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Abstract

We prove existence results concerning equations of the type —Apu = P(u) + p for p > 1 and
Fyl—u] = P(u) 4 p with 1 < k < & in a bounded domain €, where 4 is a positive bounded
Radon measure and P(u) ~ e’ with a > 0 and 8 > 1. Sufficient conditions for existence
are expressed in terms of the fractional maximal potential of p. Two-sided estimates on the
solutions are obtained in terms of some precise Wolff potentials of p. Necessary conditions are
obtained in terms of Orlicz capacities. We also establish existence results for a general Wolff
potential equation under the form u = Wg_’p[P(u)] +f.
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1 Introduction

Let © C RY be a bounded domain, p > 1 and k € {1,2,..., N}. We denote by
Apu = div (|Vu|p_2 Vu)
the p-Laplace operator and by

Fielu] = > Aji Aja A

1<j1<g2<...<jr<N

the k-Hessian operator where A, ..., Ay are the eigenvalues of the Hessian matrix D?u. Let
1 be a positive bounded Radon measure in §2; our aim is to study the existence of positive
renormalized solutions to the quasilinear equation

—Apu=Pu)+p in Q,
u=20 on 0, (1.1)

and the fully nonlinear equation

U= on 0}, '
where P is an exponential function. When P(r) = r? with ¢ > p — 1, Phuc and Verbitsky
published a seminal article [19] on the solvability of the corresponding problem (1.1). They
obtained necessary and sufficient conditions involving Bessel capacities or Wolff potentials. For
example, they proved that if x4 has compact support in € it is equivalent to solve (1.1) with
P(r) = r? or to have

wE) <cC, _a (E) for all compact set E C Q, (1.3)

’q+1—p

where c is a suitable positive constant and C, o a Bessel capacity, or to have
’q+1-p

/B (W2E[up(2)]]"de < Cu(B)  for all ball B s.t. BN suppu # 0, (1.4)

where R = diam(€2). Other conditions are expressed in terms of Riesz potentials and maximal
fractional potentials. Their construction is based upon sharp estimates of solutions of the non-
homogeneous problem

-Apu=w in Q,

u=20 on 0, (1.5)

for positive measures w. We refer to [4, 5, 6, 7, 9, 13, 22] for the previous studies of these and
other related results. Concerning k-Hessian operator in a bounded (k — 1)-convex domain {2,
they proved that if y has compact support and |[p|[ -~ (sq) is small enough, the corresponding
problem (1.2) with P(r) = r? with ¢ > k admits a positive solution if and only if

w(E) < cCQk7ﬁ (E) for all compact set E C €, (1.6)



or equivalently

/B [W%,k+1[ﬂB($)] Tz < Cu(B)  for all ball B s.t. BN suppu # 0. (1.7)
In the linear case p = 2 and k = 1, can be found in [2, 3, 27]. The main tools in their proofs
are derived from recent advances in potential theory for nonlinear elliptic equations obtained
by Kilpelainen and Maly [14, 15], Trudinger and Wang [24, 25, 26], and Labutin [17] thanks
to whom the authors first provide global pointwise estimates for solutions of the homogeneous
Dirichlet problems in terms of Wolffs potentials of suitable order.

Fors>1,0<a< %, n > 0and 0 < T < oo, we recall the expression of the T'-truncated
Wolff potential of a positive Radon measure p defined in RV by

T 1
W) = [ (48n) 7 (1)
and the T'-truncated n-fractional mazimal potential of p by

M (1] () :sup{% :o<th}, (1.9)
where hy(t) = (= Int)""x(,2-1)(t) + (In2) ""x[2-1,50)(t). If n = 0, then h, = 1 and we denote by
M, r[p] the corresponding T'-truncated fractional maximal potential of pr. When the measures
are only defined in an open subset  C RY, they are naturally extended by 0 in Q¢. For [ € N*,
we define the [-truncated exponential function

H(r) :eTfZLJ; (1.10)

' 3
Jj=0 J
and for a > 0 and 8 > 1, we set
Prap(r) = Hi(ar?). (1.11)
We put
o
> if p#2,
Qp(s) =4 a=la? Tq! (1.12)
Hy(s") if p=2,

Qy(r) = max {rs — Qp(s) : s > 0} is the complementary function to @, and define

capg, Q; (E) = inf {R/ Qp(f)dz : Gy * f > xm, f > 0,Q5(f) € L'(RY) ¢, (1.13)

where x)=J" +1.7)” 2 ) (z) 1s the Bessel kernel of order p.
here G, F (1 +].1")"%) (x) is the Bessel kernel of ord

We denote a Ab and a Vb for min{a, b} and max{a,b} respectively. Our main results are the
following theorems



Theorem 1.1 Let 1 <p< N,l €N and 3> 1 such that I3 >p—1 anda > 0. Let Q C RY be
a bounded domain. If i is a nonnegative Radon measure in ), there exist by € (0,1] and M > 0
depending on N,p,l,a,B and diam 2 which is the diameter of Q such that if

(p=1)(B—1)

||Mp,2diZmQ [IU’]HL“(RN) < M’ (114)
the following Dirichlet problem
—Apu=Pgpu)+p in §,
u=20 on 0, (1.15)
admits a nonnegative renormalized solution w, which satisfies
u(z) < K (1 v 2%) Wm0y L ohy Va € Q, (1.16)
and - '
Prag (K1 (1 v zﬁ) Wdiam Q] 2b0) e LY(Q). (1.17)

The role of K1 = K1(N,p) will be made explicit in Theorem 3.5.
Conversely, if (1.15) admits a nonnegative renormalized solution w, then for any compact set
K C Q, there exists a positive constant C depending on N,p,a, 5 and dist (K, 9Q) such that

/Plyaﬁg(u)dz + u(E) < Ceape,,q:(E)  for all Borel sets £ C K. (1.18)
E
Concerning the k-Hessian operator we recall some notions notions introduced by Trudinger

and Wang [24, 25, 26], and we follow their notations. For k = 1,...,N and u € C?(Q) the
k-hessian operator F}, is defined by

Fy[u] = Sp(A(D?w)),

where A\(D?u) = A = (A1, A2,..., Ay) denotes the eigenvalues of the Hessian matrix of second
partial derivatives D?u and S}, is the k-th elementary symmetric polynomial that is

Se(\) = > Aiy oA, -

1<61<...<ip <N

It is straightforward that
Fylu] = [DQULC’
where in general [A], denotes the sum of the k-th principal minors of a matrix A = (a;;). In

order that there exists a smooth k-admissible function which vanishes on 052, the boundary 0S2
must satisfy a uniformly (k-1)-convex condition, that is

Sk—1(k) > co >0 on 09, (1.19)

for some positive constant cg, where k = (k1, K2, ..., Kkn—1) denote the principal curvatures of 92
with respect to its inner normal. We also denotes by ®*(2) the class of upper-semicontinuous
functions Q — [— 00, 00) which are k-convex, or subharmonic in the Perron sense (see Definition
4.1). In this paper we prove the following theorem



Theorem 1.2 Let k € {1,2,...., N} such that 2k < N, 1 € N*, § > 1 such that I > k and
a > 0. Let Q be a bounded uniformly (k-1)-convex domain in RN. Let ¢ be a nonnegative
continuous function on Q) and p = uy + f be a nonnegative Radon measure where uy has
compact support in Q and f € LYQ) for some q > % Let Ko = Ko(N, k) be the constant Ko
which appears in Theorem 4.3. Then, there exist by € (0,1] and M > 0 depending on N, k,l,a,
and diam(QY) such that if

QEES
||M2k,2diam(sz) [l oo rvy < M,

and maxgg ¢ < Ib(—"z, the following Dirichlet problem

Fil-u] = Pag(u) + p in £,

U= on 0%, (1.20)
admits a nonnegative solution u, continuous near 9S), with —u € ®(Q) which satisfies
u(z) < K2W2§i_2‘”;§fl [1](z) + 2bo Vx € Q, (1.21)
k+1°
and .
Pras (K2WS 8 (1] 426 ) € L1(9). (1.22)

Conversely, if (1.20) admits a nonnegative solution u, continuous near 9S), such that —u €
Ok (Q) and Py q,5(u) € LY(Q), then for any a compact set K C Q, there exists a positive constant
C depending on N, k,a, and dist(K,0) such that there holds

/Pl,a,g(u)dx + w(E) < Ceapgy,,q;,, (E) VE C K, E Borel, (1.23)
E

where Qpy1(s) is defined by (1.12) with p = k + 1, Qi is its complementary function and
CapGs,,Q;, , () is defined accordingly by (1.15).

The two previous theorems are connected to the following result which deals with a class of
nonlinear Wolff integral equations.

Theorem 1.3 Letp > 1, a>0,a >0, R> 0,1 € N* and > 1 such that [ > p—1 and
0<ap<N. Let fe L} (RY), f>0. For any € > 0 there exist constants by € (0,1] and
M > 0 depending on N,a,p,l,a, 3, R and ¢ such that if exp((a + ¢)f?) € L} .(RN) and

loc
(Pfl)ﬂ(ﬁfl)
Mgy r” [l @y < M,

where dp = Py ayep(f)dx, then there exists a nonnegative function u, such that Py, s(u) €
L} (RN) which satisfies

loc

u= Wg,p[Pl@ﬁ(u)] + f in RV, (1.24)

Furthermore

WE PN+ f <u< (V3 ) WE W]+ f+bg=F in RN, (1.25)



Moreover exp(aF?) € L}, (RN) and WE [P 4 3(F)] € L=(RY).
Conversely, if (1.24) admits a nonnegative solution u, then there exists a positive constant C
depending on N, a,p,a,3 and R such that there holds

/Plyayg(u)dan/Pl,a,g (Wiip[Pl,a,ﬂ(u)]) dx+/Pl,a1g(f)dz < CcapcapﬁQ;; (E) VEC RY, E Borel.
E E E

2 Estimates on potentials

We denote by B,.(a) the ball of center a and radius r > 0 and B, = B,.(0); xg the characteristic
function of E for Borel set E. The next estimates are crucial in the sequel.

Theorem 2.1 1. There exists a positive constant c1, depending only on N,o,p, R such that
for all p € MT(RYN) and ¢ > p — 1 we have
(Wi (@) do < (@0)" [ (Guplu@)7 do.

@ ™ [ (@ali@) e < [ B
2.1)

N
where Gapl] := Gap * it denotes the Bessel potential of order ap of p.

2. There exists a positive constant co depending only on N, o, p, R such that for all p € M (RN)
and ¢ > p — 1 we have

&' [ @bl de < [

(W) (2)) " dr < ¢ / (Goalil(@)7de.  (22)
]RN

RN

Proof. We can find proof of (2.2) in [8, Step 3, Theorem 2.3]. By [8, Step 2, Theorem 2.3],
there is ¢3 > 0 such that

/ (WE, (@) dz > / (Mo, glu)(z)7 Tdz  VYg>0, R>0and pe M (RY). (2.3)

RN RN

We recall that My, rlu] = M, glu] by (1.9). Next we show that

[ Mol )7 7o = (e [(WE fal@)ds Vo >0, B>0and pem (&),
RN RN
(2.4)
for some a positive constant ¢s. Indeed, we denote p,, by xp,p for n € N*. By [16, Theorem
1.2] or [8, Proposition 2.2], there exist constants ¢5 = ¢5(N,a,p) > 0, a = a(a,p) > 0 and
g0 = (N, a, p) such that forall n e N*, ¢ >0, r > 0,0 < R < oo and 0 < € < g9, there holds

{WE > 3t} < esexp (—ae™!) [{WE pn > £} + [{ My )7 > et .



Multiplying by ¢t9~! and integrating over (0, o), we obtain

o0 oo

/qlfq_1 ‘{Wipun > St}‘ dt < c5exp (—as_l) /qtq_1 ‘{Wipun > t}‘ dt
0 o
+/qt‘1—1 H(Ma,,,}wn)ﬁ > st}‘dt,
0

which implies

3_q/ (Weplhnl(@)"dw < cs exp (~as™") / (W pltn(2)) " da + €71 / (Mo, i) 7" da.
RN RN N

This leads to

1 (37 esexp (~a 1)) [ (W fa)(@))"de < [ (Mo pnn) 7 d
RN RN
We see that sup &4 (3"1 — ¢5exp (7%71)) > (ceq) ™7 for some a constant cg which does not

0<e<ep
depend on q. Therefore, (2.4) follows by Fatou’s lemma. From (2.3) and (2.4), we have

& [ (Wheoi@)'de> [ Maprlil@)de > (e0)™" [ (W olul(@) "do.

RN RN N

for all ¢ > 0 and p € MH(RY), with ¢; = ¢7(N, a, p) > 0. Then, combining with (2.2) we get

cg / (Gaplil(2)"dz > / (Mo pl1)(2))dz > (csq) ™ / (Gl () dz,

RN RN RN

with cg = cg(N, o, p, R), for all ¢ > 0 and p € 9 (RY). Therefore, jointly with (2.3) and (2.4)
we derive (2.1).

The next result is proved in [8].
Theorem2.21Leta >0,p>1,0<n<p—1,0< ap < Nand L > 0. Set d =
%(f{(—;__%)haplog@). Then there exists C(L) > 0, depending on N, «, p, n and L such
that for any R € (0,00], u € M+ (RY), any a € RN and 0 < r < L, there holds

p—1
1 WR " p—1—-n
/ exp | ¢ ( ool )](ac)) . dx < C(L), (2.5)
|Bar(a)] M2 s, (@) 7=

Bay(a) ap,RIHB; L>=(By(a))

where (g, (a) = XB,(a)b- Furthermore, if n =0, C is independent of L.



Theorem 2.3 Assume «, p, n are as in Theorem 2.2 and p € M (RN) satisfies for R > 0

M7, glulll Lo @yy < M,

for some M > 0. Then there exist C = C(N,a,p,n,R) > 0 and §o = §o(N,a,p,n) > 0 such
that

<C. (2.6)

_ 1 _p—1
W, Jexp (st (W, )7 ) -
Lo (RN)

Proof. Without loss of generality we may assume that M = 1. Let § be as in Theorem 2.2 and

v = pf;in. Let z € RN, Since u(Bi(y)) < MtN=Ph,(t), for all r € (0, R) and y € RY we have

t

i -
Wil (y) = Wi, (y)Jr/(%)p dt

T

i Rv2™! L
S W:up [.u] (y> + / ((* In t)in) ﬁ% —+ / ((111 2)777) p—1 %

< Wil () + (= In(r A27Y)7 + (In(2)) 71 (2R V 1).

[
|
-

Thus

3

(W&, 1] ()" <377" (( o 1 ()" 4771 (r A121> + Al(R)> , (2.7)

where A;(R) = (In(2))'~"(In(2R Vv 1))".

Let 6 € (0,1], since exp (2£2) < exp (a) + exp (b) for all a,b € R, we get from (2.7)

exp (953*’7 (nyp (1] (y))’Y) <exp (6(W},, [1] (y))’Y) + exp <9577 In <T12_1> + 95A1(R)> .
(2.8

Forr > 0,0 <t <7,y € By(zr) we have By(y) C Bar(v). Thus, Wy, [u] = W{, [1B,, (2)] in
B, (z). Then, using (2.5) with L = 2R we get

[ e GWe, 1)) = [ oo (W, [um,0])") < CRBIBI,
B, (z) B, (x)
So, from (2.8) we deduce
Wﬁp [exp (95377 (Wg,p [u])v)} (x)
R
< / (C(2R)|B4|ro‘p + By | exp (0541 (R)) (r A 2—1)*"5“rap)ﬁ%
0

R
<(1veit) R
< 1) (C@R)|Ba)7 1 [ i dr
0

1 0547

R
+ (1 VQ%) (|B1|exp (05 A1 (R))) 7T / (ra2 ) et iy,
0




Now we choose 8 = 1 A 25 P we have
R R
17 ap r B

/ rA2TY) T T gy < / (7) rZeen Ly
- rA271

0 0
< 207V op gyt gty

ap

Hence

WE, e (J0(WE, [1))")] @) < Aa(R),

where §p = 06377 = (1 A 55 7) 0377 and
2-p 1 p—1_ ap
Ay(R) = (1 v zzﬂ) (C(2R)|By|)7 pap =
s L2 1) oy o
+ (1 \Y 21)*1) (|Bi|exp (00A1(R)))P—T o (2R+1)2>-DR2-D,
Which yields (2.6). ]

In the next result we obtain estimate on iterative solutions of Wolff integral inequalities. We
recall that H; and P, , g have been defined in (1.10) and (1.11).

Theorem 2.4 Leta >0,p>1,a>0,6>0, K >0, R>0,1 € N"and 8 > 1 such that
IB>p—1and 0 < ap < N. Suppose that {u,,} is a sequence of nonnegative functions in RN
that satisfies

Ums1 < KWE [Prag(um)+p]+b VmeN, 29)
Uo S ng,p[:u’] + b7

where p € MT(RYN). Then there exist by € (0,1] and M > 0 depending on N, o, p,l,a,3, K and
R such that if b < by and

(p—1)(B—1)
IM,, " [Wllpe@y) < M,
there holds 5
exp (a(cpKW{*jp[u] +2by) ) e LL_(RN), (2.10)
and
W [Pras (o KWE 1] +2bo)] € L=(RY), (2.11)
and finally
U <, KWE 1] +2by Vm €N, (2.12)

2-p
where ¢, =1V 2p=1T,



Proof. By Theorem 2.3 with n = %, there exist C = C(N,a,p,8,R) > 0 and dy =
00(N, , p, B) > 0 such that if

(p—1)(B—-1)
||Map,R [:LL]||L°°(RN) S M}
then
Wk [eXp (60M 7T (WE [ ])ﬁ)} (z) <C  VzeRY. (2.13)

Take by € [b,1]. We will choose by and M later on. Clearly, (2.12) holds with m = 0. Now,
assume that (2.12) holds with m = n, we need to prove that

Unt1 < cp KW ] + 2bo.
In fact, by the definition of u,11 and the sub-additive property of Wﬁﬁp[.], we have
Unt1 < CpKWip[:u] + CpKWip[Pl,a,ﬂ(un)] + .
So, it is sufficient to prove that
p KW [ Pra,s(un)] < bo. (2.14)

Since (2.12) holds with m = n and the convexity property of H; in [0,00) and by < 1, we have

Pl,a,ﬁ(un)

IN

Hi (o (cp KW 1] + 200)”)
( R’ + a2 )

)
ﬁ) + Hy(a2?°b))
)’)

IN
=

N

A
SRS
=
=
)
m

B

IN
=
/\/g\/\
)
=
=
\)
m

+ by H;(a2%7),

IA
=

which implies

Cpng,p [Pla,5(un)]

N
g
:
2]
=
—~
Q
)
@
~
@
)
w
=
L
T
=
SN—
@
~—
+
Q
2
=
O‘N
=
=
)
DN
=

B p—1
— 2KWE [Hl (achBQB (WE 1)) )} + AR, (2.15)
1 1 ap
where A(R) = ’;;plch(Hl(aQQﬁ)) Pl |§1|p71 Rv-1.
Now we choose by = 1 A ((QA(R))_W*P“) and we derive

NEN
ARDE T < =

2 (2.16)
Next, set 6 € (0,1]; since H;(s) < 0H;(§71s) for all s > 0,

8 L - 8
EWE, [H (acg K727 (WE [1)")] < 0771 2RWE [y (67 aci 172 (WE [1]))].

10



From (2.13), we assert that if
B 50 o p—1
0~ ac) KP2% < §oM ™1 < M < ——— 07,
ac, KP2P

then

cf,Knyp [Hl (achﬂQﬂ (Wgﬂp[u])ﬁ)} < GﬁciKC.

This will be achieved if we prove that

) b
07T KO < 2,

b p-1
0 < Y .
- <20§KC>

which is equivalent to

p—1 p—1 p—1
Thus, we can choose § =1 A (2021)—2(0) and M = ((wﬂ‘;(i"ﬁw) ? 9" and we obtain that
2 R R 3 bo
c, KW, {Hl (achﬁQﬁ (WS, Iu) )} < 5

Combining this with (2.16) and (2.15) we obtain (2.14) and (2.10), (2.11). This completes the
proof of the theorem. [

Let P € C(R™) be a decreasing positive function; the (o, P)-Orlicz-Bessel capacity of a Borel
set E C RY is defined by (see [1, Sect 2.6])

capa, . p(E) =inf {R/ P(f):Gaxf>xg, [f>0,P(f) € Ll(RN)

Theorem 2.5 Let o > 0,p > 1,a > 0,c> 0,0 € (0,1], ] € N* and 8 > 1 such that I8 >p—1
and 0 < ap < N. Let Q be a bounded domain in RY and u € SJ?ZF(Q) If u is a monnegative
Borel function in Q such that P, g(u) € L' () and

u(@) > WIED(w)(z) Yz e, (2.17)

where dw = Py 4 g(u)dx+du, then, for any a compact set K C Q, there exists a positive constant
C depending on N,«a,p,a,c, 3,0 and dist(K,9) such that

/Pm”g(u)dac + w(E) < Ceapg,,,q;(E) VE C K, E Borel,
E

where Qy, is the complementary function to Qp.

11



Proof. Let K C . Set rg = dist(K,09Q) and Qx = {r € Q: d(z,K) < rx/2}. We have
Piags (cwg?yvm)[w]) dz < dw in 9.

Let M, denote the centered Hardy-Littlewood maximal function which is defined for any f €
L} (RN, dw) by
I 1 fldw

_ Bi(x)
M) = s Bm))

Thus, for any Borel set £ C K
w2 5d(z,09 18
/(MwXE)Pflplﬂ’ﬂ (CWQ,}(,Z’ )[w]) dr < /(MWXE)pfldw.
Q Q

Since M,, is bounded on L*(RY, dw), s > 1, we deduce from Fefferman’s result [11] that

/(MUJXE)%PZ,II,B (Cwid,z(f’aﬂ) [W]) dzx S ng(E),
Q

for some constant cg only depends on N and pl—fl. Since M, xg < 1, we derive

8 1
(MxXe @) Py (WD (@) = Pras (o (Muxe(@) P WAL=V ] (2))
> Pl (W Vlwg)(@))
where wg = xgw. This implies
/Pl,a,g (cWi‘?ém’am [wE](x)) dx < cow(E) VE C K, E Borel. (2.18)
Q

Note that if € Q and d(z,9Q) < ri /8, then By(x) C Q\Qk for all t € (0,dd(z,0)); indeed,
for all y € By(z)

1
d(y,00) < d(z,00) + |z —y| < (14 8)d(z,00) < ZTK,

thus

1
d(y, K) > d(K,00Q) — d(y, 092) > ZTK > ST

which implies y ¢ Q. We deduce that

ér
Wil wp)(z) > Wal fwpl(x) Vo e,

and s
Wi wel(z) =0  VreQc

12



Hence we obtain from (2.18),

/ Pras (CWC%;K [wE](z)) dz < cow(E)  VE C K, E Borel. (2.19)
RN

From (2.1) and (2.2) we get

[ Pras (Wi lwel@)) do = [ G (croGayloe](a)
o

RN

where @, is defined by (1.12) and ¢19 = (clﬁ)_la%lcp_1 if p#2, c10= cfla%c if p =2 (the
constant ¢; defined in (2.1), depends on R, therefore cj9p = c19(rk)). Thus, from (2.19) we
obtain

/Qp (c10Gap(wE](z)) dz < cow(E) VE C K, E Borel.

We recall that Q5 (s) = sup,~¢{st — Qp(t)} and we note that @} satisfies the sub-additivity Ao-
condition (see Chapter 2 in [18]). Let E C K be a Borel set. For every f >0, Qx(f) € L'(Q)
such that Gap * f > x g, we have

w(E) < /Gap * fdwg = /Gap [wg] fdx
RN RN
= (269)71 / (CIOGap [WE]) (QCgcl_Olf) dx
RN
< (209)” /Qp c10Gap WE]) dz + (2¢9)~ /Q 209010 f)
< 27 +C11/Q

the last inequality following from the As-condition. Notice that c11, as well as the next constant

c12, depends on rgx. Thus,
E) < 2cny /Q; (f)dz
]RN

w(E) < crzcapa,,,,q; (E) VE C K, E Borel.

Then, we get

This completes the proof of the Theorem. ]

3 Quasilinear Dirichlet Problems

Let Q be a bounded domain in RY. If u € 9t,(Q), we denote by u™ and p~ respectively its
positive and negative part in the Jordan decomposition. We denote by 9(Q2) the space of
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measures in {2 which are absolutely continuous with respect to the cgp—capacity defined on a
compact set K C 2 by

c%p(K) = inf{/Q [VolPdx : ¢ > xkx,p € C’;’O(Q)} .

We also denote Ms(2) the space of measures in © with support on a set of zero c?,p—capacity.

Classically, any p € 9,(€2) can be written in a unique way under the form p = po + ps where
to € Mo(2) NM(Q) and ps € M(Q). Tt is well known that any pg € Mo(Q) N M,(2) can be
written under the form ug = f — div g where f € L'(Q) and g € L Q).

For k > 0 and s € R we set Ti(s) = max{min{s, k}, —k}. If v is a measurable function
defined and finite a.e. in Q, such that Ty (u) € V[/llof(ﬂ) for any k > 0, there exists a measurable
function v : @ — R such that VT (u) = X|u|<k? a.e. in ) and for all k& > 0. We define the
gradient Vu of u by v = Vu. We recall the definition of a renormalized solution given in [10].

Definition 3.1 Let p = uo + ps € Mp(L). A measurable function u defined in Q and finite
a.e. is called a renormalized solution of

—Apju=p inQ,

u=0 on 09, (3.1)

if Tr(u) € Wol’p(Q) for any k>0, [VulP™! € L™(Q) for any 0 < r < 25, and u has the property
that for any k > 0 there exist )\Z' and A belonging to 93?;’ NN (), respectively concentrated on
the sets u = k and uw = —k, with the property that u;: — wr, p — A in the narrow topology
of measures and such that

/ |VulP? Vu.Vapd:v:/ cpd,uo—i—/ god)\;;—/ ed\,
{lul<k} {ul<k} Q Q

for every o € WyP(Q) N L=(Q).

Remark 3.2 We recall that if u is a renormalized solution to problem (3.1) and p € I} (Q),
then u 2 0 a.e. in Q.

The following general stability result has been proved in [10, Th 4.1, Sec 5.1].

Theorem 3.3 If {u,} is a bounded sequence in My(Y) and {un} a sequence of renormalized
solutions of problem
—Apup = pn n £,

Up =0 on 09, (3.2)

then, up to a subsequence, {u,} converges a.e. to a solution of equation —Ay,u = p in D'(L2),
and such that 3 [, |VT,(u)[Pdz < M for every k > 0.

The next result is a sharp extension of the stability Theorem 3.3.

Theorem 3.4 Let pn = po + pt — ps, with po = F —divg € My(Q) and pt, p; belonging to
ME(Q). Let py, = Fp, — div g + pn — nn with Fy, € LY(Q), g, € (LP ()N and pp, 0, belonging
to M (Q). Assume that {F,} converges to F weakly in L'(2), {gn} converges to g strongly
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in (L ()N and (div g,) is bounded in My (Q); assume also that {p,} converges to ut and
{nn} to py in the narrow topology. If {un} is a sequence of renormalized solutions of (3.2),
then, up to a subsequence, it converges a.e. in € to a renormalized solution u of problem (3.1).
Furthermore Ty, (uy) converges to Ty (u) in Wy P (Q) for any k > 0.

We also recall the following estimate [19, Th 2.1].

Theorem 3.5 Let Q be a bounded domain of RY. Then there exists a constant K1 > 0,
depending on p and N such that if p € SDTZF(Q) and u is a nonnegative renormalized solution of
problem (3.1) with data p, there holds

1 d(m,SBQ)

diam (2
Wi @) <u@) < KW (@) Ve e o, (3.3)
where K1 is a constant independent of x,u and €.

Proof of Theorem 1.1. Let {u;,}men be a sequence of nonnegative renormalized solutions
of the following problems

—Apug = in €,
ug =10 on 09,
and, for m € N,
*Apuerl = ]Dl,a,ﬁ(um) +p in ,
U1 =0 on Of).

By Theorem 3.5 we have for all x € RY
Xouo(r) < KiW{[u](2),
XQtm41(x) < KyWH L [PLa g (um) + ] (2),

where R = 2diam(Q2). Thus, by Theorem 2.4 there exist by € (0,1] and M > 0 depending on
N,p,l,a,8,K; and R such that

um (@) < K (1 v 2%) WE [u](z) +2bp Vo eQmeN, (3.4)
and 5
exp (a(K (1 v 2%) WE ] + 2b0) ) e L _(RM), (3.5)

provided that
(p=1)(8-1)

M,z ” [Wl|p~@ny < M.

This implies that {u,,} is well defined; by Theorem 3.3 it contains a subsequence that we
still denote by {u,,} which converges a.e in Q to function w for which (1.16) is satisfied in
Q. Furthermore, we deduce from (3.4)-(3.5) and the dominated convergence theorem that
Pap(um) = Prap(u) in L'(Q). Finally, by Theorem 3.4 we obtain that u is a renormalized
solution of (1.15).

Conversely, assume that (1.15) admits a nonnegative renormalized solution w. By Theorem 3.5
there holds

1 d(z,0Q)

u(z) > —W, ,° [wl(z) forallze,

“ K
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where dw = P 4 g(u)dx + du. By Theorem 2.5, we obtain (1.18). |

Applications. We consider the case p =2, = 1. Then [ =2 and
Pog(r)=¢e"" —1—ar.

If Q is a bounded domain in RY, there exists M > 0 and by € (0, 1) such that if x is a positive
Radon measure in €2 which satisfies

w(By(x)) < MtN 2 YVt > 0 and almost all z € €,

there exists a positive solution u to the following problem

—Au=e"™—-1—au+p in Q,
u=0 on 0f.
Furthermore 5 diam O
am B
u(z) < K(N)/O %dt L2y Voeq.

In the case N = 2 this result has already been proved by Richard and Véron [21, Prop 2.4].

4 Hessian equations

In this section 2 C RY is a bounded domain with a C2 boundary. For k = 1,.., N and u € C%(Q)
the k-hessian operator Fy is defined by

Fy[u] = Sp(A(D?w)),

where A\(D?u) = A = (A1, A2,..., Ax) denotes the eigenvalues of the Hessian matrix of second
partial derivative D?u and Sy, is the k-th elementary symmetric polynomial that is

SN = D A,

1<61<...<ip <N

We can see that
Fk[u] = [DQ’LLLC,

where for a matrix A = (a;5), [A]x denotes the sum of the k -th principal minors. We assume
that 0 is uniformly (k-1)-convex that is

Sk—1(k) = co > 0on 09,

for some positive constant c¢g, where k = (k1, K2, ..., kn—1) denote the principal curvatures of 99
with respect to its inner normal.
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Definition 4.1 An upper-semicontinuous function u : Q@ — [—00, 00) is k-convez (k-subharmonic)
if, for every open set Q' C QO cQand for every function v € C?*(Q)YNC(Q) satisfying Fx[v] <0
n Y, the following implication is true

u<vond) = wu<v in Q.

We denote by ®*(Q) the class of all k-subharmonic functions in Q which are not identically
equal to —o0.

The following weak convergence result for k-Hessian operators proved in [25] is fundamental in
our study.

Theorem 4.2 Let Q be a bounded uniformly (k-1)-conver in RN. For each u € ®%(R), there

exist a nonnegative Radon measure plu] in Q such that

a. uglu] = Fylu] for u € C%(Q).

b. If {u,} is a sequence of k-convex functions which converges to u a.e then pg[u,] = pi[u] in
the weak sense of measures.

As in the case of quasilinear equations with measure data, precise estimates of solutions of
k-Hessian equations with measures data are expressed in terms of Wolff potentials. The next
result is proved in [25, 17, 19].

Theorem 4.3 Let Q C RY be a bounded C?, uniformly (k — 1)-convex domain. Let ¢ be a
nonnegative continuous function on 02 and i be a nonnegative Radon measure. Suppose that
W can be decomposed as

p=p1+f
such that py is a measure with compact support in Q and f € L1(Q) for some q > % if k < %
orp=1i4fk > % Then there exists a nonnegative function u in 0 such that —u € ®*(Q),
continuous near 02 and u is a solution to the problem
Fk[_u] =K in Qa
U= on 0.

Furthermore, for any nonnegative function u such that —u € ®*(Q), which is continuous near
0 and is a solution of above equation, there holds

1 d(z,09Q) di 0
WS < u(o) < K (WHEERG) + ). (4.1)
where Ko is a positive constant independent of x,u and €.

Proof of Theorem 1.2. We defined a sequence of nonnegative functions u,,, continuous near
09 and such that —u,, € ®¥(Q), by the following iterative scheme

Fi[—uo)l = 1 in Q,
uy = on 01, (4.2)
and, for m > 0,
Fk[_um—i-l] = Pl,a,B(um) +u in €, (4 3)
Umt1 = P on Of. ’
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By Theorem 4.3 we have for all 2 € RV,
xouo(z) < KoWh, | [p](z) +b,
E+1°

Xoum+1(2) < KWy o [Pras(um) + p)(z) +0,
k417

(4.4)

where b = Ko maxgq ¢. Thus, by Theorem 2.4 there exist by € (0,1] and M > 0 depending on
N,k,l,a,8 and R such that

U (2) < KoWE, g1 () + 2bo Vo e Q,Vm >0, (4.5)
Rt+1°
and
R b 1 (RN
exp (a (KQW L L) +2b0) € LL (RY), (4.6)
k1’

provided that b < by and
k(B—1)
(Mo, 7o [1]]| Lo rvy < M.

Note that because we can write

W= Prap(um) +p = (pn + X095 Pas(um)) + (1= x0;) Prap(tm) + ),

where Qs = {x € Q : d(z,0Q) > §} and § > 0 is small enough, then w satisfies the assumptions
of the data in Theorem 4.3 since u,, is continuous near J€2. Therefore the sequence {u,} is well
defined. Since —u,y, is k-subharmonic and the sequence {u,,} is bounded in L*(£2), the sequence
{um} is also bounded in VVllocl(Q) (see e.g. [25]); we can find a subsequence, still denoted
by the index m, such that w,, converges a.e in Q to function w for which (1.21) is satisfied
in Q. Furthermore, we deduce from (4.5)-(4.6) and the dominated convergence theorem that
P ap(um) = Papg(u) in LY(Q). Finally, by Theorem 4.2, we obtain that u satisfies (1.20) and
(1.21).

Conversely, assume that (1.20) admits nonnegative solution u, continuous near 9<, such that
—u € ®F(Q) and P, 5(u) € L*(2). Then by Theorem 4.3 we have

1 d(z,0Q)
u(zx) > EW%‘ka[w](x) for all z € Q,
where dw = P, 4 g(u)dx + dp. Using Theorem 2.5, we conclude that (1.23) holds. ]

5 Wolff integral equations

Proof of Theorem 1.3. Let ¢ > 0, assume that exp((a + ¢)f?) € L. _(RY) and consider
the measure du = Pj 4468 (f)dz. By Theorem 2.3 with n = %, there exist C =
C(N,a,p,8,R) > 0 and §y = §p(N, a, p, ) > 0 such that if

(P*l)ﬁgf}*l)
||Map,R [:LL]||L°°(RN) S M}
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there holds
Wk [eXp (50M 1 (WE [ ])ﬁ)} (z) <C Vo eRY, (5.1)

Consider the sequence {tm, }m>0 of nonnegative functions defined by uy = f and
U1 = Wg,p[Pl,a,ﬁ(um)] +f in RY vm>o.

Step 1. We claim that there exist by € (0,1] and M > 0 depending on N, a,p,l,a,5, R and €

such that if
(p=1)(s=1)

[[M (]| Loe rrvy < M,

ap,R
then the sequence {um, }m>0 is well defined and there holds

U < F = GWE W]+ f+by  ¥m >0, with & = 1V 31, (5.2)
and
exp(aF’) € Lj, (RN) and W [P, 5(F)] € L™(RY). (5.3)
Clearly, (5.2) holds with m = 0, thus we assume that (5.2) holds with m = n, then it follows

- a+271le
un® < FP < c138) (Wﬁp[u])ﬁ + casby” + ——— f7,

for some constant c¢13 only depends on 3 and a*i

Thanks to the convexity property of H; in [0, c0) and by <1, we have

2a+¢
o) € 2 W) et () +
el = date) e1a(Wep 1) +4(a+€) Pl +2(a—|—5) ((a+e)f”)
B
< H (c14(W§;p[u]) ) P H) (c15) + Prases(f),
where ¢14 = %013@? and c15 = _4a(<z+8)c
Thus,

Unp+1 = W(Ij,p [Hl(aunﬂ)] + f < Wg,p [Hl(a’Fﬁ)} + f

— &, WE [ ]+f+cp [Hz (C14(WR (1 ])ﬁ)} +c16bo? T,
(5.4)

where c16 = & (Hi(c15)) 77| By |77 2L R7=T
—1 1B
Now, we take by = 1 A (2016)_WP*P+1 which yields c16bj~" < 3. Hence, we will obtain (5.2)

with m =n + 1 and (5.3) if we show that

o

ch [Hl (c14 (Wﬁp [u])ﬂ)]

IN

b
50. (5.5)
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As in the proof of Theorem 2.4, we have
GWE [Hl (c14 (WE )’ )} < O7TEWE {Hl (9—1(;14 (WE )" )} with 0 € (0,1],

B

and thanks to (5.1) we will achieve (5.5) if 0~ 1c14 < JoM 7T and 971 épC < %0 are satisfied.

p—1 prl p—1
Thus, we can choose § =1 A (2?00) and M = (f—") 0.
P 14

Therefore {um }m>0 is well defined and (5.2) and (5.3) are satisfied. It is easy to see that u,, is
nondecreasing. Hence, from (5.2) and (5.3), we obtain that u(z) = lim wu,,(z) is a solution to
m—0o0

equation (1.24) which satisfies (1.25).
Step 2. Conversely, we assume that (1.24) admits a nonnegative solution w. There holds

u? > (Wgﬁp[ﬂ,a,ﬁ(u)])ﬁ + 17,

and thus,
]Dl,a,ﬁ(u> > ]Dl,a,ﬂ (Wg,p[ljl,a,ﬂ(uﬂ) + Pl,a,ﬁ(f)'

This implies
A > P (W, (i) do.

where

dp = Prap (WE [PLas()]) dz + Prags (f)dr.
If E ¢ RY is a Borel set, we deduce
£ R 18
(Muxe)?"* Prap (Wa,p[ﬂ]) dr < (Myuxe)?="dpu.
RN RN

Since M,, is bounded in L*(RY du) for s > 1 by Fefferman’s differentiation theorem [11], we
infer that

B8
/ (M, XE)7T Pra g (W [1]) dz < errp(E),
]RN

for some constant c¢17 only depends on N and plTﬁl. Because

1B
(M#XE>p71Plyaﬁ (Wg,p[ﬂ]) > Pl7a7ﬁ (Wg,p[:u’E]) )

where pug = xgp. We finally deduce

/ Pras (WE, lug)) do < ciru(E)  VE CRYN, E Borel.
RN

As in the proof of Theorem 2.5, it is easy to see that

u(E) < ciscapa,,,,q; (E) VE c RY, E Borel,
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where the positive constant ¢13 depends on N, «,p,a, and R. Finally since du > P, o g(u)dx
we obtain that for any Borel subset £ C RY there holds

/Pz,a,ﬁ(U)der /Pz,a,ﬁ (WE [Pras)]) de + /Pz,a,ﬁ(f)dx < 2cizcapg,,,qx (E),

E E E
which completes the proof of the Theorem. ]
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