2 Estimates on potentials and Wolff integral equations

We denote by B,(a) the ball of center a and radius r > 0, B, = B,-(0) and by xg the charac-
teristic function of a set E. The next estimates are crucial in the sequel.

Theorem 2.1 1. There exists a positive constant ¢y, depending only on N,a,p such that for
all p € MERY) and ¢ >p—1, 0 < R < oo we have

a7 [ @)™ <

(WE (@) do < () [ (1 (@)™ d
RN .

(2.1)
2. Let R > 0. There exists a positive constant ca, depending only on N, a,p, R such that for all
p € MH(RY) and g > p— 1 we have
(WaiplW)(@)" da < (e20)" / (Gaplp] (1)) 77 da,
(2.2)

201 [ (Goplila) ™ do <

RN

where Gaplp] := Gap * 1t denotes the Bessel potential of order ap of p.

8. There exists a positive constant cz depending only on N, «, R such that for all i € MT(RY)
and q > 1 we have

ng/RN (Galuu)(x))" dv < /]R (@) de < / (Colpl@) de.  (23)

RN



Proof. Note that WOI}’/Q o] = IZ[u]. We can find proof of (2.3) in [8, Step 3, Theorem 2.3].
By [8, Step 2, Theorem 2.3], there is ¢4 > 0 such that

/}RN (Wg,p[u](ac))qdac > cZ/ (MaP’R[,u](x))P%ldac Vg >0,0<R<ooand pec M (RY).

RN
(2.4)
We recall that May r[1] = MY, g[u] by (1.10). Next we show that for all ¢ > 0, 0 < R < oo
and pu € M (RY) there holds

/ (Mo rli](2)) 7 1dz > (e5q) / (W [u](2)"d, (2.5)
RN

]RN
for some positive constant cs depending on N, «,p,q. Indeed, we denote p,, by xp, u for n €
N*. By [17, Theorem 1.2] or [8, Proposition 2.2], there exist constants cg = cg(NV,a,p) > 0,
a=ala,p) > 0and ey = (N, ,p) such that foralln e N* t > 0,0 < R < oo and 0 < € < &y,
there holds
1
{WE i > 3}| < coexp (=a=™!) [{WE in > t}] + [{ (Maprn) 71 > et}

Multiplying by ¢t?~! and integrating over (0, 00), we obtain

/0 qt?! ’{Wﬁpun > 3t}’ dt < cgexp (7(1571) /0 qt?! ’{Wﬁpun > t}‘ dt

+/ gt?t H(Map,fcun)p%l > Et}‘dt,
0
which implies

€9 (379 — cgexp (—ae ! B )(2) de < ap nﬁx.
(37— coexp (o) [ (WE @) de < [ Moy )77

We see that sup &7 (3_‘1 — cg €xXp (—ae_l)) > (c7q)~1? for some constant ¢; which does not

0<e<eo
depend on g. Therefore (2.5) follows by Fatou’s lemma. Hence, it is easy to obtain (2.1) from
(2.4) and (2.5). At end, we obtain (2.2) from (2.1) and (2.3). |

The next result is proved in [8].
Theorem 2.2 Let « > 0, p > 1,0 < n <p—-1,0< ap < N and L > 0. Set =
%(1’{(—;__%) re aplog(2). Then there exists C(L) > 0, depending on N, «, p, n and L such
that for any R € (0,00, u € MT(RN), any a € RY and 0 < r < L, there holds

p—1
1 WE [ o) (@) 77

Bor (@)l S0 "0 | Weplezwla) dr < C(L), (2:6)
~(a a o -
2 Bar(a) ||M2p,R[MBT(a)]||Loc(é7T(a))

where (g, (a) = XB, (a)b- Furthermore, if n =0, C is independent of L.



Theorem 2.3 Let a >0, p > 1 with0 < ap < N, B >1 and R > 0. Assume p € M (RY)

satisfies
(p—1)(B—1)

||Mozp,RB (1]l oo mvy < 1, (2.7)

(p=1)(B—1)
B

and set w = ||[M [1]||£°1°(]RN) + p. Then there exist positive constants C, dy and c

ap,R
independent on pu such that exp (50 (Wﬁp [w])ﬁ) is locally integrable in RY,

(W, [exp (00(WE, 1)) <c (2.8)

Lo (RN)

and

Wﬁp {exp (50 (nyp [w])ﬁ)} < cwgﬁp[w] in RY. (2.9)

Proof. Let ¢ be as in Theorem 2.2. From (2.7), we have

(P*l)ﬂ(ﬂfl)
||Map,R [w]||L°°(RN) < 2.

Let 2 € RN, Since w(By(y)) < 2N "*Ph @1 (t), for all 7 € (0, R) and y € RY we have
5

W LW = Wi,k [ () T

21 Rv2~!
- 1 _ *1 dt -1 dt
Wikl +277 [ (T T R [0

) T
< Wi, [w] () + es(—In(r A271)) 5 + cs

Thus,
(WE, ] )" <37 (Wi, ] () + o In M%) T (2.10)

Let 6 € (0, 1], since exp (2F2) < exp (a) + exp (b) for all a,b € R, we get from (2.10)

exp (5(Wg,p [w] (y))ﬂ) + c1oexp (9011 I (M%))

exp (5(W;p [w] (y))") +eno (ra2mt) 0 (2.11)

exp (953—5 (WE ] (y))ﬂ)

IN

IN

For r > 0,0 <t <r, y € B;(z) there holds B;(y) C Ba,(z). Thus, W, [w] = Wy, [wp, ()] in
B, (z). Then, using (2.6) in Theorem 2.2 with L = 2R we get

[ en (Wi k) ) = [ e (W, o)) < .
Br(z) Br(z)

10



Therefore, taking 6 = 1 A 522, we deduce from (2.11)

1
p—1 dT

Wg,p {exp (953_6 (Wg,p [W])’Y)} (r) < /OR (0127“0‘17 + c13 (7’ A 2_1)766117’041)) .

R _ap o dr
/ (c12T°‘p + c13 (r A 271) 2 ro‘p) e
0

r

IN

< cua.

Hence, we get (2.8) with §y = (1 A 222 ) 6377; we also get (2.9) since W [w] > c15 for some

2c11
positive constant ci5 > 0. [ |

We recall that H; and P, 4 g have been defined in (1.11) and (1.12).

Theorem 2.4 Leta >0, p> 1,1 € N* and B > 1 such that 0 < ap < N, I8 > ]\][V(f—;;) and
R > 0. Assume that p € MT(RY) has support in Br and verifies

@*lgﬁ*U
[[Map (]l Loe@mny <1, (2.12)

(p-1D(B-1)
and set w = ||[Mqp * [XBR]”ZOlC(]RN)XBR + p. Then there exist C = C(N,a,p,l,5,R) >0

and 01 = 61(N,a,p, 1, 8, R) > 0 such that H; (51 (Waﬁp[w])ﬁ) is integrable in RN and

W, [Hl (51 (Wayp[w])ﬁ)} (z) < CWo,w](z) ¥z RV, (2.13)

Proof. We have from (2.12)

(p=1)(#=1)
|[Map [wW]l] Lo (mN) < 2. (2.14)
Let 61 > 0 and = € RY fixed. We split the Wolff potential W, ,[w] into lower and upper parts
defined by
o0 T
‘ B w(B,(x))\?* dr
La,p[w](z) */t (W P
and )
t R
W(B, () \ 7T dr
W = e .
ol = [ (L) e

Using the convexity we have
H, (51 (Wayp[w])ﬁ) < H, (mﬁ (L;p[w])ﬁ) +H (mﬁ (Wgyp[w])ﬁ) .

Thus,
Wap {Hl (51 (Wa,p[w])ﬂ)} (CU) < ci6 /O+OO (%)pll %—l—cls /O+OO (%)pll %,

11



where dw; = H, (512ﬁ (Ltam[w])ﬁ) dz and dw? = H, (512ﬁ (Wg,p[w])ﬁ) dz. Inequality (2.13)
will follows from the two inequalities below,
< (Wh(Bi(w) | 7 dt
w z Pt
[ () F < W) (215)
and
w2(By(x)) < c1sw(By(z)). (2.16)
Step 1: Proof of (2.15). Since B,(y) C Ba,(z) for y € By(x) and r > t, there holds
0/ w(Bay(z)) = dr N-ap
Uoldn s [ (25T o L)

pN—ap

.
It follows
ol ue)) < B Ot (s1030 (L30) ).
Thus, )
/O+OO (%) " % < CQO/OOO Ay(w)dt, (2.17)
where

B\ 71 1
Ay(z) = <t“le (51c19 (LY2(@)) )) -
Since H;(s) < s'exp(s) for all s > 0,

en (177 (L310) " esp (1010 (BA31010) ) )

= et (LRI@) T e (5 (Li{;[w](:w)ﬁ) L/ plw)()

At (ZC)

IN
~ | —

Now we estimate LZ/ > [w]-
Case 1: t € (0,1). From (2.14) we deduce

/2 /2
1/2 v ds | [ (w(Br)\7 d
< on [t [ (SE0) TS
t/2 S 1/2 \$ ap S
< ca(~In(t/2))7

which implies
A -1 T exp (6 1 LY?
t(x) Cost?=1 7 (= 1In(t/2)) 770 exp (d1c26 (= In(t/2))) L/ [w] (z)

ap 1B—p+1
Cortr 1T (= In(t/2)) 70 1LY ] (x).

IN

IN
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We take §; < =2 (ﬂ — ) and obtain

— 2c26 \ p—1
Ai(z) < 028Lta/7]29[w](x) vt € (0,1).

Case 2: t > 1. We have

/2 “(w(Br)\?Tds = _N-op
La/qp[w](‘r) S/ (SNap) s = cg9t P71,

t/2
thus
o _(B—p+1)(N—ap) —a
Ax) < esotr T 't (p—1)% eXP(51031t_N”71p)LZ/;[W](50)
< ept LY W] (2),

—1 p—1 -
Therefore, Ai(z) < e33(t V 1)_1_VLZ¢<%[M](x) for all ¢ > 0. Therefore, from (2.17)

/om (W) T /OOO@V 1)~ L w] ().

where v = pl (M N) > 0.

t

Using Fubini Theorem we get

[T < ol [ ()7

IN

which follows (2.15).
Step 2: Proof of (2.16). For t > 0, r <t and y € B(x) we have B,(y) C Bat(z), thus

A = [

[ (02 (W, ) )

By Theorem 2.2 there exists csg > 0 such that for 0 < §; < ¢36, 0 < t < 2R, z € RY,
/ ( )exp (512ﬁ (Waﬁp[wBZt(z)](y))ﬁ) dy < csrt™N.
B4t xr

We take 0 < 01 < c36.
Case 1: x € Br(0). If 0 < t < 2R, from (2.19) we get

w; (Bi(z)) < eart™ < ezsw(Ba()).

13
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If t > 2R, since for any |y| > 2R,

e w(B ﬁ dt e _1_N—-ap _N—ap
Waslol) = [ (SR ¢y [* S e < calyl
lyl/2 Iyl /2

and thanks to (2.19) we have

B < [ o (32 (Waplono])”) dy + [ (52 (Wayllw))) dy

B‘ZR(O)C

_B(N—ap)
< cenRY +/ H, (042|y| T )dy
BQR(O)C

IB(N —ap) IB(N—ap)
T

C43 + 043/ ly|”" P dy = cag +caa RN T om
BQR(O)C

IN

< cu5|Ba(z) N Br

< cypw(Byt(x)).

From this we also have H; (51 (Wap [w])ﬁ) € LY(RM).
Case 2: © € Br(0)°. If |z| > R+t then w?(B;(z)) = 0. Next we consider the case R < |z| <

R+t If 0 <t < 2R, we have By((R — %)‘—i‘) C Byi(x) N Bp; thus from (2.19) we get

w? (Bi(z)) < carty = cug

b <<R - 9 % )‘ < cas | Bae(2) N Br| < cagw(Bar(2)).

If t > 2R, as in Case 1 we also obtain w?(Bi(z)) < csow(Ba(z)). Hence, we get (2.16).
Therefore, the result follows with §; = == (ﬂ — 1) A C36. [

2c26 \ p—1
In the next result we obtain estimate on a sequence of solutions of Wolff integral inequations

obtained by induction.

Theorem 2.5 Assume that the assumptions on «, p, a, I, B, €, f, p1 and p of Theorem 1.5
are fulfilled and R, K are positive real numbers. Suppose that {unm,} is a sequence of nonnegative
measurable functions in RN that satisfies

U1 < KWE [Prag(um) +pl+f YmeN,

(2.20)
ug < KWE ] + f.
Then there exists M > 0 depending on N,a,p,l,a,B,e, K and R such that if
(p—1)(B—1) (p—l)éﬂ—l)
IM,, 2" [llle@yy <M and M, 5" [m]lle=@y) < M,
there holds
Prag (4 KW wi] +4c, KWE [wo] + f) € Lj,.(RY), (2.21)
and
U < 20, KW [w1] + 2, KWE [wo] + f Vm €N, (2.22)

14



where

(p=1)(B—1)

wr= MMy, 5 Wl ) + (2.23)
(p—l)ﬂ(ﬂ—l) 1

wo= MMy, 7" (Wl gy +im (2.24)

2-p
and ¢, = 1V 4r-1.

1/8\ !
Proof. The proof is based upon Theorems 2.3 and 2.4. Set ¢, = 2 (1 — (aie) > and

a=a (4ca75cpK)ﬁ. If 0 < M <1 we define w; and wy by (2.23) and (2.24) respectively. We now

assume
(p=1)(B=1) (p=1)(B—1)

WL @yy <M and [[M,, 5" [w]llpe@y) < M.

M
We prove first that

ap,R

Wi [Hl (a (Wgﬂp[wl,g])")} <WE [wr ). (2.25)

By Theorem 2.3, there exist ¢,y > 0 independent on g such that exp ((50 (Wﬁp [M_lwl,g])’ﬁ)

is locally integrable in R and
Wg,p {exp (50 (Wg,p [Mflwlﬁg])ﬂ)} < CWéip[MileQ] in RY.

Since 07! H;(s) < H;(§7's) for all s > 0 and 0 < 0 < 1, it follows

IN
!

Wk M3 (5OM—%(%—%) (Wgﬁp[wlﬁg])ﬁ)} . [Hl (5OM—p—51 (Wﬁp[wl,g])ﬁ)}
WE, [exp (30 (W2, (M 1)) )]

CM_Piilwgyp [QJLQ] .

IN

IN

Hence,

which is equivalent to
1 1)) ! -1
W < () EE T b (1)

o ) .
Thus, we choose M = 1A (50671)(%(17*17%)) A (5 -1) ; we obtain (2.25) and the
fact that H; (6 (Wip[wl,g])ﬂ) € L} (RN).

loc

15



Now, we prove (2.22) by induction. Clearly, (2.22) holds with m = 0. Next we assume that
(2.22) holds with m = n, and we claim that

Unt1 < 20, KWE [wi] +2¢, KW [wa] + f. (2.26)
In fact, since (2.22) holds with m = n and P, 4 g is convex, we have

Prap(un) < Prop (A KW ] + 46, KW [wo] + f)

A

1/8
Prap (4 ey KWE [01]) + Prco (4caccy KWE [ws]) + Prag ((1 +-) f)
= H(a(WE oi))”) + i (@ (WE lwa]) ") + Plases(D).

From this we derive (2.21). By the definition of u,+1 and the sub-additive property of ijp[.],
we obtain

wr < KWE[H (@(WE L)) + i (@ (WE o)) ) + Prases(F) +u] + f
< okWE, H (a(WEw])’)| + ok WE, [H (a(WE [w)")]
+ e KW [Prasves ()] + oKW (1] + f.
Hence follows (2.26) from (2.25). This completes the proof of the theorem. "

The next result is obtained by an easy adaptation of the proof Theorem 2.5.

Theorem 2.6 Assume that the assumptions on «, p, a, I, B, €, f, p1 and u of Theorem 1.6
are fulfilled and R, K are positive real numbers. Suppose that {um,} is a sequence of nonnegative
measurable functions in RN that satisfies

Umt1 < KWap[Prap(um)+p)+f YmeN,

(2.27)
uy < KW plu] + f.
Then there exists M > 0 depending on N,a,p,l,a,B,e, K and R such that if
(pfl)ﬂ(ﬂfl) (P*l)ﬁ(ﬂfl)
[[Mayp WllLe@yy <M and ||Mayp (]l oo mvy < M,
there holds
Piap (4cy KW plws] 4+ 4c, KW, plwa] + f ) € LYRY), (2.28)
and
U, < 2¢p KW plws] + 2¢p KWy plwa] + f Vm €N, (2.29)
where
(p=1)(p=1) .
w3 = M|[Map XBrll o @y XBr + 1t (2.30)
and
(pfl)éﬂfl) 1
Wy = M”Map [XBR]”LOC(]RN)XBR + p. (231>
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Let P € C(R™T) be a decreasing positive function. The («, P)-Orlicz-Bessel capacity of a
Borel set E C RY is defined by (see [1, Sect 2.6])

capg,, p(E) = inf{/ P(f):Ga*xf>xE, [>0,P(f) € Ll(RN)},
]RN

and the («, P)-Orlicz-Riesz capacity

capr, p(E) = inf{ P(f):Inxf>xg,f>0,P(f) € Ll(RN)} .

RN

Theorem 2.7 Leta >0, p>1,a>0,¢c>0,1 € N and 8 > 1 such that I3 > p—1 and
0<ap<N. Let p € MH(RN).

1. Let 0 < R < co. If u is a nonnegative Borel function in RN such that P, 5(u) is locally
integrable in RN and

u(xz) > cWﬁﬁP[Pm,ﬂ(u) + pl(x) vz e RY, (2.32)

then the following statements holds.
(i) If R < oo, there exists a positive constant Cy depending on N, «,p,l,a, 3, ¢ and R such that

/ P ap(u)dz + p(E) < Creapg,,,q; (E) VE Cc RY, E Borel. (2.33)
E
(ii) If R = oo, there exists a positive constant Co depending on N, «,p,l,a, B, c such that
/ Prap(u)dz + p(E) < Cacapy,,,q5(E) VE c RN, E Borel. (2.34)
E

2. Let Q be a bounded domain in RN, yu € M+ (Q) and 6 € (0,1). If u is a nonnegative Borel
function in Q such that Py 4 g(u) is locally integrable in Q@ and

u(z) > cWi‘?é””’aQ) [Pa,8(u) + u](z) VY € Q, (2.35)

then, for any compact set K C §, there exists a positive constant Cs depending on N, a, p,l,a, 5, ¢,
and dist(K,0Q) such that

/ Ppap(u)dz + p(E) < Cseapg,,,q:(E) VE C K, E Borel, (2.36)
E

where Qy, is the complementary function to Qp.

Proof. Set dw = P, , g(u)dz + du.
1. We have
Pag (CWS,p[w]) dr < dw in RY.

Let M, denote the centered Hardy-Littlewood maximal function which is defined for any f €
L} (RN dw) by

loc

1
Mo f(w) = sup w(Bt<x>>/Bt<x>'f jde-

17



If E ¢ RY is a Borel set, we have
e R 5
(MoxXE)? Pras (W ) do < [ (Muxp)? Tdo.
RN RN

Since M,, is bounded on L*(RY, dw), s > 1, we deduce from Fefferman’s result [11] that

B R
/ (Moxp) P P (W [u]) di < syl ),
R

for some constant c5; only depends on N and . Since M,xg < 1, we derive
(Moxp(@)7 Pras (WE [0](@) > Pras (c(Moxa()?s WE,[u](x))
> Prap (cWE wg](2)),
where wg = xpw. Thus
/R Prag (W lwg])de < csiw(E)  VE C RN, E Borel. (2.37)

From (2.1), (2.2) and (2.3) we get
/ P s (chyp[wE](x)) dx > Qp (c52Gaplwr](x))dz if R < oo,
RN RN

and
[ P (WE (@) do> [ @y (esaloplorl(@) do it R = .

where @, is defined by (1.13) and 50 = (czﬁ)’la%lc}”l if p£2, c5 = cgla%c if p=2 (the
constant ¢y defined in (2.2), depends on R, therefore cso = ¢s52(rk)) and c53 = (016)_1a%1 cP~t

if p#£2 cs3 = afcif p = 2. Thus, from (2.37) we obtain that for all Borel set £ C RY there
holds

/RN Qp (C52Gap[wE]($)) dr < C51W(E) ifR< o0,
and
/]RN Qp (esslap[wErl(z)) de < csiw(E) if p = oco.

We recall that Q5 (s) = sup;so{st—Q,(t)} satisfies the sub-additivity As-condition (see Chapter
2 in [19]).
(i) We assume R < co. For every f >0, Q5(f) € L'(€2) such that Gap * f > x&, we have

W(E) S / Gap * fdwE = (2051)_1 / (C52Gap [wE]) (2051052 f)
RN
< (2es1)” / Qyp (¢52Gap [wr]) dz + (2¢51) /RN (2e51055 f) dz
<

(B)+ o [ Q1) da

18



the last inequality following from the As-condition. Notice that cs4, as well as the next constant
¢s5, depends on rgx. Thus,

w(E) < 2c54 / Q5 (f) dz.
]RN
Then, we get
w(E) < esscapa,,.@;(E)  VE C RY, E Borel.

Which implies (2.33).
(ii) We assume R = oo. For every f > 0, Qy(f) € L'(Q) such that I, * f > xg, since
Iop *wg = Iop|wE]|, as above we have

w(E)

IN

RN

< ) e [ Q)

Then, it follows (2.34).
2. Let K C §Q be compact. Set rx = dist(K,00) and Qg = {z € Q: d(z,K) < rx/2}. We
have

P g (cWiﬁlZ(f’am[w]) dr < dw in Q.

Thus, for any Borel set E C K
0 s (W) 5 [ o)
¢ Q

As above we get
/Q Prag (cwg‘f;@am [wE](:E)) dz < es;w(E) VE C K, E Borel. (2.38)

Note that if € Q and d(z,9Q) < ri /8, then By(x) C Q\Qk for all t € (0,dd(z,0)); indeed,
for all y € B(z)

d(y,00) < d(z,00) + |z —y| < (14 8)d(z,00) < iTK,

thus

1
d(y, K) > d(K,00) — d(y, 09) > %r;{ > 5K

which implies y ¢ Q. We deduce that

WD) (2) > WE K [wpl (@) Vo € O

p

and s
Wi wel(z) =0  VreQe

Hence we obtain from (2.38),

Sy
/ Pras (cwgyp’{ [wE](x)) dz < csiw(E)  VE C K, E Borel. (2.39)
RN
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As above we also obtain
w(E) < esreapa,,,q; (E) VE C K, E Borel,

where the positive constant cs7 depends on rg. Inequality (2.36) follows and this completes the
proof of the Theorem. [

Proof of Theorem 1.5. Consider the sequence {um }m>0 of nonnegative functions defined
by ug = f and
Umt1 = W p[Pras(un)] + f in RY vm > 0.

By Theorem 2.5, {tm, }m>0 is well defined and (2.21) and (2.22) are satisfied. It is easy to see
that {u,,} is nondecreasing. Hence, thanks to the dominated convergence theorem, we obtain
that w(z) = lim w,(x) is a solution of equation (1.28) which satisfies (1.29).

m—r oo

Conversely, we obtain (1.33) directly from Theorem 2.7. |

Proof of Theorem 1.6. The proof is similar to the previous one by using Theorem 2.7, Part
1, (ii). ]

3 Quasilinear Dirichlet problems

Let Q be a bounded domain in RY. If u € 9t,(Q), we denote by u™ and p~ respectively its
positive and negative parts in the Jordan decomposition. We denote by 9y(£2) the space of
measures in {2 which are absolutely continuous with respect to the c‘ll’p—capacity defined on a
compact set K C Q2 by

2, (K) = inf { [ Vb o2 e cz?°<ﬂ>} .

We also denote M,(Q2) the space of measures in 2 with support on a set of zero cgp—capacity.

Classically, any pu € M,(Q) can be written in a unique way under the form pu = pg + pus where
to € Mo(2) NM(Q) and py € M(Q). Tt is well known that any pg € Mo (Q) N M(2) can be
written under the form po = f — div g where f € L'(Q) and g € L? ().

For k > 0 and s € R we set Ti(s) = max{min{s, k}, —k}. If v is a measurable function
defined in Q, finite a.e. and such that Ty (u) € V[/llof (Q) for any k > 0, there exists a measurable
function v : @ — R¥Y such that VT}(u) = Xlu|<k? a.e. in Q and for all £ > 0. We define the
gradient Vu of u by v = Vu. We recall the definition of a renormalized solution given in [10].

Definition 3.1 Let p = po + ps € Mp(Q). A measurable function u defined in Q and finite
a.e. 1s called a renormalized solution of

—Apu =4 in (Q,

u=0 on 012, (3.1)

if Ti(u) € Wy (Q) for any k > 0, [VulP~! € L™(Q) for any 0 < r < -, and u has the property

that for any k > 0 there exist )\Z' and A belonging to 93?;’ NN (), respectively concentrated on
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the sets u = k and uw = —k, with the property that uz — pt, p — A in the narrow topology

S
of measures and such that

/ |VulP~? Vu.chdz:/ gaduo+/ gad)\;f/ wd\,
{lul<k} {lul<k} Q Q

Jor every o € WyP(Q) N L=(Q).

Remark 3.2 We recall that if u is a renormalized solution to problem (3.1), then % €
LY(Q) for all r > 1. From this it follows by Holder’s inequality that u € Wol’p1 (Q) for all
1 < p1 < p provided el € LY(Q) for some a > 0. Furthermore, u > 0 a.e. in Q if p € M (Q).

The following general stability result has been proved in [10, Th 4.1, Sec 5.1].

Theorem 3.3 If {u,} is a bounded sequence in IMy(2) which converges in the weak sense of
measures to some p € Mp(Q), and {u,} a sequence of renormalized solutions of problem

—Apty, = fin in £,

Up =0 on 09, (3.2)

then, up to a subsequence, {un} converges a.e. to a solution of equation —Ayu = p in D'(Q),
and such that ¢ [o, |VTk(u)[Pdx < M for every k > 0.

The next result is a sharp extension of the stability Theorem 3.3.

Theorem 3.4 Let p = po + pt — pg, with pp = F —divg € Mo(Q) and pt, pg belonging to
MH(Q). Let pin, = Fp, — div g, + pp — 0 with F, € LY(Q), gn € (LY (Q)N and p,, nn belonging
to M (Q). Assume that {F,} converges to F weakly in L*(2), {gn} converges to g strongly
in (L ()N and (div g,) is bounded in My(Q); assume also that {p,} converges to ut and
{nn} to pg in the narrow topology. If {un} is a sequence of renormalized solutions of (3.2),
then, up to a subsequence, it converges a.e. in S to a renormalized solution u of problem (3.1).
Furthermore Ty, (uy,) converges to Ty (u) in Wy P (Q) for any k > 0.

We also recall the following estimate [20, Th 2.1].

Theorem 3.5 Let Q be a bounded domain of RY. Then there exists a constant K1 > 0,
depending on p and N such that if u € DJYZF(Q) and u is a nonnegative renormalized solution of
problem (3.1) with data p, there holds

d(z,0Q)
1 dz,00)

Wi @) <ul) < KWL @) veeq, (33)

where the positive constant K1 only depends on N, p.

Proof of Theorem 1.1. Let {u;,}men be a sequence of nonnegative renormalized solutions
of the following problems
—Apug = p in Q,
up =10 on 09,
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and, for m € N,
*Apuerl = ]Dl,a,ﬁ(um) +p in Q,
U1 =0 on Of).

By Theorem 3.5 we have
Xauo < KyWE [u],
Xatmt1 < KiWT [P g(um) +p] Vm €N,

where R = 2diam (). Thus, by Theorem 2.5 with f = 0, there exists M > 0 depending on
N,p,l,a,3, K1 and R such that Pl7a7ﬂ(4cpK1Wf:'p[w]) € LY(Q) and

U (2) < 20,,K1W{‘:p[w] () VreQ,meN, (3.4)

provided that
(rp=1)(B-1)

1M, 5 7 [Wlllpee ey < M,

(=D (B-1) 2 p
where w = M||M,, 5, ” [1]||2010(RN) + p and ¢, = 1V 4»=1. This implies that {u,,} is well
defined; by Theorem 3.3 it contains a subsequence that we still denote by {u,,} which converges
a.e in Q to function w which satisfies (1.17) in 2. Furthermore, we deduce from (3.4) and the
dominated convergence theorem that P, 5(um) — P q,p(u) in L'(Q). Finally, by Theorem 3.4
we obtain that u is a renormalized solution of (1.16).
Conversely, assume that (1.16) admits a nonnegative renormalized solution w. By Theorem 3.5
there holds

1 d(x,00Q)
u(@) = =Wy, [Prap(e) + pl(z) forallz € Q.
1
Hence, we achieve (1.18) from Theorem 2.7. |

Applications. We consider the case p =2, = 1. Then [ =2 and
P op(r)=e"" —1—ar.

If Q is a bounded domain in RY, there exists M > 0 such that if x is a positive Radon measure
in  which satisfies

1(By(z)) < MtN 2 Vvt > 0 and almost all = € €,

there exists a positive solution u to the following problem

—Au=e™—1—au+p in Q,
u=0 on 0f.
Furthermore
2 diam Q 2 diam ()
B B
u(z) < K(N)/O %dt - K(N)/O %dﬂr b VreQ

(p-1)(8-1)
where b = 2K (N)M|[M,, , 40, (Q)[I]HZL(RN)(diamQ)Q. In the case N = 2 this result has

already been proved by Richard and Véron [22, Prop 2.4].
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4 p-superharmonic functions and quasilinear equations in
RN

We recall some definitions and properties of p-superharmonic functions.

Definition 4.1 A function u is said to be p-harmonic in RY if u € WEP(RN) 0 CO(RYN) and
—Apu =0 in D'(RN). A function u is called a p-supersolution in RN if u € VVllo’f(RN) and
—Ayu >0 in D'(RY).

Definition 4.2 A lower semicontinuous (l.s.c) function u: RN — (—oc0,00] is called p-super-
harmonic if u is not identically infinite and if, for all open D CC RN and all v € C(D),
p-harmonic in D, v < u on 0D implies v < u in D.

Let u be a p-superharmonic in RV . It is well known that u Ak € VVllof (RN) is a p-supersolution

for all k > 0 and u < oo a.e in R, thus, u has a gradient (see the previous section). We also

have |Vu[P~! € LT (RY), (lluv‘—jfllp)r € Li, (RY) and u € L§, (RN) for 1 < ¢ < &5 and 7 > 1,

1<s< % (see [14, Theorem 7.46)). In particular, if e?*l € L} (R™) for some a > 0, then

u € Wllo’f L(RY) for all 1 < p; < p by Hélder’s inequality. Thus by the dominated convergence
theorem,

(A, ) = / Va2 VuVpde = Jim [ [V ARV AR)Te > 0
]RN

—0 JRN

Hence, by the Riesz Representation Theorem we conclude that there is a nonnegative Radon
measure denoted by u[u], called Riesz measure, such that —A,u = plu] in D'(RY).

The following weak convergence result for Riesz measures proved in [28] will be used to prove
the existence of p-superharmonic solutions to quasilinear equations.

Theorem 4.3 Suppose that {u,} is a sequence of nonnegative p-superharmonic functions in
RY that converges a.e to a p-superharmonic function u. Then the sequence of measures {u[u,]}
converges to plu] in the weak sense of measures.

The next theorem is proved in [20]

Theorem 4.4 Let p1 be a measure in M (RY). Suppose that W1 plu] < oo a.e. Then there
exists a nonnegative p-superharmonic function u in RN such that —Apu = p in D'(RY),
infry u =0 and

1
o, Wiplul(@) < ul@) < KaWaplp)(x), (4.1)
for all z in RN, where the constant K1 is as in Theorem 3.5. Furthermore any p-superharmonic
function uw in RN, such that infgn u = 0 satisfies (4.1) with p = —A,u.

Proof of Theorem 1.2. Let {um}men be a sequence of p-superharmonic solutions of the
following problems

— Apug = p in D'(RY),

infpy ug = 0,
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and, for m € N,
= Aptmi1 = Pap(um) +p in D/(RN)v
inf]RN Um+1 = 0.

By Theorem 4.4 we have
o S KlWLP[M]v
Umt1 < K1Wi p[Pa (um) + 1] Vm e N

Thus, by Theorem 2.5 with f = 0, there exists M > 0 depending on N, p, [, a, 3, K1 and R such
that P, 5(4c, K1 W p[w]) € LY(RY) and

Um < 20, K1W1 plw] Vm € N, (4.2)

provided that
(p=1)(8-1)
1My [l ) < M,
(p=1)(B—1)

where w = M||M, * [XBR(O)]”ZDlO(]RN)XBR(O) + . This implies that {u,, } is well defined; by
[15, Theorem 1.17] it contains a subsequence that we still denote by {u,,} which converges a.e in
RY to a p-superharmonic function u which satisfies (1.20) in Q. Furthermore, we deduce from
(4.2) and the dominated convergence theorem that P, g(um) — Ppas(u) in L*(RY). Finally,
by Theorem 4.3 we conclude that u is a p-superharmonic solution of (1.19).

Conversely, assume that (1.19) admits a nonnegative renormalized solution w. By Theorem 4.4

there holds 1

K,
Hence, we obtain (1.21) from Theorem 2.7. |

u(r) > —Wi p[Pras(u) + pl(x) for all z € RY.

5 Hessian equations

In this section  C R¥ is either a bounded domain with a C? boundary or the whole RY. For
k=1,..,N and u € C%() the k-hessian operator F}, is defined by

Fyu] = Sp(A(D?w)),

where A\(D?u) = A\ = (A1, A2, ..., \y) denotes the eigenvalues of the Hessian matrix of second
partial derivative D?u and Sy, is the k-th elementary symmetric polynomial that is

Sk(\) = > Aiy o Niy -

1<i1 <. <, <N

We can see that
Filu] = [DQULC’

where for a matrix A = (a;;), [A]x denotes the sum of the k-th principal minors. We assume
that 0 is uniformly (k-1)-convex, that is

Sk—1(k) > co >0 on 09,
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for some positive constant cg, where k = (k1, K2, ..., Kn—1) denote the principal curvatures of 92
with respect to its inner normal.

Definition 5.1 An upper-semicontinuous function u : Q — [—00, 00) is k-convez (k-subharmonic)
if, for every open set Q' C QO cQand for every function v € C*(Q)YNC(Q) satisfying Fx[v] <0
i Q, the following implication is true

u<vond) = wu<v in Q.

We denote by ®*(Q) the class of all k-subharmonic functions in Q which are not identically
equal to —oo.

The following weak convergence result for k-Hessian operators proved in [26] is fundamental in
our study.

Theorem 5.2 Let Q be either a bounded uniformly (k-1)-convex in RN or the whole RN . For
each u € ®F(Q), there exist a nonnegative Radon measure uy[u] in Q such that

1 pxfu] = Fylu] for u € C%(9).

2 If {un} is a sequence of k-convex functions which converges a.e to u, then plu,] = pru] in
the weak sense of measures.

As in the case of quasilinear equations with measure data, precise estimates of solutions of
k-Hessian equations with measures data are expressed in terms of Wolff potentials. The next
results are proved in [26, 18, 20].

Theorem 5.3 Let @ C RY be a bounded C?, uniformly (k-1)-conver domain. Let ¢ be a
nonnegative continuous function on 02 and u be a nonnegative Radon measure. Suppose that
u can be decomposed under the form

p=p+f
where 1 is a measure with compact support in Q and f € LI(Q) for some q > % if k < %,
orp=1i4fk > % Then there exists a nonnegative function u in € such that —u € ®*(Q),

continuous near 02 and u is a solution of the problem

Fi[—u]

I in ),
%) on 0N.

Furthermore, any nonnegative function u such that —u € ®*(Q) which is continuous near O
and is a solution of above equation, satisfies

1 d(x,0Q)
8

Wl < ) < Ko (WS L) + ). (5.1)

k+1
where Ko is a positive constant independent of x,u and €.
Theorem 5.4 Let p be a measure in MT(RY) and 2k < N. Suppose that W%Jﬁl[u] < o0

a.e. Then there exists u, —u € ®¥(RY) such that infgy u =0 and Fy[-u] =pu in RY and

W e [1@) < u(e) € KaW e (@) (5.2)

K2 "1 k+1°
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for all z in RY, where the constant Ko is the one of the previous Theorem. Furthermore, if u
is a nonnegative function such that —u € ®*(RYN), then (5.2) holds with u = Fy[—u].

Proof of Theorem 1.3. We defined a sequence of nonnegative functions u,,, continuous near
0Q and such that —u,, € ®¥(Q), by the following iterative scheme

Fy[—uo) = in Q,
Uy = @ on 01, (5-3)
and, for m > 0,
Fk[*Uerl] = Pl,a,ﬁ(um) + in Q, (5 4)
Umt1 = @ on 0f. '
By Theorem 5.3 we have
XQUo S K2W1z27k k-‘,—l[ﬂ] + b07
e (5.5)
XQUm+1 < KQWﬁ7k+1[H,a,ﬂ(um) + ] + bo,
_ CESTEES VI
where by = Kymaxpq e and R = 2diam (2). We set w; = M||[M,, ” [1]||Lx(RN) + p,
(p=1)(B—1)
we = M||M,, * [1]“;30(11%”) + Piog.p(bo) and g = 4CPKW}:’2_+;C1J€+1[W2] + bp. Since wq is

constant, g has the same property and actually g = 2CpK(CNQJ2)%R2 + bg. Then, by Theorem
2.5 with f = by and € = a, there exists M; > 0 depending on N, k,l,a,3 and R such that

Pagp (4K2W1:2_fl,k+l[w1] + g) S Ll(Q) and

U (z) < 2K2W%1k+1[w1](z) +g Vo e Q,Vm >0, (5.6)

provided that

kg1 kg1
||M2k,R (1| Loemry < My and ||M2k,R [P12a,8(b0)]|| Lo rrvy < M.

It follows that one can find constants My depending on N, k,l,a,B8, R and M; such that if

k(1)
maxpn @ < Ma, then ||M2k,7~2 [Pr2a.,5(b0)]|| Lo vy < M. Hence, we deduce from (5.6) that
Pragp (QKQWRQ_k pa1 1]+ bg) € L) and
E+1°
U () < 2K, WH, o1 (@) + b2 Vo e Q,Vm >0, (5.7)
P

for some constant by (= g) depending on N, k, 1, a, 3, R and M;. Note that because we can write

W= Prap(um) + p = (1 + X095 Pas(um)) + (1= x05) Prap(tm) + ),

where Q5 = {z € Q : d(x,0Q) > 6} and § > 0 is small enough and since u,, is continuous
near 0}, then w satisfies the assumptions of the data in Theorem 5.3. Therefore the sequence
{um} is well defined. Since —u,y, is k-subharmonic and the sequence {uy,} is bounded in L'(Q),
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the sequence {uy,,} is also bounded in Wllocl(Q) (see e.g. [26]); we can find a subsequence, still
denoted by the index m, such that w,, converges a.e in € to a function w for which (1.23) is
satisfied in Q with the constant by = g. Furthermore, we deduce from (5.6) and the dominated
convergence theorem that P 4 g(um) — Pag(u) in LY(Q). Finally, by Theorem 5.2, we obtain
that u satisfies (1.22) and (1.23).

Conversely, assume that (1.22) admits nonnegative solution u, continuous near 952, such that
—u € ®*(Q) and P, 4 5(u) € L1(Q). Then by Theorem 5.3 we have

1 d(z,09)
u(zx) > Ewﬁ"f,wrl[ﬂvaﬁ(u) + p)(z) for all x € Q.
Using Theorem 2.7, we conclude that (1.24) holds. |

Proof of Theorem 1.4. We define a sequence of nonnegative functions u,,, continuous near
0Q and such that —u,, € ®¥(Q), by the following iterative scheme

Fy[—uo] = p in RY (5.8)
infgn ug = 0, -
and, for m > 0,
Fy[~tmi1] = Pras(um) + 1 in RY (5.9)

infgy U1 = 0.

By Theorem 5.4, we have

ug < Ko W 2k 44 [, 510
U1 < KoWoae 4o [Prap(um) + pl. '

Thus, by Theorem 2.5 with f = 0, there exists M > 0 depending on N, k,l,a, and R such
that P4 (QKQWP;_k k+1[w]) € LY(RY),
E+1°

Up < QKQW%JCHM vm >0, (5.11)

k(8-1) (r=1)(8-1)
provided that ||M2k% (]| Lo (mrvy < M, where w = M||M,, * [XBR]HZ;(RN)XBR + p.
Therefore the sequence {u,,} is well defined. By arguing as in the proof of theorem 1.3 we
obtain that u satisfies (1.25) and (1.26).
Conversely, assume that (1.25) admits anonnegative solution u and —u € ®*(RY) such that
P apg(u) € L} (RY), then by Theorem 5.4 we have

1
U > ?WZ_k7k+1[Plaa15(u) + M]'

2 k+1

Using Theorem 2.7, we conclude that (1.27) holds. ]
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