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Abstract

We prove existence results concerning equations of the type —A,u = P(u) + p for p > 1
and Fi[—u] = P(u) + p with 1 <k < ¥ in a bounded domain €, where y is a positive Radon
measure and P(u) ~ e’ with a > 0 and 8 > 1. Sufficient conditions for existence are ex-
pressed in terms of the fractional maximal potential of u. Two-sided estimates on the solutions
are obtained in terms of some precise Wolff potentials of p. Necessary conditions are obtained
in terms of Orlicz capacities. We also establish existence results for a general Wolff potential
equation under the form u = Wip [P(u)] + f.
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1 Introduction

Let Q C RY be either a bounded domain or the whole RV, p > 1 and k € {1,2,..., N}. We
denote by

Apu = div (|vu|”‘2 Vu)

the p-Laplace operator and by

Fie[u] = > Ajr Az Aji

1<j1<j2<...<jr <N

the k-Hessian operator where Ay, ..., Ay are the eigenvalues of the Hessian matrix D?u. Let p
be a positive Radon measure in {2; our aim is to study the existence of positive renormalized
solutions to the quasilinear equation

—Apu=Pu)+p in Q,
u=20 on 0, (1.1)
and the fully nonlinear equation
U= on 0, (1.2)

where P is an exponential function. When P(r) = r? with ¢ > p — 1, Phuc and Verbitsky
published a seminal article [20] on the solvability of the corresponding problem (1.1). They
obtained necessary and sufficient conditions involving Bessel capacities or Wolff potentials. For
example, assume that € is bounded, they proved that if p has compact support in Q it is
equivalent to solve (1.1) with P(r) = r? or to have

wE) <cC, _» (E) for all compact set E C Q, (1.3)

q+1—p

where c is a suitable positive constant and C, _a Bessel capacity, or to have
'q+1-—p

/B (W2E[up(2)]]"de < Cu(B)  for all ball B s.t. BN suppu # 0, (1.4)

where R = diam(€2). Other conditions are expressed in terms of Riesz potentials and maximal
fractional potentials. Their construction is based upon sharp estimates of solutions of the non-
homogeneous problem

Ay =w in Q,

u=20 on 0, (1.5)

for positive measures w. We refer to [4, 5, 6, 7, 9, 13, 23] for the previous studies of these and
other related results. Concerning k-Hessian operator in a bounded (k — 1)-convex domain £2,
they proved that if ;1 has compact support and ||¢|[ 7 @@y is small enough, the corresponding
problem (1.2) with P(r) = r? with ¢ > k admits a positive solution if and only if

w(E) < cCQk7ﬁ (E) for all compact set E C (, (1.6)



or equivalently

/B {Wzg it 18 (2)] e < Cu(B) for all ball B s.t. BN suppy # 0. (1.7)

k41

In the linear case p = 2 and k = 1, can be found in [2, 3, 29]. The main tools in their proofs
are derived from recent advances in potential theory for nonlinear elliptic equations obtained
by Kilpelainen and Maly [15, 16], Trudinger and Wang [25, 26, 27], and Labutin [18] thanks
to whom the authors first provide global pointwise estimates for solutions of the homogeneous
Dirichlet problems in terms of Wolffs potentials of suitable order.

Fors>1,0<a< %, n > 0and 0 < T < oo, we recall the expression of the T'-truncated
Wolff potential of a positive Radon measure p defined in RY by

T B\ 7T
WD) = [ (482) T 4, (1.8)

and T-truncated Riesz potential of a positive Radon measure p by

T
) = [ Rl (1.9)
and the T'-truncated n-fractional mazximal potential of p by

M7 p[u)(x) :sup{% :0<t§T}, (1.10)
where hy(t) = (—Int)™"x(0,2-1(t) + (In2)7"X[2-1 5y (t). If n =0, then h, =1 and we denote
by Mg, 7] the corresponding T-truncated fractional mazimal potential of . We also denote by
Wo.s[p] (resp In[p], Ma[p] ) the co-truncated Wolff potential ( resp Riesz Potential, fractional
mazimal potential) of u. When the measures are only defined in an open subset  C RY | they
are naturally extended by 0 in Q°¢. For [ € N*, we define the [-truncated exponential function

Hl(r)ze’“—Zi (1.11)

' )
Jj=0 J
and for a > 0 and 8 > 1, we set
Prap(r) = Hi(ar?). (1.12)
We put
2
> S if p#2,
Qp(s) =4 a=la? Tq! (1.13)
H(s") if p=2,

Qy(r) = max {rs — Qp(s) : s > 0} is the complementary function to @, and define

capa,.q;(E) = inf {W/ Q(f)de : Gy [ > X, [ >0,Q5(f) € L'RY) 3, (1.14)
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and

capr, g3 (E) = int / Q:(f)dw: I+ f > xo f > 0,Q3(f) € LNEN) b, (1.15)

N

where G,(z) = F~! ((1+ ||2)*%) (z) is the Bessel kernel of order p and I,(z) = (N —
p)HamV,

We denote a Ab and a Vb for min{a, b} and max{a, b} respectively. Our main results are the
following theorems

Theorem 1.1 Let 1 <p< N, a>0,l €N and 8> 1 such thatl3 >p—1. Let Q CRY be a
bounded domain. If p is a nonnegative Radon measure in S, there exists M > 0 depending on
N,p,l,a, B and diam Q which is the diameter of Q) such that if

e=1(p=1)
IIM,, 2giam o [H)llLe@yy < M

the following Dirichlet problem

—Apu= P gpu)+u in Q,
u=20 on 09, (1.16)
admits a nonnegative renormalized solution u which satisfies P 4 g (20pK1W%ifam @ [w]) € LYQ)
and

u(zr) < 20,,K1W%if“m9[w](ac) Vo € Q, (1.17)

@-nE-1 2-p :

where w = M||M,, 53:0m0 [1]||L°°(]RN) +u and ¢, =1V 4p=1. The role of K1 = K1 (N,p) will be
made explicit in Theorem 3.5. Conversely, if (1.16) admits a nonnegative renormalized solution
u and Pq5(u) € LY(Q), then for any compact set K C 2, there exists a positive constant C
depending on N,p,l,a, and dist (K,9Q) such that

/Plﬂ,g(u)dx + u(E) < Ceapa,,qs(E)  for all Borel sets E C K. (1.18)
E

Furthermore, u € Wol’p1 (Q) for all 1 < py < p.

Theorem 1.2 Let 1 <p < N, a >0, 1 € N and 8 > 1 such that 13 > TL=1 and R > 0. If

 is a nonnegative Radon measure in RN with supp () C Br(0) there exists M > 0 depending
on N,p,l,a,B and R such that if

(p71)ﬂ(571)
M, (]| Lo vy < M

the following problem
—Apu =P, 5u)+pin D'RY),

infgx u = 0, (1.19)



admits an p-superharmonic solution u which satisfies Pl q 5 (2¢, K1 W1 p[w]) € L*(RY) and

u(r) < 2¢, Ky W plw](z) Vo € RY, (1.20)

(p=1)(B-1) o

where w = M||[M,, * [XBR(O)]HZ;(]RN)XBR(O) + u and ¢, = 1V 4r=1. The role of K1 =
K1(N,p) will be made explicit in Theorem 3.5. Conversely, if (1.19) has a solution u and
Pap(u) € L}, (RN) then there exists a positive constant C' depending on N,p,l,a, 3 such that

loc

/Pl,a”g(u)dx + w(E) < Ceapr, @ (E) VE C RN, E Borel. (1.21)
B

Furthermore, u € W,2P* (RN) for all 1 < p; < p.

loc

Concerning the k-Hessian operator we recall some notions notions introduced by Trudinger and
Wang [25, 26, 27], and we follow their notations. For k = 1,..., N and u € C?(f2) the k-hessian
operator Fj is defined by

Filu] = Sp(\(D?u)),

where A\(D?u) = A\ = (A1, A2, ..., \y) denotes the eigenvalues of the Hessian matrix of second
partial derivatives D?u and S}, is the k-th elementary symmetric polynomial that is

Sp(\) = > Aiy i -

1<i1<...<ix <N

It is straightforward that
Fk[u] = [DQULC,

where in general [A], denotes the sum of the k-th principal minors of a matrix A = (a;;). In
order that there exists a smooth k-admissible function which vanishes on 0f2, the boundary 0S2
must satisfy a uniformly (k-1)-convex condition, that is

Sk—1(k) > ¢o >0 on 0N

for some positive constant c¢g, where k = (k1, K2, ..., kn—1) denote the principal curvatures of 99
with respect to its inner normal. We also denotes by ®*(Q2) the class of upper-semicontinuous
functions Q +— [— 00, 00) which are k-convex, or subharmonic in the Perron sense (see Definition
5.1). In this paper we prove the following theorem

Theorem 1.3 Letk € {1,2,..., N} such that 2k < N, 1 € N*, 8 > 1 such thatl§ > k and a > 0.
Let Q be a bounded uniformly (k-1)-convexr domain in RN . Let ¢ be a nonnegative continuous
function on O and p = p1 + f be a nonnegative Radon measure where 1 has compact support
in Q and f € LY(Q) for some q > év—k Let Ko = Ko(N, k) be the constant Ko which appears in
Theorem 5.3. Then, there exist b > 0 and My, Ms > 0 depending on N, k,l,a, and diam(Q)
such that if maxgg ¢ < Ms and

K(B-1)
| |M2k,gdiam(ﬂ) (1]l oo (mrvy < M.



the following Dirichlet problem

Fil-u] = Pap(u) + p in £,

U= on 011, (1.22)
admits a nonnegative solution u, continuous near 9S), with —u € ®(Q) which satisfies
Pros (2K2W2dgmgﬂ ] + b) e LN(Q) and
" 1okl
u(z) < 2K, W2Eam L (1] (x) + b Vo € Q. (1.23)

m,k—i—l

Conversely, if (1.22) admits a nonnegative solution u, continuous near 92 such that —u € ®*(Q)
and Py p(u) € LY (), then for any a compact set K C Q, there exists a positive constant C
depending on N, k,l,a,B and dist(K,00) such that there holds

/Pl,a,g(u)dx + w(E) < Ceapgy,,q;,, (E) VE C K, E Borel, (1.24)
E

where Qpy1(s) is defined by (1.13) with p = k + 1, Qi is its complementary function and
CGPGM,Q;H(E> is defined accordingly by (1.14).

Theorem 1.4 Let k € {1,2,..., N} such that 2k < N, 1 € N*, 8 > 1 such that 1§ > Nligk and
a>0, R>0. Let Ko = Ko(N, k) be the constant Ko which appears in Theorem 5.53. If p is
a nonnegative Radon measure in RN with supp (1) C Br(0) there exists M > 0 depending on

N,k l,a,B8 and R such that if

k(ﬂﬁ—l)
[[My, " [ulll e myy < M.

the following Dirichlet problem

Fy[~u] = Pras(u) +p in RY,

infgy u =0, (1.25)

admits a nonnegative solution u, —u € ®F(RN) which satisfies P up (2K2sz_f1,k+1[w]) €
LY(RYN) and
u(r) < 2K5W e g [w](z) Vo€ RV, (1.26)

(p—D)(B—1)
where w = M||M,, * [XBR(O)]HZolo(RN)XBR(O) + p. Conversely, if (1.25) admits a nonnega-

tive solution u, —u € ®F(RN) and P4 5(u) € L}, (RN), then there exists a positive constant C

loc

depending on N, k,l,a,8 and R such that there holds

/Pl@ﬁ(u)dx + u(E) < Ceapry, g, (E) VE C RN, E Borel, (1.27)
E

where capr,, ,q; ., (E) is defined accordingly by (1.15) with p =k + 1.
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The four previous theorems are connected to the following result which deals with a class of
nonlinear Wolff integral equations.

Theorem 1.5 Leta>0,p>1,a>0,e >0, Ry,R: > 0,1l € N* and 8 > 1 such that I3 > p—1
and0 < ap < N. Let f be a nonnegative measurable in RN such that exp((a+¢)f?) € L}, (RY).
We set dpy = P giep(f)dz. Let p € MM (RY).

1. There exists M > 0 depending on N,a,p,l,a,B,e and Ry such that if

== (@=1¢-1)
ML, R,y [l oo rry < M and  [[M,,,, 5} (][l poe rvy < M

then there exists a nonnegative function u, such that Py, 5(u) € L}, (RYN) which satisfies

u=WHIP.su)+pl+ f in RY, (1.28)
and
u < F =20, W [w1] + 2, WEL [wa] + f,  Prag (F) € L, (RY), (1.29)
(p—=1)(B—1) (p—=1)(B—1)

where wy = M||M,, 57 [1]||2010(RN) +p, w2 = MM, g [1]||Z°1°(IRN) + 1 oand ¢p =
2-p
1v4r-1.

Conversely, if (1.28) admits a nonnegative solution u and P, g(u) € L}, (RYN) then there exists

loc

a positive constant C depending on N, a,p,l,a, 5 and Ry such that there holds

/Plﬁaﬁg(u)dz + u(E) + m(E) < Ceapg,,,q;(E) YEC RY, E Borel. (1.30)
E
2. Assume that 15 > ]fv(’j—;;). There exists M > 0 depending on N,a,p,l,a,B,e and Rs such
that if supp (f),supp (1) C Bg,(0) and

ERNCEY (1))
[[Mayp WllLe@myy <M and |[Map (]l Loe mvy < M,

then there exists a nonnegative function u, such that P, g(u) € L'(RN) which satisfies
u=WaplPaps()+pl+f in RY, (1.31)

and
u < F:=20,Waplwi] + 26, Waplwa] + f,  Pragp (F) € L'RY), (1.32)
(p=1)(B—1) (p=1)(B—1)
where wy = M||Map s [XBRQ(O)]||Z;(RN)XBRQ(O)+,U: w2 = M||Map s [XBRQ(O)]||Zolc(RN)XBRQ(O)+
p1. Conversely, if (1.31) admits a nonnegative solution u and Py, 5(u) € L}, . (RY) then there

loc

ezists a positive constant C' depending on N, a,p,l,a, B such that there holds

/Pl,a,g(u)dx + /Pl,a,g(f)dx + u(E) < Ceapy,,q;(E) VEC RY, E Borel (1.33)
E E

Remark 1.6 If p =2 equation (1.81) is equivalent to
(=A)*(u—f)=Praglw)+p  inRY,
since W o[Pra.p(w) + 1] = Ina[Prap(u) + p1] = Ing * (Prap(u) + p).



2 Estimates on potentials and Wolff integral equations

We denote by B,(a) the ball of center a and radius r > 0 and B, = B,(0); xg the characteristic
function of E for Borel set E. The next estimates are crucial in the sequel.

Theorem 2.1 1. There exists a positive constant ¢y, depending only on N,a,p such that for
all p € MERY) and ¢ >p—1, 0 < R < oo we have

ey [ @) e < [ (WE @) de < (a0 [ (@) d.
(2.1)
2. Let R > 0. There exists a positive constant ca, depending only on N, a,p, R such that for
all p € MERY) and ¢ > p — 1 we have

(e2) 7 [ (Gl do <

(Wgﬁp[ﬂ](z))q dr < (CZQ)Q/ (Gap[pl(z)) =" d,
RN

RN
(2.2)
where Gaplu] := Gap * 1 denotes the Bessel potential of order ap of p.

3. There exists a positive constant c3 depending only on N,«, R such that for all p € M (RN)
and q > 1 we have

&' [ Galille)de < [

Proof. Note that WO?/Q’Q[M] = I[u]. We can find proof of (2.3) in [8, Step 3, Theorem 2.3].

By [8, Step 2, Theorem 2.3], there is ¢4 > 0 such that

(@) e <t [ (@alu@)dn (23)

N RN

[ (WE ) o> ¢t [ (Mo rlud@)7 de V>0, 0 < R < 00 and g & 00 (®Y).
RN RN
(2.4)
We recall that Moy, r[1] = My, glu] by (1.10). Next we show that
/ (Mo, rl)(2) 7T dz > (c5q) / (WE [u)(2))"dz Yg >0, 0< R <ocand pemH(RY),
RN RN
(2.5)
for some a positive constant ¢4. Indeed, we denote u, by xp,u for n € N*. By [17, Theorem
1.2] or [8, Proposition 2.2], there exist constants ¢ = cg(N,a,p) > 0, a = a(a,p) > 0 and
eo = (N, a, p) such that for alln € N*; ¢ > 0,0 < R < 0o and 0 < & < &g, there holds

{WE > 3t} < coexp (—ae™) [{WE pn > t}| + |{ (Map. )7 > et }].

Multiplying by ¢t¢~! and integrating over (0, cc), we obtain

/qlfq_1 ‘{Wgﬁp,un > St}‘ dt < cgexp (—as_l) /qtq_1 ‘{Wgﬁp,un > t}‘ dt
0 o
+ /qtq_l ‘{(]'v'[ozp,R,U/n)ﬁ > Ef}’ dﬁ,
0



which implies

1 (37— coexp (~a=7)) [ (W fuo)(@))"de < [ (Mo ) *Td
RN RN

We see that sup &4 (3"1 — cg exp (7%71)) > (c7q)™ 9 for some a constant ¢; which does not
0<e<eo

depend on q. Therefore, (2.5) follows by Fatou’s lemma. Hence, it is easy to obtain (2.1) from
(2.4) and (2.5). Then, we obtain (2.2) from (2.1) and (2.3). |

The next result is proved in [8].

Theorem 2.2 Let « > 0, p > 1,0 < n <p—-1,0< ap < N and L > 0. Set§ =
p—1
%(p_—l_"—) re aplog(2). Then there exists C(L) > 0, depending on N, «, p, n and L such

120—1)
that for any R € (0,00], u € M+ (RY), any a € RN and 0 < r < L, there holds
p—1
1 WE o](@)) P
_ / exp | & (Wa, [, @]l ))1 dx < C(L), (2.6)
Barla) M, s, (@)1=
B2, (a) ap,RIHB- D]l (B, (a))

where (g, (a) = XB, (a)b- Furthermore, if n =0, C is independent of L.

Theorem 2.3 Let a >0, p > 1 with0 < ap < N, B> 1 and R > 0. Assume p € M (RY)
satisfies

(pfl)ﬂ(ﬁfl)
Mo, 7" [lllpe@y) <1 (2.7)
(p=1)(B—1)
We set w = |[M,,, 5’ [1]||Z°1°(RN) + . Then there exist positive constants C' and &y independ-
g on i such that
B B

exp (60 (WE,[w]) ) € L, (RY) and Hme [eXp (50 (WF, [w]) )} HLDO(RN) <C. (2.8

and 5
wi, [exp (50 (WH, [w]) )} < cWH [w] inRY (2.9)

for some ¢ > 0 independing on p.

Proof. Let ¢ be as in Theorem 2.2. From (2.7), we have

(p71)ﬂ(571)
Mgy " [wll[zoe ey < 2.

Let € RY. Since w(By(y)) < 2tN"Ph 151 (1), for all r € (0, R) and y € RY we have
B

WE W) = Wi, W] (y)+/lz<%>"llﬂ

t
2! d Rv2~1 ;
—eztat _B8=1dt
< Wikl [ e TR [ cnyT g
rA2—1 501
< Wi, Wl (@) +es(=In(ra27)F +os.



Thus,
(WE ] ()" <35 (W7, [w] (1))” + coIn (M%) T o (2.10)

Let 6 € (0,1], since exp (“£2) < exp (a) + exp (b) for all a,b € R, we get from (2.10)

exp (5(W, (0] (1)) + croexp (9 n (%))
exp (5(W£¢,p [w] (y))ﬁ) + c10 (T A 271)_9011

For r > 0,0 <t <r,y € B.(x) we have Bi(y) C Ba,(z). Thus, W, [w] = W[ [wp, (] in
B, (z). Then, using (2.6) from Theorem 2.2 with L = 2R we get

[ e @Wo ) = [ en (W, bmw])) < aar®.

B, (x) B(x)

IN

exp (953—5 (WE[w] (y))ﬂ)

IN

(2.11)

So, take 6 = 1 A 522 we deduce from (2.11)

R
"y =1d
Wﬁp [eXp (9637[3 (Wf,p [w])v)} () < /(clgro‘p + c13 (r A 2’1) o “ro‘p) rar
0
R Ly
< / (012T°‘p + ci3(r A 271)_77“’”’) e
r
0
< cui4

Hence, we get (2.8) with dp = (1 A %) 6377 and we also get (2.9) since W [w] > ¢i5 for

some a positive constant ci5 > 0. ]
We recall that H; and P, 4 g have been defined in (1.11) and (1.12).

Theorem 2.4 Let o> 0, p > 1,1 € N* and B > 1 such that 0 < ap < N, 18 > {21 and

R > 0. Assume that p € 9T (RY) with supp u C Br(0) satisfies

(pfl)ﬂ(ﬁfl)
| Map [l Lo mry <1 (2.12)

(p=1)(B—1)
Set w = ||Map [XBR(O)]”ZOlO(]RN)XBR(O) + u. Then there exist C = C(N,«a,p,l,3,R) >0

and &1 = 01(N, o, p, 1, B, R) > 0 such that H, (61 (Wa,p[w])’g) € LYRYN) and
W, [Hl (51 (wa,p[w])ﬁ)} (z) < CWaplw](z) ¥ eRY, (2.13)

Proof. We have from (2.12)

(pfl)ﬂ(ﬁfl)
|Map (W]l Lo vy < 2. (2.14)

10



Let 6; > 0. Fixed z € RY. We split the Wolff potential W, ,[w] into lower and upper parts

defined by L []()_/Jroo(M)ﬁﬁ
a@‘d xTr) = \ rN—ap T,
and |
W [w](z) = /Ot (%)ﬁ %

Using the convexity property we have

H, (51 (Wayp[w])ﬁ) < H, (mﬁ (L;m[w])ﬁ) +H (mﬁ (ng[w])") .

Thus,
oo (B (x piildt T /WA (By(x P%ldt
Way [Hi (51 (W) ] (@) < 016/0 (%) ?ﬂw/o <%> &
1 B (Tt B 2 _ 8 t B
where dw; = H, ((512 (LL, ,[w]) ) dx and dw; = H, ((512 (W, [w]) ) dzx.
We will obtain (2.13) if we prove that
0 N (By(x)) \ 7T dt
/ (M) — < crrWaplw](), (2.15)
0 N —op t
and
Wi (Bi(x)) < c1sw(Ba()). (2.16)

To prove (2.15), we have B,(y) C Ba,(z) for y € By(z) and r > ¢, so

Lt ) < [ - () T L)

- rN—ap r
It follows 5
wi (Bu(x)) < [BL(0)|tV Hy <51019 (L2(@)) )
Thus,

[ (YT [ 1)

B\\ 7T
where A;(z) = (to‘le <51019 (Lff%[w](z)) )) 1. Since Hi(s) < s'exp(s) for all s > 0,

A(x) < en (tap (Lta/;[w](fﬂ))w exp (51c19 (L;ﬁ[w](x))ﬂ)) o %

IB—p+1
T

= coptr1 (Lta/i[w] (x)) exp (61022 (Lta/?g[w] (m))ﬁ) Lfl/f,[w](ac)

11



Now we estimate Lfl/ ?,[w].

Case 1: t € (0,1), from (2.14) we deduce

Hpe) = [ (SR A [ (B

1/2 ) - 1
< 023/ (*ln(s))_l"'ﬁéjL/ <%) ds
t/2 S 1/2 s ap s
< C24(—1n(t/2))%

Which implies
Costr T (= In(t/2)) S0 exp (81c26(— In(t/2))) L2 [w](x)

= coptrT ! (fln(t/Q))il&;ﬁ)l t—51026L3<]29[w](z)

Ai(z)

IN

— 226 \p—1

We take §; < = (ﬂ— ),Weget

Ai(z) < 028Lta/;[w](x) vt € (0,1).

Case 2: t > 1, we have

%/ (Br(0)\ 7T d
raw < [ (AR
, /2 gV —ap S
_ N—ap
= (o9t p—1
thus
ap _q - (WB=pt)(N—ap) _N—ap t/2
At(:c) < cgotr-1 ¢ (r—1)? exp (51031t Pl )La,p[w]('r)

< 032t_1_7L';/;[w] (x)

where v = pil (ZB(g%"m —N) > 0.

Therefore, Ai(z) < c33(t Vv 1)*1’7Lg/f,[w](z) for all ¢ > 0. Therefore, from (2.17)

“+oo 1 + [e’e]
wy (Be(x)) \ 77" dt —1- 2
/0 (T—w TS [ @V)TLL @

Using Fubini Theorem we get

/O+<>° (M)pll dt a4 ~ t(sv 1)-17ds (M)ﬁ dt

thap t 0 0

IN

IN
)
w
ot
N
8
N
€
&+ [~
|2U:J
—
s|E
S~—
~
ke
L
~ %

= 35 Waplpl(2),

12
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which follows (2.15).
To prove (2.16), for t > 0, r < ¢ and y € By(x) we have B,(y) C Ba(z). Therefore,

B = [

Byl )Hl (6126 (Wta,p[szt(I)](y))B) dy

By Theorem 2.2 there exists czg > 0 such that for 0 < §; < c36, 0 <t < 2R, x € RV,
/ exp (512[3 (Wa,p[wBZt(z)](y))ﬂ) dy < czrt™ (2.19)
B4t(z)

We take 0 <_51 < c36.
Case 1: z € Br(0)
If 0 <t < 2R, from (2.19) we get

wW2(Bi(2)) < ezrt? < esgw(Byg(x)).
If t > 2R, since for any |y| > 2R,
1
o w B p—1 dt o _1_N—-ap _ N—ap
Waslel) = [ (G2) " G e [ R < cly
yl/2

and thanks to (2.19) we have

o) < [ o (52 (Waplonao))) du+ [

Bar(0)¢ Hy (512ﬂ (Waplw] (y))ﬂ) dy

N _B(N=ap)
< epgRT+ H, (042|y| p=1 ) dy
B‘ZR(O)C
_1B(N—ap) _1B(N—ap)
< ezt 043/ Y|~ 7T dy = ca3 +eaaRN T T
B‘ZR(O)C
< C45|B4t($) n BR(O)| < 046w(B4t(:13)).

From this we also have H; (51 (Wap [w])ﬁ) € LY(RM).
Case 2: © € BR(0)°. If |z| > R+t then w?(B;(x)) = 0. Now we consider case R < || < R+ t.

If 0 <t < 2R, we have B:((R — %)Ii_l) C Byi(x) N Br(0) thus from (2.19) we get

wf(Bt (m)) S C47tN = C48

B, ((R B %)%) ’ < a3 [Ba(z) N Br(0)| < cagw(Ba(z))

If t > 2R, as in Case 1 we also obtain w?(B;(z)) < esow(Bat(z)).
Hence, we get (2.16). Therefore, the Theorem follows with é; = 20126 (1% — 1) A c36. [
In the next result we obtain estimate on iterative solutions of Wolff integral inequalities.

Theorem 2.5 Under the assumption as in Theorem 1.5. Let K > 0.
A. Suppose that {u,,} is a sequence of nonnegative functions in RN that satisfies

Um+1 S ngylp[Pl,a,ﬂ (um) + /1/] + f VYm € Na

(2.20)
ug < KW [u] + f.

13



Then there exists M > 0 depending on N,a, p,l,a,B,e, K and Ry such that if

(p71)ﬂ(571) (p— 1)(5 1)
IIM,, g, (1l pee vy <M and ||Map Rs (][l poe vy < M,
there holds
Prap (4, KW 1] + 46, KW [wo] + f) € Li(RY), (2.21)
and
U < 20, KWL [w1] + 2, KW [wo] + f Vm €N, (2.22)
(p=1)(p=1) (p=1)(p=1)

where w1 = M||M

2—-p
1Vv4r=1
B. Assume that I3 > N(p Y and supp(f), supp(p) C Br,(0). Suppose that {um} is a sequence

—ap

ap, R1 [ ]HLoc(]RN) + p, wy = M”Map R [1]||2010(RN) + p1 and Cp =

of nonnegative functzons in RN that satisfies

Um+1 < Kwa,p[Pl,a,,@ (u’m) + M] + f Vm € Na

(2.23)
up < KW p[u] + f.
Then there exists M > 0 depending on N,a, p,l,a,B,e, K and Ry such that if
(p—1)(B—1) (p—1)(B-1)
IMap * [Wlllpe@ny <M and [[Map * [pa]llpeceyy < M,
there holds
Pra,s (4, KW plws] +4c, KW plwd] + f ) € LYRY), (2.24)
and
U, < 2¢p KW plws] + 2¢p KWy plwa] + f Vm €N, (2.25)

(pfl)ﬂ(ﬂfl) . (pfl)ﬂ(ﬂfl) .
where ws = M||Mayp [XBRQ(O)]||Loc(RN)XBRQ(O)+,U'7 wg = M||Mayyp [XBRQ(O)]||L00(RN)XBR2(O)+
.

Proof. We will using Theorem 2.3 and 2.4 to prove the Theorem. Here, we only prove A.

1/8
Set cqe = 2 <1 (a+8) ) and @ = a(4ca7€cpK)ﬁ, Take 0 < M < 1 and put w; =

@=u-y @=1e-b
M|M,, ’ [1]||L°°(]RN) + p, wo = M[IM,,, £’ [1]||L°°(RN) + p1. We now assume

(p=1)(B=1) (p=1)(B—1)

M,z [Wlle@yy <M and [[M,, 57 [m]l|pe@y) < M.

First, we need to show that
Wi [ (@ (W) )| < Wi ] (2.26)

By Theorem 2.3, then there exist positive constants ¢ and dg independing on p such that
exp (30(W2, [Mwra])®) € Ll (RY) and

Wg,p {exp (50 (Wg,p [Mflwlﬁg])ﬂ)} < CW§7P[M71W112] in RV,
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Since 0~ H;(s) < H;(§7's) for all s > 0 and 0 < @ < 1, thus

IN

Wi [ GE )y (M3 G (Wh fwna])”) | < W, [ (80M 777 (Wh w1 ])”) |
Wilp [exp (50 (Wffp[M_lwl,g])ﬁ)}

CMiﬁWﬁp [WLQ].

IN

IN

So,

1 1

Wi [Hl (60 —3(7%5-1) (Wf}[wm])ﬁ)} < cM—2<P11>(%_1)me[w17g]
We see that (2.26) will be achieved if we prove
a < 50M_%(%_%) and CMZ(plfl) (%71) < 1.

which is equivalent to
1 1)) ! -1
M < (8a 1) EGE) T (et (2 0)

(B8 _1))7! 1 -1
Thus, one can choose M = 1A (50671)(2(17*1 H) Ae (7 (5 1)) e obtain (2.26) and
H (@ (Whfwr2)) ") € L, (RY).

Now, we prove (2.22). Clearly, (2.22) holds with m = 0. Now, assume that (2.22) holds with
m = n, we need to prove that

Unt1 < 20, KW [w1] 4 2¢, KWL [wa] + f. (2.27)
In fact, since (2.22) holds with m = n and the convexity property of P, , g, we have

Prap(un) < Prag (A, KW o] + 4, KW wo] + f)

IN

1/8
a—+e¢€
Prag (4caccp KW [w01]) + Prca (4¢a,ccp KW [wo]) + Prag <( ) f)

a

(@ (WEn)”) + Hi (@ (WE[ea))”) + Prase s ().

From this we get (2.21). By the definition of u,4; and sub-additive property of Wi [], we
continue

i < KWE H (@(WEwn))”) + Hi (@ (W wa])”) + Prases(f) + 1| + f
< oKW [ (a(Whw])”) | + o, KWE, [H (@ (W)
+ep KW [Plate,s ()] + cp KW (] + f.
It follows (2.27) from (2.26). This completes the proof of the theorem. |
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Let P € C(R™T) be a decreasing positive function; the (o, P)-Orlicz-Bessel capacity of a Borel
set E C RY is defined by (see [1, Sect 2.6])

capg,, p(FE) = inf {E/ P(f):Gaxf>xg, f>0P(f)e L*RY) 3,
and the (o, P)-Orlicz-Riesz capacity
capr, p(E) = inf t/ P(f):Ioxf>xg,f>0,P(f) € LYRY)

Theorem 2.6 Leta >0, p>1,a>0,c>0,l € N and 8 > 1 such that I > p—1 and
0<ap<N. Let p € MH(RN).

1. Let 0 < R < oco. If u is a monnegative Borel function in RN such that P, o 5(u) € L, (RY)
and

u(z) > cWaR:p[Plyaﬁ(u) + p)(z) Vo € RN (2.28)

then,
Case 1: R < oo, there exists a positive constant C1 depending on N,a,p,l,a,B,c and R such
that

Prap(u)dz + p(E) < Crcapa,,.q;(E) VE CRY, E Borel. (2.29)

B‘J\

Case 2: R = oo, there exists a positive constant Co depending on N, a,p,l,a, 3, c such that

/Plﬁaﬁg(u)d:c + u(E) < Cacapy,, q:(E) VEC RN, E Borel. (2.30)
E

2. Let Q be a bounded domain in RN and 6 € (0,1). If u is a nonnegative Borel function in
such that P, 5(u) € L}, (Q) and

loc
u(z) > cWi‘igI’am [Pa,s(u) + u](z) Vo € Q, (2.31)

then for any a compact set K C ), there exists a positive constant Cs depending on N, «, p,l, a, B, ¢,
and dist(K,00) such that

/Pl,aﬁg(u)d:r + u(E) < Cscapg,,,q:(E) VE C K, E Borel (2.32)

E

where Qy, is the complementary function to Q.

Proof. Set dw = P, 4 g(u)dz + dp.
1. We have
Pap (ng,p[w]) dr < dw in RY.
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Let M, denote the centered Hardy-Littlewood maximal function which is defined for any f €
L} (RN dw) by

loc

[ 1 fldw

_ By(x)
Mo (@) = sup = By

Thus, if E C RY is a Borel set, we have

7]

ﬂ —
RN RN

Since M,, is bounded on L*(RY, dw), s > 1, we deduce from Fefferman’s result [11] that
8
[ QLX) Pra ((WE ) do < csra( ),
RN

for some constant cs5; only depends on N and 1%. Since M, ,xg < 1, we derive

(Moxp(@)7 " Pras (WE[](@) > Pras (c(Moxn(@) 7T WE [u](x))
> Prap (Wi [wel(2)),
where wg = xEw.
So,
/Pl,a,g (cwf;{p[wE]) dr < c51w(F) for all Borel set E C RV, (2.33)

RN
From (2.1), (2.2) and (2.3) we get

/Pl,aﬁﬁ (ng,p[wE](z>) dx > /Qp (c52Gaplwrl(x))dz if R < oo
RN RN

and

/Pm”g (cwg,p[wE](:E)) dx > /Qp (es3laplwr](x))dx if R =00
RN RN

where @, is defined by (1.13) and c52 = (cQﬁ)_la%cp_l if p#2, c50 = cgla%c if p =2 (the
constant ¢y defined in (2.2), depends on R, therefore cso = ¢52(rk)) and c53 = (016)_1a%1 cP~t

ifp#£2 cs53 = ake if p = 2. Thus, from (2.33) we obtain for all Borel set £ C RY

/Qp (052Gap[wE](x)) dr < 051w(E) if R< o0,
RN

and
/ Qp (cs3laplwr](z)) de < crpiw(E) if p = oco.
RN

17



We recall that Q(s) = sup,so{st — @p(t)} and we note that Q5 satisfies the sub-additivity
As-condition (see Chapter 2 in [19]).
Case 1. R < co. For every f >0, Q;(f) € LY(2) such that Gop * f > xE, we have

w(E)

IN

/ Gap * fdwE = (2051)_1 / (C52Gap [wE]) (20510g21f) dx

RN RN

(2¢51)~ /Qp (c52Gap [wE]) dr + (2¢51) /Q (2c51¢55 f) dz

+C54/Q

the last inequality following from the As-condition. Notice that cs4, as well as the next constant

¢s5, depends on rg. Thus,
B) < 2est [ Q) (f)da
RN

w(E) < C55CAPG o, Q5 (E) for all Borel set E ¢ RY.

Which implies (2.29).
Case 2. R = co. For every f >0, Q5(f) € L'(Q) such that I, * f > xg, since Iop * wp =
IoplwE], as above we have

IN

IN

Then, we get

w(E)

IN

/ Loy # foog = / Loy = p) fds = [ Loy g fao

RN RN

) + cs6 / Q;(
Then, it follows (2.30).
2. Let K CC Q. Set rx = dist(K,00) and Qg = {zx € Q:d(x,K) < rg/2}. We have

IN

3 (cWiﬁlZ(f’am[w]) dr < dw in Q.

Thus, for any Borel set £ C K

/(MwXE)%PI,a,ﬁ (ng‘?éx7agz)[W]) dx < /(MWXE)%dw
Q Q

As above we get

/Pl,a,g (cWinz(f’aQ) [wE](:E)) dx < csyw(F) VE C K, E Borel. (2.34)
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Note that if € Q and d(z,9Q) < ri /8, then By(x) C Q\Qk for all t € (0,dd(z,0Q)); indeed,
for all y € By(x)

1
d(y,00) < d(z,00) + |z —y| < (1 + 8)d(z,00) < ZTK,

thus

3 1
d(y, K) > d(K,00Q) — d(y, 092) > 1K > 5TK,

which implies y ¢ Q. We deduce that

WD) (@) > WEK wpl@) Vo e,

P
and s
Wi wel(z) =0  VreQe

Hence we obtain from (2.34),

/ Pras (cWéZ,K [wE](z)) dz < csiw(E)  VE C K, E Borel. (2.35)
RN

As above we also obtain
w(E) < esreapa.,,q; (E) VE C K, E Borel.

where the positive constant ¢s7 depends on rx. It follows (2.32).

This completes the proof of the Theorem. [
Now we begin to prove Theorem 1.5.

Proof of Theorem 1.5. Here we only prove the part A. Consider the sequence {y, }m>o of
nonnegative functions defined by ug = f and

Umt1 = WL [PLag(um) + f in RY ¥m >0.

By Theorem 2.5, {tm }m>0 is well defined and (2.21) and (2.22) are satisfied. It is easy to see
that u,, is nondecreasing. Hence, thanks to the dominated convergence theorem, we obtain that
u(z) = lm wu,y,(z) is a solution to equation (?7?) which satisfies (?7?).

m—0o0

Conversely, we get the converse directly from Theorem 2.6. ]

3 Quasilinear Dirichlet Problems
Let Q be a bounded domain in RY. If u € 9t,(Q2), we denote by ut and p~ respectively its
positive and negative part in the Jordan decomposition. We denote by 9My(Q2) the space of

measures in 2 which are absolutely continuous with respect to the c?p—capacity defined on a
compact set K C Q2 by

() =int { [ [Vpdes o> e e cx@
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We also denote Ms(2) the space of measures in © with support on a set of zero cgp—capacity.

Classically, any u € 9,(Q) can be written in a unique way under the form pu = pg + ps where
to € Mo(2) NM(Q) and py € M(Q). Tt is well known that any pg € Mo(Q) N M,(2) can be
written under the form ug = f — div g where f € L'(Q) and g € L Q).

For k > 0 and s € R we set Ti(s) = max{min{s, k}, —k}. If v is a measurable function
defined and finite a.e. in Q, such that Ty (u) € V[/llof(Q) for any k > 0, there exists a measurable
function v : @ — R such that VT (u) = X|u|<k? a.e. in ) and for all k& > 0. We define the
gradient Vu of u by v = Vu. We recall the definition of a renormalized solution given in [10].

Definition 3.1 Let p = po + ps € Mp(Q). A measurable function u defined in Q and finite
a.e. 1s called a renormalized solution of

—Apu=p inQ,

u=0 on 0N, (3.1)

if Ti(u) € WyP(Q) for any k > 0, [Vul|P~" € L™(Q) for any 0 < r < =, and u has the property
that for any k > 0 there exist )\g and A, belonging to SDTZF NM(Q), respectively concentrated on
the sets u = k and uw = —k, with the property that uz = ud oy =AY

S
of measures and such that

/ |VulP~? Vu.Vapd:v:/ cpd,uo—i—/ god)\;;—/ wd\,
{lu|<k} {|u|<k} Q Q

Jor every o € WyP(Q) N L=(Q).

in the narrow topology

Remark 3.2 We recall that if u is a renormalized solution to problem (3.1) then (mﬂ; € LY Q)

for all ¥ > 1 which deduce from Holder’s inequality, u € Wol’p1 (Q) for al 1 < py < pif
e?lul € LY(Q) for some a > 0. Furthermore, u > 0 a.e. in Q if u € M (Q).

The following general stability result has been proved in [10, Th 4.1, Sec 5.1].

Theorem 3.3 If {u,} is a bounded sequence in My(Y) and {un} a sequence of renormalized
solutions of problem
—Apup = pn n £,

Up =0 on 0%, (3.2)

then, up to a subsequence, {un} converges a.e. to a solution of equation —Ayu = p in D'(Q),
and such that 1 [o, |VTy(u)[Pdz < M for every k > 0.

The next result is a sharp extension of the stability Theorem 3.3.

Theorem 3.4 Let = po + pt — pg, with po = F —divg € My(Q) and pt, p; belonging to
ME(Q). Let py, = F, —div gy + pn — nn with F,, € LY(Q), g, € (Lp/ Q)N and pp, n, belonging
to M (Q). Assume that {F,} converges to F weakly in L'(2), {gn} converges to g strongly
in (L7 (Q)N and (div g,) is bounded in 9My(Q); assume also that {p,} converges to pT and
{nn} to pg in the narrow topology. If {un} is a sequence of renormalized solutions of (3.2),
then, up to a subsequence, it converges a.e. in € to a renormalized solution u of problem (3.1).
Furthermore Ty, (uy) converges to Ty(u) in Wy P (Q) for any k > 0.
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We also recall the following estimate [20, Th 2.1].

Theorem 3.5 Let Q0 be a bounded domain of RYN. Then there exists a constant K; > 0,
depending on p and N such that if u € Dﬁg(Q) and u is a nonnegative renormalized solution of
problem (3.1) with data p, there holds

d(z,00Q
1 %)

diam (2
Wi ) <) < KW @) ve e o, (3.3)
where the positive constant K1 only depends on N, p.

Proof of Theorem 1.1. Let {u;,}men be a sequence of nonnegative renormalized solutions
of the following problems

—Apug = p in Q,
up =10 on 09,
and, for m € N,
~Agtmir = Praplun) +p i,
Um41 =0 on 0f.

By Theorem 3.5 we have

xauo < KiWTlu),
XaUmt1 < KiWT [P g(um) +p] ¥Ym €N,

where R = 2diam(Q2). Thus, by Theorem 2.5 with f = 0, there exists M > 0 depending on
N,p,l,a,B3,K; and R such that P, 4 5(4¢, KyWT [w]) € L*(Q) and

U (2) < 2cpK1WEp[w] (x) VreQ,meN, (3.4)

provided that
(p-1)(8-1)

1M, 5 " [l @ry < M,

(p=1)(5-1) L 2 p
where w = M||M,, 5, ” [l o vy + 1 and ¢ = 1V 451 This implies that {up} is well
defined; by Theorem 3.3 it contains a subsequence that we still denote by {u,,} which converges
a.e in €2 to function u for which (1.17) is satisfied in Q. Furthermore, we deduce from (3.4) and
the dominated convergence theorem that P o 5(tum) — P q,p(u) in LY(Q). Finally, by Theorem
3.4 we obtain that u is a renormalized solution of (1.16).
Conversely, assume that (1.16) admits a nonnegative renormalized solution w. By Theorem 3.5
there holds

1 d(z,09)
u(@) > =W, * [Pras(u) + pl(x) forall 2 € Q.
1
Hence, we achieve (1.18) from Theorem 2.6. [

Applications. We consider the case p =2, § = 1. Then [ =2 and

P op(r)=e"" —1—ar.
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If Q is a bounded domain in RY, there exists M > 0 such that if x is a positive Radon measure
in Q which satisfies

1(Bi(z)) < MtN 2 Vvt >0 and almost all = € €,

there exists a positive solution u to the following problem

—Au=e"™ —1—au+p in Q,
u=20 on 0.
Furthermore
2 diam Q 2 diam Q2
B B
u(z) < K(N)/O %dt - K(N)/O %dﬂr b VreQ

(-1)(E-1)
where b = 2K (N)M||M,, 540 mo [1]||Z;(RN)(dmm 0)2.
In the case N = 2 this result has already been proved by Richard and Véron [22, Prop 2.4].

4 p-Superharmonic Funtions And Quasilinear Equations
on RV

We recall some definitions and properties of p-superharmonic functions.
If u € WoP(RY)NCRYN) and —Apu = 0 in D'(RV) then u is said to be p-harmonic in RY. A

function u is called an p-supersolution in RY if u € W P (RV) and —A,u > 0 in D' (RN).

loc
Definition 4.1 A Lower semicontinuous (l.s.c) function u : RN — (—o0,00] is called p-
superharmonic if u is not identically infinite and if for all open D CC RN and all v € C(D),
p-harmonic in D, v < u on 0D implies v < u in D.

Let u be an p-superharmonic in RY. It is well known that uAk € Wllo’f (R™) is a p-supersolution

for all k > 0 and u < oo a.e in RY. Thus, u has gradient, see previous section. We also have
Vulr= € L, (RY), o € Ll (RY) and u € L, (RY) for 1 < ¢ < 525 and r > 1,
1<s< %__;) see [14, Theorem 7.46]. In particular, thanks to Holder’s inequality we have if
e?lvl ¢ L} (RN) for some a > 0, then u € Wllo’fl (RM) for all 1 < p; < p. Thus by the dominated
convergence theorem,

(=Apu, ) = / |Vu|P~2VuVedr = lim IV(uAk)P2V(uAk) Ve >0
RN k—oo JpN
Hence, by the Riesz Representation Theorem we conclude that there is a nonnegative Radon
measure denoted by u[u], is called Riesz measure such that —Ayu = pfu] in D' (RY).
The following weak convergence result for Riesz measures proved in [28] will be used to prove
the existence of p-superharmonic solutions to quasilinear equations.

Theorem 4.2 Suppose that {u,} is a sequence of nonnegative p-superharmonic function in
RY that converges a.e to an p-supersolution function u. Then the sequence of measures {u[u,]}
converges to plu] in the weak sense of measure.
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The next theorem is proved in [20]

Theorem 4.3 Let pi be a measure in M*T(RY). Suppose that W1 p[u] < oo a.e. Then there is
a nonnegative p-superharmonic function u in RN such that —A,u = p in D'(RY), infgn u =10
and

= Wiall(@) < u(e) < Ky Wi lul(@) (4.1)

for all  in RN, where the constant K1 is as in Theorem 3.5. Furthermore, any p-superharmonic
function u in RN, infgy u = 0 then (4.1) holds with p = —Apu.

Proof of Theorem (1.2). Let {um}men be a sequence of p-superharmonic solutions of the
following problems
—Apug = p in D'(RY),
infpy ug = 0,
and, for m € N,
—Aptmi1 = Prap(um) +p in D/(RN)a
inf]RN Um+1 = 0.

By Theorem 4.3 we have

up < K1Wi [,
Umt1 < K1Wi p[Pa p(um) + 1] Vm e N

Thus, by Theorem 2.5 with f = 0. there exists M > 0 depending on N, p,[,a, 8, K1 and R such
that P, o 5(4c, K1W1 plw]) € LY(RY) and

Um < 20, K1 W1 plw] Vm € N, (4.2)

provided that
(p=1)(B-1)
M, *° (]| oo vy < M.
(p=1)(8-1) )

where w = M||M,, * [XBR(O)]HZao(RN)XBR(O) + p. This implies that {u,,} is well defined;
by [15, Theorem 1.17] it contains a subsequence that we still denote by {u,,} which converges
a.e in RY to function u for which (1.20) is satisfied in Q. Furthermore, we deduce from (4.2)
and the dominated convergence theorem that P, 5(um) — Ppa(w) in L*(RY). Finally, by
Theorem 4.2 we obtain that w is an p-superharmonic solution of (1.19).

Conversely, assume that (1.19) admits a nonnegative renormalized solution w. By Theorem 4.3
there holds 1

K

Hence, we obtain (1.21) from Theorem 2.6. |

u(x) > —Wi p[Prag(u) + pl(x) for all z € RY.
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5 Hessian equations

In this section  C R¥ is either a bounded domain with a C? boundary or the whole RY. For
k=1,..,N and u € C*() the k-hessian operator Fj is defined by

F[u] = Sk(A(D*u)),

where A\(D?u) = A\ = (A1, A2, ..., \y) denotes the eigenvalues of the Hessian matrix of second
partial derivative D?u and Sy, is the k-th elementary symmetric polynomial that is

Sk = D Ay

1<i1 <. <ip, <N
We can see that
Fylu] = [DQULC’

where for a matrix A = (a;5), [A]x denotes the sum of the k -th principal minors. We assume
that 99 is uniformly (k-1)-convex that is

Sk—1(k) = co>0on 09,

for some positive constant cg, where k = (k1, K2, ..., Kkn—1) denote the principal curvatures of 92
with respect to its inner normal.

Definition 5.1 An upper-semicontinuous function u : Q — [—00, 00) is k-convez (k-subharmonic)

if, for every open set Q' C 0 cQand for every function v € C*(Q')NC(Q) satisfying Fx[v] <0
n Q, the following implication is true

u<vond) = wu<v in Q.

We denote by ®*(Q) the class of all k-subharmonic functions in Q which are not identically
equal to —oo.

The following weak convergence result for k-Hessian operators proved in [26] is fundamental in
our study.

Theorem 5.2 Let Q be either a bounded uniformly (k-1)-convex in RY or the whole RN . For
each u € ®%(Q), there exist a nonnegative Radon measure px[u] in @ such that
a. plu] = Filu] for u e C%().

b. If {un} is a sequence of k-convex functions which converges to u a.e then uy[u,] — pilu] in
the weak sense of measures.

As in the case of quasilinear equations with measure data, precise estimates of solutions of
k-Hessian equations with measures data are expressed in terms of Wolff potentials. The next
results are proved in [26, 18, 20].

Theorem 5.3 Let Q C RY be a bounded C?, uniformly (k — 1)-convex domain. Let ¢ be a
nonnegative continuous function on 02 and u be a nonnegative Radon measure. Suppose that
W can be decomposed as

p=p+f
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such that py is a measure with compact support in Q and f € L1(Q) for some q > % ifk< ¥
N

2
orp=11if k> 5. Then there exists a nonnegative function u in § such that —u € OF(Q),

continuous near 02 and u is a solution to the problem

Fi[—u]

I in ),
%) on 0N).

Furthermore, for any nonnegative function u such that —u € ®*(Q), which is continuous near
I and is a solution of above equation, there holds

1 d(z,0Q) .
— W 8 ‘NerlamQ
K2 k2f17k+1[ﬂ] S u(:c) S K2 < k2_f17k+1[ﬂ](z> + I%%X 50) 9 (51)

where Ko is a positive constant independent of x,u and €.
Theorem 5.4 Let pn be a measure in MT(RY) and 2k < N. Suppose that W%,kﬂ[ﬂ] < 0
a.e. Then there exists u, —u € ®¥(RY) such that infgy u =0 and Fy[-u] =pu in RN and

W (@) S @) < KoWoae oo [u](2) (5:2)

K2 "1 k410

for all x in RY, where the constant Ko is in above Theorem.
Furthermore, for any nonnegative function u such that —u € ®F(RN) then (5.2) holds with

= Fi[—u].

Proof of Theorem 1.3. We defined a sequence of nonnegative functions u,,, continuous near
09 and such that —u,, € ®¥(Q), by the following iterative scheme

Fyl—uo] = in Q,
uy = on 09, (5.3)
and, for m > 0,
Fk[*Uerl] = Pl,a,ﬁ(um) + in Q, (5 4)
Um4+1 = @ on 0f. '
By Theorem 5.3 we have
xouo < KoW1hy (1] + bo,
ML (5.5)

XQUm+1 < KoWH,

k+1°

k41 [Pl7a7ﬁ(um> + :u’] + b07

where by = Ko maxgq ¢ and R = 2diamf). Thus, by Theorem 2.5 with f = by and € = a, there

exists M > 0 depending on N, k, 1, a, 5 and R such that P, , 3 (4K2WRZk k+1[w1] + g) e LY(N)
k+1°
and
U (2) < 2K, WH, 1 w1l(2) + g(2) Vo e Q,Vm >0, (5.6)
EF1°

provided that

E(B-1) E(B—1)

My i [ulllLoemyy < My and |[My, i [Pr24,8(bo)]||Loe vy < M.
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(P*l)ﬂ(ﬂfl) _1 (P*l)ﬁ(ﬂfl) _1
where w; = MHM% [1]||Loo(RN) +p, wo = MHM% [1]||Loo(RN) + Pl,2a,5(b0)

and g(z) = 4CPKW1%J¢+1[W2](:C) + bo.
We see that one can find constants Ms depending on N, k,l,a,5, R and M; such that if
k(B—1)

maxpo ¢ < M, then [|[M,, [P124,5(b0)]|| L@~y < Mi. Beside, g is constant. Hence, we
deduce from (5.6) that P 4 3 (2K2W1227k a4+ b2) € LY(Q) and
s

10

U () < 2K, WE, g1 1 () + b2 Vo e Q,Vm >0, (5.7)

k+1°

for some the constant by depending on N, k, [, a, 5, R and M;.
Note that because we can write

w = Prap(um) + p = (1 + X05 Pas(um)) + (1= x05) Prap(tm) + ),

where Q5 = {x € Q: d(z,0Q) > §} and 6 > 0 is small enough, then w satisfies the assumptions
of the data in Theorem 5.3 since w,, is continuous near J§2. Therefore the sequence {u,} is well
defined. Since —u,,, is k-subharmonic and the sequence {u,,} is bounded in L!(£2), the sequence
{um} is also bounded in VVllocl(Q) (see e.g. [26]); we can find a subsequence, still denoted by the
index m, such that u,, converges a.e in €2 to function u for which (1.23) is satisfied in © with the
constant by = g. Furthermore, we deduce from (5.6) and the dominated convergence theorem
that P4 5(um) — Prag(u) in L1 (). Finally, by Theorem 5.2, we obtain that u satisfies (1.22)
and (1.23).

Conversely, assume that (1.22) admits nonnegative solution u, continuous near 92, such that
—u € ®F(Q) and P, 5(u) € L*(2). Then by Theorem 5.3 we have

1 d(z,0Q)

u(zx) > Ewﬁ"f,wrl[ﬂvaﬁ(u) + ul(x) for all z € Q.
Using Theorem 2.6, we conclude that (1.24) holds. |

Proof of Theorem 1.4. we defined a sequence of nonnegative functions u,,, continuous near
0Q and such that —u,, € ®¥(Q), by the following iterative scheme

Fy[—uo] = p in RY, (5.8)
infgy ug =0 -
and, for m > 0,
Fi[—tm41] = Piap () + in RY (5.9)

infRN Um+1 = 0.
By Theorem 5.4, we have

Uy < K2Wk2—+k‘l,k+1[ﬂ]a (5.10)
Umt1 < K2Wk2—f1,k+1[Pl,a,B(“m) + p]. .
Thus, by Theorem 2.5 with f = 0 there exists M > 0 depending on N, k,[,a, 3 and R such that
Pras (262W5 |, []) € L}(RY)
2k
U < 2K W1y ] vm >0, (5.11)

E+1°
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B(B=1) (p=1)(8=1)
provided that || My, % [u]||z~ @~y < M, where w = M||M,, " [XBR(O)]HZOlO(]RN)XBR(O) + p.
Therefore the sequence {u,,} is well defined. By arguing as in the proof of theorem 1.3 we
obtain that u satisfies (1.25) and (1.26).
Conversely, assume that (1.25) admits nonnegative solution u and —u € ®*(RY), P, 5(u) €
L}, .(RY). Then by Theorem 5.4 we have

loc

1
u Z 7W%ﬁk+1 [Pl,a,ﬁ(u) + ,LL]

2 k+1

Using Theorem 2.6, we conclude that (1.27) holds. |
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