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Abstract

We prove existence results concerning equations of the type —A,u = F(u) + p for p > 1
and Fy[—ulu = F(u) + p with 1 <k < & in a bounded domain €2, where 4 is a positive Radon
measure and F(u) ~ e’ with a > 0 and 8 > 1. Sufficient conditions for existence are ex-
pressed in terms of the maximal fractional potential of u. Two-sided estimates on the solutions
are obtained in terms of some precise Wolff potentials of u. Necessary conditions are obtained
in terms of Orlicz capacities. We also establish existence results for a general Wolff potential
equation under the form u = W ,[F(u)] + f.
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1 Introduction

Let © C RY be a bounded domain, p > 1 and k € {1,2,...N}. We denote by
Apu = div (|vu|fH Vu)
the p-Laplace operator and by

Flu] = > Aj Az -+ i

1<j1<g2<...<jr<N

the k-Hessian operator where A1, ...Ay are the eigenvalues of the Hessian matrix D?u. Let 7
be a positive Radon measure in {2; our aim is to study the existence of positive renormalized
solutions to the quasilinear equation

—Apu=P(u) +p in Q
u =0 on 0f) (1.1)
and the fully nonlinear equation
Frlu] = P(u) + in Q
U= on 0f) (1.2)

where P an exponential function. When P(r) = r? with ¢ > p — 1, Phuc and Verbitsky
published a seminal article [10] on the solvability of the corresponding problem (1.1). They
obtained necessary and sufficient conditions involving Bessel capacities or Wolff potentials. For
example, they proved that if x4 has compact support in € it is equivalent to solve (1.1) with
P(r) = r? or to have

wE)<ceC,_» (FE) for all compact set E C Q, (1.3)

P:oxri—p

where c is a suitable positive constant and C, 2 Bessel capacity, or to have
’q+1-p

/B [(W2E g (2)]]?de < Clu(B)  for all ball B s.t. BN suppu # 0, (1.4)

where R = supp(Q2). Other conditions are expressed in terms of Riesz capacities and Riesz po-
tentials. Their construction is based upon sharp estimates of solutions of the non-homogeneous
problem

Ay =w in

u=20 on 0f) (1.5)

for positive measures w. Concerning k-Hessian operator in a bounded (k — 1)-convex domain
Q, they proved that if u has compact support, the corresponding problem (1.2 with P(r) = r4
with ¢ > k admits a positive solution if and only if

1(E) < cCoy, o (E) for all compact set E C (1.6)



or equivalently

/ [W%i k+1[uB(fE)]}q dx < Clu(B) for all ball B s.t. B Nsuppy # 0. (1.7)
B

k+1°

The main tools in their proofs are derived from recent advances in potential theory for nonlinear
elliptic equations obtained by Kilpelainen and Maly [5], Trudinger and Wang [14, 15, 16], and
Labutin [7] thanks to whom the authors first provide global pointwise estimates for solutions of
the homogeneous Dirichlet problems in terms of Wolffs potentials of suitable order.

Fors>1,0<a< %, n > 0and 0 < T < oo, we recall the expression of the T-truncated
Wolff potential of a positive Radon measure p defined in RY by

T 1
W lul(z) = / (7“5551(6{?)) T (1.8)
0
and the T'-truncated n-fractional mazximal potential of p by
Bi(X

]M&ﬂﬂ@ﬂz&m{ﬁ%ﬁﬁ%:0<t§1}, (1.9)
where A, (t) = (—Int)""x2-1)(t) + (In2) "X [2-1 o (t). If n =0, then h, = 1 and we denote by
M, r[p] the corresponding T-truncated fractional mazimal potential of ;. When the measures

are only defined in an open subset 2 C RY, they are naturally extended by 0 in Q°. For [ € N,,
we define the [-truncated exponential function

Hi(r) :e’“—ZQj (1.10)

')
i=o '
and for a > 0 and 8 > 1, we set
Prap(r) = Hi(ar?). (1.11)
We put
P if p#2
Qp(s) =4 a=la?~1q! (1.12)

Qy(r) = max {rs — Qp(s) : s > 0} is the complementary function to @, and define

capgpr;(E) = inf t/ Qy(f)dr : Gpx f > xE, [ 20,Q,(f) € LY(RY) (1.13)

where G, (z) = F~! ((1 + |.|2)_%) (x) is the Bessel kernel of order p.

We denote a Ab and a Vb for min{a, b} and max{a, b} respectively. Our main results are the
following theorems



Theorem 1.1 Let 1 < p < N, 1 €N and 3 > 1 such that I >p—1 and a > 0. Let Q C RV
be a bounded domain. If p is a nonnegative Radon measure in §, there exist by € (0,1] and
My > 0 depending on N,p,B,a,l and diam 2 which is the diameter of Q such that if

(p=1)(B=1)

IIM,, ogiam o [l Le@yy < Mo, (1.14)
the following Dirichlet problem
—Apu =P, 5(u)+p in Q
u=20 on 0f) (1.15)
admits a nonnegative renormalized solution w, which satisfies
u(z) < K (1 v 2%) Wm0y L 9hy Va € Q (1.16)
and - .
exp (K1 (1 v Qﬁ) W3iam 2y o) + 2b0) e LY(Q). (1.17)

The role of K1 = K1(N,p) will be made explicit in Theorem 3.5.
Conversely, if (1.15) admits a nonnegative renormalized solution w, then for any compact set
K C Q, there exists a positive constant C depending on N,p, 8 and dist (K, 9Q) such that

/Plyaﬁg(u)dz + u(E) < Ceape,,q:(E)  for all Borel sets £ C K. (1.18)
E
Concerning the k-Hessian operator we recall some notions notions introduced by Trudinger

and Wang [14, 15, 16], and we follow their notations. For k = 1,..,N and u € C?(Q) the
k-hessian operator F}, is defined by

Fi.[u] = Sk(A(D?u))

where A\(D?u) = A = (A1, A2,..., Ax) denotes the eigenvalues of the Hessian matrix of second
partial derivatives D?u and S}, is the k-th elementary symmetric polynomial that is

Sk(\) = > Aiy i,

1<61<...<ip <N

It is straightforward that
Filu] = [DQULC’

where in general [A], denotes the sum of the k-th principal minors of a matrix A = (a;;). In
order that there exists a smooth k-admissible function which vanishes on 052, the boundary 0S2
must satisfy a uniformly (k-1)-convex condition, that is

Sk—1(k) > co >0 on 00 (1.19)

for some positive constant cg, where k = (k1, K2, ..., Kin—1) denote the principal curvatures of 92
with respect to its inner normal. We also denotes by ®*(2) the class of upper-semicontinuous
functions Q — [— 00, 00) which are k-convex, or subharmonic in the Perron sense (see Definition
4.1). In this paper we prove the following theorem



Theorem 1.2 Letk € {1,2,..., N} such that 2k < N, 1 € N*, 8 > 1 such thatl > k and a > 0.
Let Q be a bounded uniformly (k-1)-convexr domain in RN . Let ¢ be a nonnegative continuous
function on O and pu = p1 + f be a nonnegative Radon measure where 1 has compact support
in Q and f € LY(Q) for some q > év—k Let Ko = Ko(N, k) be the constant Ko which appears in
Theorem 4.3. Then, there exist by € (0,1] and My > 0 depending on N, k,3,a,l and diam(Q))

such that if
E(B-1)
My % [llLe@yy < Mo

and maxaq p < Ib(—oz, the following Dirichlet problem

Bl—u] = Pos(u) +p in ©
U= on 011, (1.20)
admits a nonnegative solution u, continuous near O, with —u € ®*(Q2) and P, 4 (u) € L ()

which satisfies

u(x) < KQWig_ﬁjgfl [xaul(z) +2by  Vax € Q. (1.21)

Conversely, if (1.20) admits a nonnegative solution u, continuous near 9S), such that —u €

Ok (Q) and Py q,5(u) € LY(Q), then for any a compact set K C Q, there exists a positive constant
C' depending on N, k, and dist(K,dQ) such that there holds

/Plﬁaﬁg(u)dz + w(E) < Ceapgy,.,q;,, (E) VE C K, E Borel, (1.22)

E

where Qpy1(s) is defined by (1.12) with p = k + 1, Q. is its complementary function and
CapGy,Qy,, (E) is defined accordingly by (1.13).

The two previous theorems are connected to the following result which deals with a class of
nonlinear Wolff integral equations.

Theorem 1.3 Let Ne N, p>1, a>0,a>0, R>0,l€Nand f>1 such thatl >p—1
and 0 < ap < N. Let f € L}, (RY), f > 0. For any £ > 0 there exist constants by € (0,1] and
My > 0 depending on N, a,p,3,a,l, R and ¢ such that if exp((a +¢)f?) € L}, .(RN) and

loc
(1)
M, r []]] Loo mvy < Mo

where dp = Py qyc p(f)dx, then there exists a nonnegative function u, such that P, p(u) €
Li,(RN) which satisfies
w=WE [Pos)]+f in R, (1.23)

Furthermore

WE [Py p(w)] + f <u< (1 v 3%) WE ]+ f+by:=F in RY (1.24)

Moreover exp(aF?) € L}, (RN) and |WZE [Pra.5(F)] HLOO(RN) < +o0.

loc

Conversely, if (1.23) admits a nonnegative solution u, then there exists a positive constant C



depending on N, a,p, 8 and R such that there holds

/ Prop (W2 [P s(w)]) d + / Pyap(f)dz < Ceape,, q(E) VE CRY, E Borel,
B E

where Qp, Qy and capg,,,,q; are defined in (1.12).
In the case a = 1, R = 00, (1.23) is equivalent to
~Ap(u—f)=Papu) in RY. (1.25)

2k

o for some k € N, and p =k + 1, it is equivalent to

while when o =
Fi[-u+ f) = Pap(u)  in RY. (1.26)

Some other applications are also given to equations involving the fractional Laplacian.

2 Estimates on potentials

We denote by By(a) the ball of center a and radius r > 0 and B, = B,(0). The next estimates
are crucial in the sequel.

Theorem 2.1 1. There exists a positive constant c1, depending only on N,o,p, R such that
for all p € MT(RYN) and ¢ > p — 1 we have

q

(Wg,p[ﬂ](z))qu < (clq)q/ (Gacp[ﬂ](l'))ﬁ dx

@0 [ (Goplula) ™ do < B
2.1)

RN

where Gaplu] := Gap * 1 denotes the Bessel potential of order ap of p.

2. There exists a positive constant co depending only on N, o, p, R such that for all p € M (RN)
and g > p — 1 we have

" [ @ulilid@) de < [

Proof. We can find proof of (2.2) in [2, Step 3, Theorem 2.3]. By [2, Step 2, Theorem 2.3],
there is ¢3 > 0 such that

(Wiap@) do < [ (Gaalpl@)do. (22)

N RN

/ (W, [u)(2))"d > ¢ / (Mapaltl(@)751de Vg >0, R>0and ue M (RY). (23)

RN RN

We recall that M, plu] = M2

op.rlM by (1.9). Next we show that

/ (Mg, r[H)(x))7 T dz > (caq)™ / (W, lu)(2)"dz  Yg>0, R>0and peM(RY),

RN RN
(2.4)



for some a positive constant ¢4. Indeed, we denote u,, by x g, u for n € N*. By [2, Proposition
2.2], there exist constants ¢5 = ¢5(N, a,p) > 0, a = a(a,p) > 0 and g = (N, o, p) such that
forallneN* ¢t >0,r>0,0< R<oo0and 0 < e < ¢g, there holds

HWRpun > 3t, (Map,RMn)ﬁ < st}’ < cs exp( ) ‘{Wa pHn > t}‘ )
Thus,
{WE > 3t} < esexp (—ae™!) [{WE pn > t}| + |{ My, )7 > et }].

Multiplying by ¢t?~! and integrating over (0, 00), we obtain

/qtq 1‘{Wapun>3t}‘dt§05exp(— )/qtq 1‘{Wapun>t}‘dt
0 0

T 7th1 H(Map Rin) P > st}‘ dt,
0

which implies

37(1/ (Wl plinl(@)) " de < e exp (—a=™") / (W] (2)) dae + = / (Mayp, jtn) 77 da.

N

This leads to

/(MapyRun)P_Eldzesq (3 9 — 5 exp / 7p [1n]( )qdz.
N N

We see that sup &1 (3_‘1 — c5 exp (—ae_l)) ~ (ceq)~? for some a constant c¢g which does not
0<e<eo

depend on q. Therefore, (2.4) follows by Fatou’s lemma. From (2.3) and (2.4), we have
q _ q
& [ (W ol@) de 2 [ Mo alil@0)de > ()™ [ (W olul)) "o
RN RN N

for all ¢ > 0 and p € MM+ (RY), with ¢; = ¢7(NV, o, p) > 0. Then, combining with (2.2) we get

cg / (Gl (2))de > / (Mo rli](@)?dz > (cs0)~ / (Gl (1))

RN RN RN

with cg = cs(N, a, p, R), for all ¢ > 0 and p € MT(RY). Therefore, jointly with (2.3) and (2.4)
we derive (2.1). =

The next result is proved in [2].



Theorem 2.2 Let « > 0, p > 1,0 < n <p—-1,0< ap < N and L > 0. Set§ =

p—1
%(S_(—;:%) re aplog(2). Then there exists C(L) > 0, depending on N, «, p, n and L such

that for any R € (0,00, u € M+ (RY), any a € RN and 0 < r < L, there holds

—1

1 1) =
By, (a)] ‘/““p ——— (W lis,@)])(@) 777 | de < C(L)  (25)
) M, rlbs, (@75 ()

where (i, (a) = XB, (a)lb- Furthermore, if n =0, C' is independent of r.

Theorem 2.3 Assume «, p, n are as in Theorem 2.2 and ju € M (RY) satisfies for R > 0

M, rll| L@y < M,

for some M > 0. Then there exist C = C(N,a,p,n,R) > 0 and §y = 6o(N,a,p,n) > 0 such
that

<C.

1 _p_1_
HWﬁp {exp <5OM_ p—1-n (nyp [u]) p=t=n )} <
Loo(RN)

Proof. Let x € RN, Since u(B:(y)) < MtN=Ph,(t), for all r € (0, R) and y € RN we have

W&M@)zxm“M@+fc%¥?y%%

T

R
= WMM@Hwﬁi/mwwﬁ%

o—1 ) g Rva—1 ) ;
1 _ =1 dt 1 _ =1 dt
< r =i - LA =1 A
S WWM@HW[l/‘@Im)) ;M 1/ @M)) -
rA2—1 9-1
-1 Mﬁ p—l—n 1 n
< Wiy I )+ P e a2 ) T 4 M (0() P @R V1)
Thus,
_p—1 p—1
(WE (1] (1))7 77 < A (W, (1] (3)) 77 + AsM 5= In (r — 5) + AsMe 1, (2.6)
where ,
A = 3rp=1=n
p—1
Ay = 35177 (&) T
p—1-n
and

As(R)::355%?(h42»*p71w(hm23\/1»;%57.



Let 6 € (0.1], since exp(a + b) < 3 exp (2a) + % exp (2b) for all a,b € R, we get from (2.6)
1
OM  p—1—m _p—1 1 o , qu
exp <972A1 (Wf;{p [1]) pl") < 2 ©Xp (5M == (W [u]) ™ ")

1 Ay 1 As(R)
6—In 0 2.7
+2€Xp( A1 (T/\21) + A1 ( )
Forr > 0,0 <t <7,y € By(z) we have By(y) C Bar(v). Thus, Wi [u] = Wy [up,,] in
B, (z). Then, using (2.5) with L = 2R we get

[ o (surmm Wa, b)) = [ e (807 (W [ 0]) )
Br(=) By (x)

< C(2R)|By|rN

So, from (2.7) we deduce

6M7ﬁ p—1
/ P (GT(W& M)“”)

B, (x)

< %C(QR)|B4|7*N + %exp (9%111 (Méil) 9A3 ) |By|rV

Ag
< LCQR)Balr™ + §|Bilexp (02522 ) (r A271) 3N,

Therefore,
5M_T)*i*77 p—1
R R e
Wan [GXP <9T(Wam (1)) 77 ] ()
1/ ) g
2 p—1
L e
,
’ 1 1 R
() o) o
0
1 " "
+ (1\/217;*11)) (§|B1|6Xp( )) / r/\2 O DAy 1)A1rp =1 g
R 0
1 _GL ap _q
< )+ As(R) [ (rn27) T
0
where



and

A5(R) = (1v i) (%|Bl|exp (eAiflR)))F.

Now we choose § = 1 A C;’jil, we have
SM ™7 1w —p=1_ i =
R P R e T \e-D e
War |ﬁXp <9T(Wa,p [1]) n)] (z) < As+ As/ (T/\ 2_1) r2e=D" " dr
0

R
ap ap 1
< Ay +226-D A5 r2e=0""dr.
0

In other words,

W, |exp (80077 (WE, 1) 757 ) | ) < a()

where

ap

2(p—1 ap
Ag(R) = A4(R) +22%-D @TP)AE)(R)RZ@I)’

06 1. _ p—1—n T ap( p-—1 —FT
= L e (22T D = At log(2).
=54 1 (12@1)) < A(2 p—1-1 aplog(2)

Which completes the proof of the Theorem. [

In the next result we obtain estimate on iterative solutions of Wolff integral inequalities. We
recall that H; and P 4 g have been defined in (1.14) and (1.11).

Theorem 2.4 Let N e N, p>1,a>0,a>0,6>0, K >0, R>0,l € N* and 8 > 1 such
that I8 >p—1 and 0 < ap < N. Suppose that {um} is a sequence of nonnegative functions in
RN that satisfies

Umy1 < KWE [Prag(um)+p]+b YmeN,

Uo S ng,p[:u’] + b7

where p € MFT(RYN). Then there exist by € (0,1] and My > 0 depending on N,a,p,B,a,l, K
and R such that if b < by and

(2.8)

(P*l)ﬂ(ﬂfl)
||Map,R [:LL]HL“(]RN) < Mo,

there holds
exp (a(K (1 v 2%) WE (1] + 2b0)ﬁ ) e LL (RM)

and
[, [ (o 12 w2

and finally
um < K (1 v 21%’1’) WHE 1] +2b) YmeN. (2.9)

10



Proof. By Theorem 2.3 with n = %, there exist C = C(N,a,p,8,R) > 0 and dy =
00(N, , p, B) > 0 such that if

(p71)ﬂ(571)
Moy 5" [llloe@y) < M,

e wh [exp (50M—% (WE [M])B)] (z) <C zeRV. (2.10)

Take by € [b,1]. We will choose by and My later on. Clearly, (2.9) holds with m = 0. Now,
assume that (2.9) holds with m = n, we need to prove that

Unp1 < K (1 v 2%) WE 1]+ 2bo.
In fact, by the definition of u,11 and the sub-additive property of Wip[.], we have
i < K (1v 2t ) WE ]+ K (1v 2575 ) WE [P s(un)] +0.
So, it is sufficient to prove that
P =K (1 v 2%) WE [Pa,5(un)] < bo. (2.11)
Since (2.9) holds with m = n,
B < fBoh-1 222\ R VB L 21,8

uf < KP2 (1 vV 2r ) (WE [1])” + 22610,

which implies

2 g\ B
Pras(un) < H (KBQB_l(l vt ) (WE [u])” + 229715 )

IN

1 2—p B B8 1

Bob S R 2613
5 Hi (K 2 (1v2p 1) (WE [1]) )+§Hl(2 bl
1 BoB 222\? ok (V8 o LB g 928
S Hi (K72 (1v2p ) (WS [u) +5b H(229),

since bg < 1. Thus,
WE [P p(u,)] < WE [%Hl <Kﬁ2ﬂ (1v 2%)ﬂ (Wg,p[u])"> + %b{)”ﬁHl(?ﬁ)}
<9 (1 v 2%1) WE {Hl (KBQﬂ (1 v ZH)ﬁ(Wﬁp[u])Bﬂ
+27 (1 v 2%1) WE [béﬂHl(QQﬂ)}

=27 (1v 2t ) Wi, {Hz <K"2" (1v 2%)[3(‘7"5@[#])[3”

B

+ Ci(R)bg

11



where )
_ 2—p 1 ap
DL (1w o3 (%) 7T By R

Cl(R) = T _1_
2r—Tap
Thus
1 2-p\ 2 2-p\ B
P < K277 (1v it ) WE, [Hl (KW’ (1v2it) (Wﬁp[u])ﬁ)]
(2.12)
2-p 8
+CL(R)K (1 v zﬁ) b
Note that
2-p\ % bo 2-p\ \ TBEPFT
Cl(R)K(1v2p—1)bg < Dby < (QCl(R)K(l\/prl)) ,

Now we choose
p—1
IB—p+1

)

bo = bo(N, o, p, B, K, R) := 1 A (201(R)K (1 v 2%))

b, (2.13)

and we derive s
Ci(R)K (1 v 2%) b <3
Next, set v € (0, 1]; since H;(s) < yH,(y~ts) for all s > 0,
1 2-p\ 2 2-p\ B
P, = K2 7 (1 v 2ﬁ) Wi [Hl (KW’ (1 v 2ﬁ) (ijp[u])ﬂ)]

_1 2-p\2 1 _ 2-p\ B B
< K2 p—1(1v2p—1) yETWE [Hl (’y 1K525(1v2p—1) (WE 1)) )}

p—1
p—1
B

From (2.10), we assert that if
—17-808 2-p\ P __B_ —Bo-8 2-p\ B\ P
ALK B9 (1v2p—1) < GoM 7T = M < ( 6K P2 (1v2p—1) ~

)

then )
Py < K277 (1 v 2%) AT

This will be achieved if we prove that
1 2—p 2 1
K2 i (1 v 2—p—1) NIC <

which is equivalent to
< (k128 (1v 2t "o "
~y z V2% C™ b .

Thus, we can choose
2—p 2-p\ —2 p—1
v =~(N,a,p, B, K,R) = 1A (K‘12p1 (1v2ﬁ) C—1b0>

12



and
p—1
F o,

2-p\ — B
My = Mo(N, a,p, 3, K, R) = (50Kf’2f’ (1 v 2ﬁ) > 4
and we obtain that if M < My there holds

b
nggo.

Combining this with (2.13) gives (2.11). This completes the proof of the theorem. |

Let P € C(R") be a decreasing positive function; the (c, P)-Orlicz-Bessel capacity of a Borel
set £ C RY is defined by (see [1, Sect 2.6])

capg,, p(F) = inf {E/ P(f):Gaxf>xE, [f>0,P(f) € LI(RN)

Theorem 2.5 Let N e N, p>1, a>0a>0,¢c>0,6 € (0,1],1 € N* and 8 > 1 such that
I8>p—1and 0 < ap < N. Let Q be a bounded domain in RN and pn € M (Q). Ifu is a
nonnegative Borel function in Q such that P, 5(u) € L*(Q) and

u(x) > cW‘;‘,iZ(f’aQ) [w](z) Vo € Q (2.14)

where dw = Py 4 g(u)dx+du, then, for any a compact set K C Q, there exists a positive constant
C' depending on N,a,p,c, S and dist(K,00) such that

/Plyaﬁ(u)dz + u(E) < Ceape,,,q:(E) VE C K, E Borel,
E
where Qy, is the complementary function to Q.

Proof. Let K C . Set rg = dist(K,09Q) and Qx = {r € Q: d(z,K)} < rx/2}. We have
Pag (CWi‘?f’aQ) [w]) dr <dw inQ

Let M, denote the centered Hardy-Littlewood maximal function which is defined for any f €
Lioe(RY | dw) by
I 1 fldw

. By (x)
Mof(@) = sup S @y)

Thus, for any Borel set E C K

[ (xe) P Pras (Wit do < [ (Muxe) P
Q Q

13



Since M,, is bounded on L*(RY, dw), s > 1, we deduce from Fefferman’s result [9] that

/(MUJXE)%PZ,II,B (Cwid,z(f’aﬂ) [W]) dx S C4W(E),

Q
for some constant ¢4 only depends on N and %. Since M, xg < 1, we derive
(Mox(@) 7 Plas (WD w)()) 2 Pras (o(Muxs(@)7 WD [w]())
> Pl (WO wg)(a))
This implies
/ Pras (CW%””"”) [wE](:c)) dz < cqw(E) VE C K, E Borel, (2.15)

Q

Note that if € Q and d(z,9Q) < ri /8, then By(x) C Q\Qk for all ¢ € (0,dd(z,0Q)); indeed,
for all y € By(z)

1
dly, 99) < d(@,09) + |r —y| < (1+8)d(2,00) < Jrx

thus 3 )
d(yaK) > d(Kv 89) - d(yaaﬂ) > ZTK > §TK

which implies y ¢ Q. We deduce that
Sp
Wi OV wpl(@) > Wil wrl(@) Vo eQ,
and s
W3 wel(z)=0 Vo
Hence we obtain from (2.15),
/ Pras (cWéng [wE](z)) dr < cqw(E)  VE C K, E Borel. (2.16)
RN
From (2.1) and (2.2) we get
Sy
[ Pras (W lwel@)) do = [ Qo (csGaloel(@)
RN RN
where @, is defined by (1.12) and ¢5 = (016)_1a%lc}’_1 ifp#2 c5 = cfla%c if p =2 (the

constant ¢; defined in (2.1), depends on R, therefore ¢5 = ¢5(rx)). Thus, from (2.16) we obtain

/Qp (e5Gaplwrl(x)) dz < caw(E) VE C K, E Borel.
RN

14



We recall that Qp(s) = sup;so{st — @p(t)} and we note that Q; satisfies the sub-additivity
As-condition (see Chapter 2 in [8]). Let E C K be a Borel set. For every f >0, Qx(f) € L'(Q)
such that Gop * f > xE, we have

w(E) < Gap * fdwg = | Gap [wE] fdz
J s |
— (204)71 / (e5Gap [wE]) (QC4cglf) dx
RN
< (2¢4)” /Qp (e5Gap [wE]) dx + (2¢4)™ /Q 204c5 f) dx
<

JFCG/Q

the last inequality following from the As-condition. Notice that cg, as well as the next constant

c7, depends on rx. Thus,
B) <2 [ Q1) ds
R

w(k) < C7CaPG oy, Q% (E) VE C K, E Borel.

Then, we get

This completes the proof of the Theorem. [

3 Quasilinear Dirichlet Problems

Let Q be a bounded domain in RY. If u € 9t,(Q), we denote by u™ and p~ respectively its
positive and negative part in the Jordan decomposition. We denote by 9My(Q2) the space of
measures in {2 which are absolutely continuous with respect to the c‘ll’p—capacity defined on a
compact set K C 2 by

c%p(K) = inf{/Q [VolPdx : ¢ > xkx,p € C’SO(Q)} .

We also denote Ms(£2) the space of measures in  with support on a set of zero cgp—capacity.

Classically, any p € M,(Q) can be written in a unique way under the form pu = pg + pus where
to € Mo(2) NM(Q) and py € M(Q). Tt is well known that any pg € Mo(Q) N M,(2) can be
written under the form po = f — div g where f € L'(Q) and g € L? ().

For k > 0 and s € RY we set Ty(s) = max{min{s,k}, —k}. If u is a measurable function
defined and finite a.e. in Q, such that Ty (u) € Wy*(Q2) for any k > 0, there exists a measurable
function v : @ — R¥Y such that VT (u) = X|u|<k? a.e. in © and for all £ > 0. We define the
gradient Vu of u by v = Vu. We recall the definition of a renormalized solution given in [3].

15



Definition 3.1 Let p = po + ps € Mp(Q). A measurable function u defined in Q and finite
a.e. is called a renormalized solution of

—Apu = p in

u=~0 on O0N. (3.1)

if Tr(u) € WoP(Q) for any k > 0, [Vu|P~* € L™(Q) for any 0 < r < =, and u has the
property that for any k > 0 there exist )\; and X, belonging to My N Mo(K2), respectively
concentrated on the sets uw =k and u = —k, with the property that ,uZ' — ul, pp — Ay in the
narrow topology of measures and such that

/ |VulP? Vu.Vgodac:/ goduo-i-/ god)\z—/ edA;
{lul<k} {|u|<k} Q Q

for every o € Wy P(Q) N L=(Q).

Remark 3.2 We recall that if u is a renormalized solution to problem (3.1) and pu € M (€2),
thenu 2 0 a.e. in 9.

The following general stability result has been proved in [3, Th 4.1, Sec 5.1].

Theorem 3.3 1- Let {u,} be a sequence of measurable functions, finite a.e.in Q. We assume
that Ty (uy) € Wo(Q) for any k > 0, |Vu,[P~" € L™ (Q) Vr < =, and for any n € N
+ [0 VT (un)[Pdz < M for some constant M. Then, up to a subsequence, {u,} and {Vuy}
are Cauchy sequences in measure; {u,} converges a.e. to a function u finite a.e in Q such that
Ti(u) € WyP(Q) for any k > 0, {Th(un)} converges to Ty (u) weakly in Wy (Q) and Vu, con-
verges a.e. to Vu; finally [VulP™" € L™ (Q) for all r € [1, ) and {|Vu,|[P~> Vu,} converges
to |VulP~% Vu strongly in L™ ().
2- As a consequence, if {un} is a bounded sequence in My(Q) and {un} a sequence of renormal-
ized solutions of problem

—Apupn = pn n

Uy =0 on 01, (3.2)

then, up to a subsequence, {un} converges a.e. to a solution of equation —Ayu = p in D'(Q),
and such that ¢ [o, |VT,(u)[Pdz < M for every k > 0.

The next result is a sharp extension of the stability Theorem 3.3.

Theorem 3.4 Let pn = po + pt — ps, with po = F —divg € My(Q) and pt, p; belonging to
ME(Q). Let py, = F, —div g + pn — nn with F,, € LY(Q), g, € (Lp/ ()N and pn, N, belonging
to M (Q). Assume that {F,} converges to F weakly in L*(2), {gn} converges to g strongly
in (L ()N and (div g,) is bounded in My (Q); assume also that {p,} converges to ut and
{nn} to pg in the narrow topology. If {u,} is a sequence of renormalized solutions of (3.2),

then, up to a subsequence, it converges a.e. in € to a renormalized solution U of problem (3.1).
Furthermore {Ty(u,)} converges to Ty (u) in WP ().

We also recall the following estimate [10, Th 2.1].
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Theorem 3.5 Let Q be a bounded domain of RY. Then there exists a constant Ki > 0,
depending on p and N such that if u € DJ?ZF(Q) and u is a nonnegative renormalized solution of
problem (3.1) with data p, there holds

1 d(méﬁﬁ)

TV, (@) < u(e) < KW (@) Vo e 0 (33)

where R = di%(m and K1 is a constant independent of x,u and 2.

Proof of Theorem 1.1. Let {uy,}men be a sequence of nonnegative renormalized solutions
of the following problems

—Apug = in Q
up =10 on 0%,
and, for m € N,
—Aptmi1 = Prag(um) + 1 in Q
U1 =0 on Of).

By Theorem 3.5 we have for all z € 2

Xatmt1(z) < KiWE [xaPra,s(tm) + xamu.

Thus, by Theorem 2.4 there exist by € (0,1] and My > 0 depending on N, p, 8, a,l and R such
that

um (@) < K1 (1 v 2%) WE [xoul(z) +2by VoeQmeN (3.4)
and 5
exp (a(K (1 v 2%) WE 4] + 2b0) ) e LL (RV), (3.5)
provided that
(p—1)(B—1)

||M1T[XQM]||L°°(RN) < Mp.

This implies that {u,,} is well defined; by Theorem 3.3 it contains a subsequence that we
still denote by {u,} which converges a.e in Q to function w for which (1.16) is satisfied in
Q. Furthermore, we deduce from (3.4)-(3.5) and the dominated convergence theorem that
Prap(um) = Prap(u) in L1(Q). Finally, by Theorem 3.4 we obtain that u is a renormalized
solution of (1.15).

Conversely, assume that (1.15) admits a nonnegative renormalized solution w. By Theorem 3.5
there holds

1 d(=.09)
u(zx) > EWLPS [w](z) for all z € Q,
where dw = (P, 4, (u)dx + du). By Theorem 2.5, we obtain (1.18). |

Applications 1. We consider the case p =2, § =1. Then [ =2 and

P og(r)=¢e"" —1—ar.
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If Q is a bounded domain in RY, there exists My > 0 and by € (0, 1) such that if y is a positive
Radon measure in 2 which satisfies

w(Bi(x)) < MotV =2 ¥t >0 and almost all z € Q, (3.6)

there exists a positive solution u to the following problem

—Au=¢e" —1—au in Q
u=20 on Of). (3.7)
Furthermore o diam O
ram B
u(z) < K(N)/O %dt t2b  VeeQ (3.8)

In the case N = 2 this result has already been proved by Richard and Véron [12, Prop 2.4].

4 Hessian equations

In this section 2 € R¥ is a bounded domain with a C? boundary. For k = 1,.., N and u € C%(Q)
the k-hessian operator Fy is defined by

Fi[u] = Si(MD?u))

where A\(D?u) = A = (A1, A2,..., Ax) denotes the eigenvalues of the Hessian matrix of second
partial derivative D?u and Sy, is the k-th elementary symmetric polynomial that is

Sk(\) = > Aiy i,
1<i1<...<ig <N

We can see that
Fylu] = [D2’U,}k

where for a matrix A = (a;5), [A]x denotes the sum of the k -th principal minors. We assume
that 99 is uniformly (k-1)-convex that is

Sk—1(k) > ¢co >0 on 0N

for some positive constant c¢g, where k = (k1, K2, ..., kn—1) denote the principal curvatures of 99
with respect to its inner normal.

Definition 4.1 An upper-semicontinuous function u : Q@ — [—00, 00) is k-convez (k-subharmonic)
if, for every open set Q' C QO cQand for every function v € C?(Q)YNC(Q) satisfying Fx[v] <0
n Q, the following implication is true

u<vond) = u<v in .

We denote by ®*(Q) the class of all k-subharmonic functions in Q which are not identically
equal to —o0.
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The following weak convergence result for k-Hessian operators proved in [TW2] is fundamental
in our study.

Theorem 4.2 Let Q0 be a bounded uniformly (k-1)-convez in RYN. For each u € ®*(Q), there
exist a nonnegative Radon measure pylu] in Q such that

a. ugu] = Fylu] for u € C%(Q).

b. If {u,} is a sequence of k-convex functions which converges to u a.e then pg[u,] = pi[u] in
the weak sense of measures.

As in the case of quasilinear equations with measure data, precise estimates of solutions of
k-Hessian equations with measures data are expressed in terms of Wolff potentials. The next
result is proved in [7].

Theorem 4.3 Let Q C RY be a bounded C?, uniformly (k — 1)-convex domain. Let ¢ be a
nonnegative continuous function on 9Q and p be a nonnegative Radon measure. Suppose that
W can be decomposed as

p=p1+f

such that py is a measure with compact support in Q and f € L1(Q) for some q > % ifk< X

2
orp=1i4fk > % Then there exists a nonnegative function u in € such that —u € ®*(Q),

continuous near 02 and u is a solution to the problem

Fyl-u]l=p in Q
U= on 0N.

Furthermore, for any nonnegative function u such that —u € ®*(Q), which is continuous near
0 and is a solution of above equation, there holds

1 e 2diam Q
Wt el < u(o) < K (WG + ). (a1)

where Ko is a positive constant independent of x,u and €.

Proof of Theorem 1.2. We defined a sequence of nonnegative functions u,,, continuous near
0Q and such that —u,, € ®¥(Q), by the following iterative scheme

Frl—upl = p in Q

Uy = on 90 (42)
and, for m > 0,
Blt)= Pugin) 44 0 8 =
By Theorem 3.5 we have for all 2 € RV,
Xouo(r) < K2W}§7k7k+1[><szu] (z) +0b
I (4.4)

Xoum+1 () < KoWhy | [xeHi(auy,) + xou](z) + b,
P
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where b = K maxpq ¢. Thus, by Theorem 2.4 there exist by € (0,1] and My > 0 depending on
N,p, B,a,m and R such that

Um () < KoWE, w1 Xa () + 2bo Vo € Q, Vm > 0, (4.5)
k+1°
and
Prag (KaWPhe (1] +2b0) € Ll (RY), (46)
provided that
B(B—1)

My, 72 [Xaull|Loe @y < M.

Note that because we can write

w = Prap(um) +p = (pn + X095 Pas(um)) + (1= x05) Prap(tm) + ),

where Qs = {x € Q : d(z,0Q) < §} and § > 0 is small enough, then w satisfies the assumptions
of the data in Theorem 4.3 since u,, is continuous near J€2. Therefore the sequence {u,} is well
defined. Since u,, is k-superharmonic and (4.5) holds, the sequence {u,,} is relatively compact
in L}, (see e.g. [4]); we can find a subsequence, still denoted by the index m, such that u,,
converges a.e in ) to function w for which (1.21) is satisfied in Q. Furthermore, we deduce
from (4.5)-(4.6) and the dominated convergence theorem that P o 5(tum) — Pa.p(u) in L1(€).
Finally, by Theorem 4.2, we obtain that u satisfies (1.20) and (1.21).

Conversely, assume that (1.20) admits nonnegative solution u, continuous near 9, such that
—u € ®F(Q) and P, 5(u) € L*(2). Then by Theorem 4.3 we have

1 d(z,89Q)
u(z) > Ew%{kﬂ[u)](m) for all z € Q,

where dw = P} 4 g(u)dx + du. Using Theorem 2.5, we conclude that (1.22) holds. |

5 Wolff integral equations

Proof of Theorem 1.3. Let ¢ > 0, assume that exp((a + ¢)f?) € L. (RY) and consider
the measure dy = P, 3 (a+¢)f)dz. By Theorem 2.3 with n = %, there exist C' =
C(N,a,p,3,R) > 0 and §y = §p(N, o, p, ) > 0 such that if

(Pfl)ﬂ(ﬁfl)
Moy 5" [l @y) < M,

there holds ) 5
W, [GXP (%Mﬁﬁ (WE ) )} (z) <C  VzeRM. (5.1)

Consider the sequence {um, }m>0 of nonnegative functions defined by uy = f and

Umy1 = Wg,p[Plyaﬁ(um)] +f in RY vm>o.
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Step 1. We claim that there exist by € (0,1] and My > 0 depending on N, «, p, 3,a, m and R

such that if
%
IIM,,, & [1]]| Lo mvy < Mo,

then the sequence {um }m>0 is well defined and there holds
U < F 1= (1 v 3%1) WE i+ f+by  Ym>0, (5.2)

and
eXp(aFﬁ) € L}OC(RN) and ||W§7P[Pl1aﬁg(F)] ||L°°(]RN) < +o00. (5.3)

Clearly, (5.2) holds with m = 0, thus we assume that (5.2) holds with m = n, then it follows

a+27 1
a

2-p\ B
un <€y (1v TR (W) + Cab” + 7.

Here, we have used the inequality

Z8 VXY, Z >0

2
(X+Y +2) < CXP 4 Cpy® 4 22

a

where the constants Cy,Cy depend on a,e and 3. Since s — H;(s) is convex in [0, +00), there
holds

B g R B g B 2(1 +e€ B
Hi(aun") < 4(a+5)Hl (Cg(wa’p[ﬂ]) ) + 4(a +€)Hl (C4b0 ) + 2(a+5)Hl ((a+e)f7)
< (Cs(WE[1)”) + 057 Hy (Ca) + Hi (0 +)17),
where 64 A
Cy = aCy (1v37F) (“j ) and Cy = aCy (“j ).
Thus,

Unt1 = WE  [Hi(aun?)] + f
< (1 v 3%) Wk [Hl (03 (ng,p[u])ﬁ)} n (1 v 3%) bo? TWE[H,(Cy)]
n (1 v 3%1) WE [H ((a+e)f%)] + f
< (1vat) WE, [ ((a+2)f%)] + f
+ (1 v 3%) Wi [Hl (03 (Wgyp[u])ﬁ)} + Csby7o,

(5.4)
where
22 Ty a2 p—1_ ap
Cs = (1v37F) (H(C) 7 By P LS R,
Note that
8 by __po1
Csbor—T < 5 & by < (2C5)” B-rF1,
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p—1
Next, if we choose by = bo(N, a,p, 8, K, R) =1 A (2C5)” ™F=»FT we have

8 bO

Csby ' < 5 (5.5)

Furthermore, since H;(s) < yH;(y~'s) for all v € (0,1] and s > 0, we have

Pi= (Vv ) WE [ (Co(WE [)")] < (1v358) 7 WE [ (77 Cs(WE i) |-

If [y71C5 < 50M_%, which is equivalent to M < (5003_1)%7177, we deduce
P< (1 v 3%) NI

from (5.1). In order to insure

(1vat) e < %0

which is equivalent to
_ —p+1
N < bg‘1(2c (1 vsﬁ)) "

we can choose
—p —p+1
VZV(N,a,p,ﬁ,K,R)zlA(b§‘1(20(1v3%)) )

and
p—1 51

MO - MO(NaaapaﬁaKa R) = ((SOCV3_1)T’YT
Having made those choices, we obtain
b
P< 30 (5.6)

provided M < M. Jointly with (5.5) and (5.4) it yields to
tng1 < (1 v 3%) WE 1] + f + bo. (5.7)

This implies that {wm, }m>0 is well defined and (5.2) and (5.3) are satisfied. It is easy to see
that u, is nondecreasing. Hence, from (5.2) and (5.3), we obtain that u(z) = lim wu,(x) is a
n— oo

solution to equation (1.23) which satisfies (1.24).
Step 2. Conversely, we assume that (1.23) admits a nonnegative solution w. There holds

u? > (WE [Pas()])” + f°,

and thus,
Prap(u) > Prag (W5 [PrapW)]) + Pias(f)-

This implies
di > Prap (W []) de,
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where

dp = Pras (WE ,[Pias(w)]) de + Prag (f) d.
If E Cc RY is a Borel set, we deduce

2 18
/ (Myxe) ™ Plas (Weiplu]) do < / (Myxp)? T dp.
RN RN

Since M,, is bounded in L*(RY™, dw) for s > 1 by Fefferman’s differentiation theorem [9], we
derive

B
/ (MyxE) 7T Pras (W 4]) do < csp(E),
RN

for some constant ¢4 only depends on N and %. Because

18
(]MMXE)%1 Pl,a,ﬂ (Wg,p[/j’]) > Pl#l”@ (Wg,p[:uE]) )
we finally deduce

/Pl,aﬁg (Wgﬁp[u]) dx < csp(E) VE c RY, E Borel.
E
As in the proof of Theorem 2.5, it is easy to see that we get
w(E) < CoCapa.,,,Q: (E) VE c RN, E Borel,

where the positive constant cg depends on N, «, p, 8 and R. Finally we obtain that for any Borel
subset E C RY there holds

[ Pl (WEPLap(@)]) do + [ Pros($)ds < cocanc,, o (),
E E
which completes the proof of the Theorem. [
Applications 2. When « = 1, the equation (1.20) with R = co is equivalent to
—Ap(u—f) = Ppopu) in RV,
2k

and when o = 725 and p = k + 1, it is equivalent to

Fr(—u+ f) = Prap(u) in RY.
If p = 2 equation (1.20) becomes linear. If we set v = 2« then

Woalilo) = [ n(Bi0) s

L ) e

_ / dp(y)
ry |2 —y[N Y

=1,*p
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where I, is the Riesz kernel of order v. Thus (1.20) with R = oo is equivalent to

(=A)*(u—f)= Pl,a,ﬂ(U) in RV,
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