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Abstract

We prove existence results concerning equations of the type −∆pu = F (u) + µ for p > 1
and Fk[−u]u = F (u) + µ with 1 ≤ k < N

2 in a bounded domain Ω, where µ is a positive Radon

measure and F (u) ∼ eau
β

with a > 0 and β ≥ 1. Sufficient conditions for existence are ex-
pressed in terms of the maximal fractional potential of µ. Two-sided estimates on the solutions
are obtained in terms of some precise Wolff potentials of µ. Necessary conditions are obtained
in terms of Orlicz capacities. We also establish existence results for a general Wolff potential
equation under the form u = Wα,p[F (u)] + f .

2010 Mathematics Subject Classification. 31C15, 32 F10, 35J92, 35R06, 46E30.

Key words: quasilinear elliptic equations, Hessian equations, Wolff potential, maximal functions, Borel measures,

Orlicz capacities.

∗E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
†E-mail address: Laurent.Veron@lmpt.univ-tours.fr

1



1 Introduction

Let Ω ⊂ R
N be a bounded domain, p > 1 and k ∈ {1, 2, ...N}. We denote by

∆pu := div
(

|∇u|p−2 ∇u
)

the p-Laplace operator and by

Fk[u] =
∑

1≤j1<j2<...<jk≤N

λj1λj2 ...λjk

the k-Hessian operator where λ1, ...λN are the eigenvalues of the Hessian matrix D2u. Let µ
be a positive Radon measure in Ω; our aim is to study the existence of positive renormalized
solutions to the quasilinear equation

−∆pu = P (u) + µ in Ω
u = 0 on ∂Ω

(1.1)

and the fully nonlinear equation

Fk[u] = P (u) + µ in Ω
u = ϕ on ∂Ω

(1.2)

where P an exponential function. When P (r) = rq with q > p − 1, Phuc and Verbitsky
published a seminal article [10] on the solvability of the corresponding problem (1.1). They
obtained necessary and sufficient conditions involving Bessel capacities or Wolff potentials. For
example, they proved that if µ has compact support in Ω it is equivalent to solve (1.1) with
P (r) = rq or to have

µ(E) ≤ cCp,
p

q+1−p
(E) for all compact set E ⊂ Ω, (1.3)

where c is a suitable positive constant and Cp,
p

q+1−p
a Bessel capacity, or to have

∫

B

[

W2R
1,p[µB(x)]

]q
dx ≤ C[µ(B) for all ball B s.t. B ∩ suppµ 6= ∅, (1.4)

where R = supp(Ω). Other conditions are expressed in terms of Riesz capacities and Riesz po-
tentials. Their construction is based upon sharp estimates of solutions of the non-homogeneous
problem

−∆pu = ω in Ω
u = 0 on ∂Ω

(1.5)

for positive measures ω. Concerning k-Hessian operator in a bounded (k − 1)-convex domain
Ω, they proved that if µ has compact support, the corresponding problem (1.2 with P (r) = rq

with q > k admits a positive solution if and only if

µ(E) ≤ cC2k, q
q−k

(E) for all compact set E ⊂ Ω (1.6)
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or equivalently

∫

B

[

W2R
2k

k+1 ,k+1
[µB(x)]

]q

dx ≤ C[µ(B) for all ball B s.t. B ∩ suppµ 6= ∅. (1.7)

The main tools in their proofs are derived from recent advances in potential theory for nonlinear
elliptic equations obtained by Kilpelainen and Maly [5], Trudinger and Wang [14, 15, 16], and
Labutin [7] thanks to whom the authors first provide global pointwise estimates for solutions of
the homogeneous Dirichlet problems in terms of Wolffs potentials of suitable order.

For s > 1, 0 ≤ α < N
s
, η ≥ 0 and 0 < T ≤ ∞, we recall the expression of the T -truncated

Wolff potential of a positive Radon measure µ defined in R
N by

WT
α,s[µ](x) =

∫ T

0

(

µ(Bt(X))
tN−αs

)
1

s−1 dt
t
, (1.8)

and the T -truncated η-fractional maximal potential of µ by

M
η
α,T [µ](x) = sup

{

µ(Bt(X))
tN−αhη(t)

: 0 < t ≤ T
}

, (1.9)

where hη(t) = (− ln t)−ηχ(0,2−1](t)+ (ln 2)−ηχ[2−1,∞(t). If η = 0, then hη = 1 and we denote by
Mα,T [µ] the corresponding T -truncated fractional maximal potential of µ. When the measures
are only defined in an open subset Ω ⊂ R

N , they are naturally extended by 0 in Ωc. For l ∈ N∗,
we define the l-truncated exponential function

Hl(r) = er −
l−1
∑

j=0

rj

j!
, (1.10)

and for a > 0 and β ≥ 1, we set
Pl,a,β(r) = Hl(ar

β). (1.11)

We put

Qp(s) =











∞
∑

q=l

s
βq

p−1

q
βq
p−1 q!

if p 6= 2

Hl(s
β) if p = 2,

(1.12)

Q∗
p(r) = max {rs−Qp(s) : s ≥ 0} is the complementary function to Qp, and define

capGp,Q∗

p
(E) = inf







∫

RN

Q∗
p(f)dx : Gp ∗ f ≥ χE , f ≥ 0, Q∗

p(f) ∈ L1(RN )







(1.13)

where Gp(x) = F−1
(

(1 + |.|2)−
p
2

)

(x) is the Bessel kernel of order p.

We denote a∧ b and a∨ b for min{a, b} and max{a, b} respectively. Our main results are the
following theorems
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Theorem 1.1 Let 1 < p < N , l ∈ N and β ≥ 1 such that lβ > p− 1 and a > 0. Let Ω ⊂ R
N

be a bounded domain. If µ is a nonnegative Radon measure in Ω, there exist b0 ∈ (0, 1] and
M0 > 0 depending on N, p, β, a, l and diamΩ which is the diameter of Ω such that if

||M
(p−1)(β−1)

β

p,2diamΩ [µ]||L∞(RN ) ≤ M0, (1.14)

the following Dirichlet problem

−∆pu = Pl,a,β(u) + µ in Ω
u = 0 on ∂Ω

(1.15)

admits a nonnegative renormalized solution u, which satisfies

u(x) ≤ K1

(

1 ∨ 2
2−p
p−1

)

W2diamΩ
1,p [µ](x) + 2b0 ∀x ∈ Ω (1.16)

and
exp

(

K1

(

1 ∨ 2
2−p
p−1

)

W2diamΩ
1,p [χΩµ] + 2b0

)

∈ L1(Ω). (1.17)

The role of K1 = K1(N, p) will be made explicit in Theorem 3.5.
Conversely, if (1.15) admits a nonnegative renormalized solution u, then for any compact set
K ⊂ Ω, there exists a positive constant C depending on N, p, β and dist (K, ∂Ω) such that

∫

E

Pl,α,β(u)dx+ µ(E) ≤ CcapGp,Q∗

p
(E) for all Borel sets E ⊂ K. (1.18)

Concerning the k-Hessian operator we recall some notions notions introduced by Trudinger
and Wang [14, 15, 16], and we follow their notations. For k = 1, .., N and u ∈ C2(Ω) the
k-hessian operator Fk is defined by

Fk[u] = Sk(λ(D
2u))

where λ(D2u) = λ = (λ1, λ2, ..., λN ) denotes the eigenvalues of the Hessian matrix of second
partial derivatives D2u and Sk is the k-th elementary symmetric polynomial that is

Sk(λ) =
∑

1≤i1<...<ik≤N

λi1 ...λik

It is straightforward that
Fk[u] =

[

D2u
]

k
,

where in general [A]k denotes the sum of the k-th principal minors of a matrix A = (aij). In
order that there exists a smooth k-admissible function which vanishes on ∂Ω, the boundary ∂Ω
must satisfy a uniformly (k-1)-convex condition, that is

Sk−1(κ) ≥ c0 > 0 on ∂Ω (1.19)

for some positive constant c0, where κ = (κ1, κ2, ..., κn−1) denote the principal curvatures of ∂Ω
with respect to its inner normal. We also denotes by Φk(Ω) the class of upper-semicontinuous
functions Ω 7→ [−∞,∞) which are k-convex, or subharmonic in the Perron sense (see Definition
4.1). In this paper we prove the following theorem
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Theorem 1.2 Let k ∈ {1, 2, ..., N} such that 2k < N , l ∈ N
∗, β ≥ 1 such that lβ > k and a > 0.

Let Ω be a bounded uniformly (k-1)-convex domain in R
N . Let ϕ be a nonnegative continuous

function on ∂Ω and µ = µ1 + f be a nonnegative Radon measure where µ1 has compact support
in Ω and f ∈ Lq(Ω) for some q > N

2k . Let K2 = K2(N, k) be the constant K2 which appears in
Theorem 4.3. Then, there exist b0 ∈ (0, 1] and M0 > 0 depending on N, k, β, a, l and diam(Ω)
such that if

||M
k(β−1)

β

2k,R [µ]||L∞(RN ) ≤ M0

and max∂Ω ϕ ≤ b0
K2

, the following Dirichlet problem

Fk[−u] = Pl,a,β(u) + µ in Ω
u = ϕ on ∂Ω,

(1.20)

admits a nonnegative solution u, continuous near ∂Ω, with −u ∈ Φk(Ω) and Pl,a,β(u) ∈ L1(Ω)
which satisfies

u(x) ≤ K2W
2diamΩ
2k

k+1 ,k+1
[χΩµ](x) + 2b0 ∀x ∈ Ω. (1.21)

Conversely, if (1.20) admits a nonnegative solution u, continuous near ∂Ω, such that −u ∈
Φk(Ω) and Pl,a,β(u) ∈ L1(Ω), then for any a compact set K ⊂ Ω, there exists a positive constant
C depending on N, k, β and dist(K, ∂Ω) such that there holds

∫

E

Pl,a,β(u)dx+ µ(E) ≤ CcapG2k,Q
∗

k+1
(E) ∀E ⊂ K,E Borel, (1.22)

where Qk+1(s) is defined by (1.12) with p = k + 1, Q∗
k+1 is its complementary function and

capG2k,Q
∗

k+1
(E) is defined accordingly by (1.13).

The two previous theorems are connected to the following result which deals with a class of
nonlinear Wolff integral equations.

Theorem 1.3 Let N ∈ N, p > 1, α > 0, a > 0, R > 0, l ∈ N and β ≥ 1 such that lβ > p− 1
and 0 < αp < N . Let f ∈ L1

loc(R
N ), f ≥ 0. For any ε > 0 there exist constants b0 ∈ (0, 1] and

M0 > 0 depending on N,α, p, β, a, l, R and ε such that if exp((a+ ε)fβ) ∈ L1
loc(R

N ) and

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ M0

where dµ = Pl,a+ε,β(f)dx, then there exists a nonnegative function u, such that Pl,a,β(u) ∈
L1
loc(R

N ) which satisfies
u = WR

α,p[Pl,a,β(u)] + f in R
N . (1.23)

Furthermore

WR
α,p[Pl,a,β(u)] + f ≤ u ≤

(

1 ∨ 3
2−p
p−1

)

WR
α,p[µ] + f + b0 := F in R

N (1.24)

Moreover exp(aF β) ∈ L1
loc(R

N ) and
∥

∥WR
α,p[Pl,a,β(F )]

∥

∥

L∞(RN )
< +∞.

Conversely, if (1.23) admits a nonnegative solution u, then there exists a positive constant C
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depending on N,α, p, β and R such that there holds
∫

E

Pl,a,β

(

WR
α,p[Pl,a,β(u)]

)

dx +

∫

E

Pl,a,β(f)dx ≤ CcapGαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel,

where Qp, Q
∗
p and capGαp,Q∗

p
are defined in (1.12).

In the case α = 1, R = ∞, (1.23) is equivalent to

−∆p(u − f) = Pl,a,β(u) in R
N . (1.25)

while when α = 2k
k+1 , for some k ∈ N∗ and p = k + 1, it is equivalent to

Fk[−u+ f) = Pl,a,β(u) in R
N . (1.26)

Some other applications are also given to equations involving the fractional Laplacian.

2 Estimates on potentials

We denote by Br(a) the ball of center a and radius r > 0 and Br = Br(0). The next estimates
are crucial in the sequel.

Theorem 2.1 1. There exists a positive constant c1, depending only on N,α, p,R such that
for all µ ∈ M

+(RN ) and q > p− 1 we have

(c1q)
− q

p−1

∫

RN

(Gαp[µ](x))
q

p−1 dx ≤

∫

RN

(

WR
α,p[µ](x)

)q
dx ≤ (c1q)

q

∫

RN

(Gαp[µ](x))
q

p−1 dx

(2.1)
where Gαp[µ] := Gαp ∗ µ denotes the Bessel potential of order αp of µ.

2. There exists a positive constant c2 depending only on N,α, p,R such that for all µ ∈ M
+(RN )

and q > p− 1 we have

c−q
2

∫

RN

(G2α[µ][µ](x))
q
dx ≤

∫

RN

(

WR
α,2[µ](x)

)q
dx ≤ cq2

∫

RN

(G2α[µ](x))
q
dx. (2.2)

Proof. We can find proof of (2.2) in [2, Step 3, Theorem 2.3]. By [2, Step 2, Theorem 2.3],
there is c3 > 0 such that
∫

RN

(

WR
α,p[µ](x)

)q
dx ≥ cq3

∫

RN

(Mαp,R[µ](x))
q

p−1 dx ∀q > 0, R > 0 and µ ∈ M
+(RN ). (2.3)

We recall that Mαp,R[µ] = M0
αp,R[µ] by (1.9). Next we show that

∫

RN

(Mαp,R[µ](x))
q

p−1 dx ≥ (c4q)
−q

∫

RN

(

WR
α,p[µ](x)

)q
dx ∀q > 0, R > 0 and µ ∈ M

+(RN ),

(2.4)
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for some a positive constant c4. Indeed, we denote µn by χBn
µ for n ∈ N

∗. By [2, Proposition
2.2], there exist constants c5 = c5(N,α, p) > 0, a = a(α, p) > 0 and ε0 = ε(N,α, p) such that
for all n ∈ N

∗, t > 0, r > 0, 0 < R ≤ ∞ and 0 < ε < ε0, there holds

∣

∣

∣

{

WR
α,pµn > 3t, (Mαp,Rµn)

1
p−1 ≤ εt

}∣

∣

∣ ≤ c5 exp
(

−aε−1
) ∣

∣

{

WR
α,pµn > t

}∣

∣ .

Thus,

∣

∣

{

WR
α,pµn > 3t

}∣

∣ ≤ c5 exp
(

−aε−1
) ∣

∣

{

WR
α,pµn > t

}∣

∣+
∣

∣

∣

{

(Mαp,Rµn)
1

p−1 > εt
}∣

∣

∣ .

Multiplying by qtq−1 and integrating over (0,∞), we obtain

∞
∫

0

qtq−1
∣

∣

{

WR
α,pµn > 3t

}∣

∣ dt ≤ c5 exp
(

−aε−1
)

∞
∫

0

qtq−1
∣

∣

{

WR
α,pµn > t

}∣

∣ dt

+

∞
∫

0

qtq−1
∣

∣

∣

{

(Mαp,Rµn)
1

p−1 > εt
}∣

∣

∣ dt,

which implies

3−q

∫

N

(

WR
α,p[µn](x)

)q
dx ≤ c5 exp

(

−aε−1
)

∫

N

(

WR
α,p[µn](x)

)q
dx+ ε−q

∫

N

(Mαp,Rµn)
q

p−1 dx.

This leads to
∫

N

(Mαp,Rµn)
q

p−1 dxǫεq
(

3−q − c5 exp
(

−aε−1
))

∫

N

(

WR
α,p[µn](x)

)q
dx.

We see that sup
0<ε<ε0

εq
(

3−q − c5 exp
(

−aε−1
))

≈ (c6q)
−q for some a constant c6 which does not

depend on q. Therefore, (2.4) follows by Fatou’s lemma. From (2.3) and (2.4), we have

cq7

∫

RN

(

WR
αp
2 ,2[µ](x)

)q

dx ≥

∫

RN

(Mαp,R[µ](x))
qdx ≥ (c7q)

−q

∫

N

(

WR
αp
2 ,2[µ](x)

)q

dx

for all q > 0 and µ ∈ M
+(RN ), with c7 = c7(N,α, p) > 0. Then, combining with (2.2) we get

cq8

∫

RN

(Gαp[µ](x))
qdx ≥

∫

RN

(Mαp,R[µ](x))
qdx ≥ (c8q)

−q

∫

RN

(Gαp[µ](x))
qdx

with c8 = c8(N,α, p,R), for all q > 0 and µ ∈ M
+(RN ). Therefore, jointly with (2.3) and (2.4)

we derive (2.1).

The next result is proved in [2].
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Theorem 2.2 Let α > 0, p > 1, 0 ≤ η < p − 1, 0 < αp < N and L > 0. Set δ =

1
2

(

p−1−η
12(p−1)

)
p−1

p−1−η

αp log(2). Then there exists C(L) > 0, depending on N , α, p, η and L such

that for any R ∈ (0,∞], µ ∈ M+ (RN ), any a ∈ R
N and 0 < r ≤ L, there holds

1

|B2r(a)|

∫

B2r(a)

exp





δ

||Mη
αp,R[µBr

(a)]||
1

p−1−η

L∞(Br(a))

(

WR
α,p[µBr(a)](x)

)

p−1
p−1−η



 dx ≤ C(L) (2.5)

where µBr(a) = χBr(a)µ. Furthermore, if η = 0, C is independent of r.

Theorem 2.3 Assume α, p, η are as in Theorem 2.2 and µ ∈ M
+(RN ) satisfies for R > 0

||Mη
αp,R[µ]||L∞(RN ) ≤ M,

for some M > 0. Then there exist C = C(N,α, p, η, R) > 0 and δ0 = δ0(N,α, p, η) > 0 such
that

∥

∥

∥

∥

WR
α,p

[

exp

(

δ0M
− 1

p−1−η

(

WR
α,p [µ]

)

p−1
p−1−η

)]∥

∥

∥

∥

L∞(RN )

≤ C.

Proof. Let x ∈ R
N . Since µ(Bt(y)) ≤ MtN−αphη(t), for all r ∈ (0, R) and y ∈ R

N we have

WR
α,p [µ] (y) = Wr

α,p [µ] (y) +

R
∫

r

(

µ(Bt(y))

tN−αp

)
1

p−1 dt

t

≤ Wr
α,p [µ] (y) +M

1
p−1

R
∫

r

(hη(t))
1

p−1
dt

t

≤ Wr
α,p [µ] (y) +M

1
p−1

2−1
∫

r∧2−1

(

(− ln t)
−η
)

1
p−1 dt

t
+M

1
p−1

R∨2−1
∫

2−1

(

(ln 2)
−η
)

1
p−1 dt

t

≤ Wr
α,p [µ] (y) +

(p− 1)M
1

p−1

p− 1− η
(− ln(r ∧ 2−1))

p−1−η
p−1 +M

1
p−1 (ln(2))−

η
p−1 ln(2R ∨ 1).

Thus,

(

WR
α,p [µ] (y)

)

p−1
p−1−η ≤ A1

(

Wr
α,p [µ] (y)

)
p−1

p−1−η +A2M
1

p−1−η ln

(

1

r ∧ 0.5

)

+A3M
1

p−1−η , (2.6)

where
A1 = 3

η
p−1−η ,

A2 = 3
η

p−1−η

(

p− 1

p− 1− η

)
p−1

p−1−η

,

and
A3(R) = 3

η
p−1−η (ln(2))−

η
p−1−η (ln(2R ∨ 1))

p−1
p−1−η .
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Let θ ∈ (0.1], since exp(a+ b) ≤ 1
2 exp (2a) +

1
2 exp (2b) for all a, b ∈ R, we get from (2.6)

exp

(

θ
δM− 1

p−1−η

2A1

(

WR
α,p [µ]

)

p−1
p−1−η

)

≤
1

2
exp

(

δM− 1
p−1−η

(

Wr
α,p [µ]

)
p−1

p−1−η

)

+
1

2
exp

(

θ
A2

A1
ln

(

1

r ∧ 2−1

)

+ θ
A3(R)

A1

)

(2.7)

For r > 0, 0 < t ≤ r, y ∈ Br(x) we have Bt(y) ⊂ B2r(x). Thus, Wr
α,p[µ] = Wr

α,p[µB2r ] in
Br(x). Then, using (2.5) with L = 2R we get

∫

Br(x)

exp

(

δM− 1
p−1−η

(

Wr
α,p [µ]

)
p−1

p−1−η

)

=

∫

Br(x)

exp

(

δM− 1
p−1−η

(

Wr
α,p

[

µB2r(x)

])
p−1

p−1−η

)

≤ C(2R)|B4|rN .

So, from (2.7) we deduce

∫

Br(x)

exp

(

θ
δM− 1

p−1−η

2A1

(

WR
α,p [µ]

)

p−1
p−1−η

)

≤ 1
2C(2R)|B4|rN + 1

2 exp
(

θA2

A1
ln
(

1
r∧2−1

)

+ θA3(R)
A1

)

|B1|rN

≤ 1
2C(2R)|B4|rN + 1

2 |B1| exp
(

θA3(R)
A1

)

(

r ∧ 2−1
)−θ

A2
A1 rN .

Therefore,

WR
α,p

[

exp

(

θ
δM− 1

p−1−η

2A1

(

WR
α,p [µ]

)

p−1
p−1−η

)]

(x)

≤
1

2

R
∫

0

(

C(2R)|B4|r
αp + |B1| exp

(

θ
A3(R)

A1

)

(

r ∧ 2−1
)−θ

A2
A1 rαp

)
1

p−1 dr

r

≤
(

1 ∨ 2
2−p
p−1

)

(

1

2
C(2R)|B4|

)
1

p−1
R
∫

0

r
αp
p−1−1dr

+
(

1 ∨ 2
2−p
p−1

)

(

1

2
|B1| exp

(

θ
A3(R)

A1

))
1

p−1
R
∫

0

(

r ∧ 2−1
)−θ

A2
(p−1)A1 r

αp
p−1−1dr

≤ A4(R) +A5(R)

R
∫

0

(

r ∧ 2−1
)−θ

A2
(p−1)A1 r

αp
p−1−1dr,

where

A4(R) =
(

1 ∨ 2
2−p
p−1

)

(

1

2
C(2R)|B4|

)
1

p−1 p− 1

αp
R

αp
p−1

9



and

A5(R) =
(

1 ∨ 2
2−p
p−1

)

(

1

2
|B1| exp

(

θ
A3(R)

A1

))
1

p−1

.

Now we choose θ = 1 ∧ αpA1

2A2
, we have

WR
α,p

[

exp

(

θ
δM− 1

p−1−η

2A1

(

WR
α,p [µ]

)

p−1
p−1−η

)]

(x) ≤ A4 +A5

R
∫

0

( r

r ∧ 2−1

)
αp

2(p−1)

r
αp

2(p−1)
−1dr

≤ A4 + 2
αp

2(p−1)A5

R
∫

0

r
αp

2(p−1)
−1dr.

In other words,

WR
α,p

[

exp

(

δ0M
− 1

p−1−η

(

WR
α,p [µ]

)

p−1
p−1−η

)]

(x) ≤ A6(R),

where

A6(R) = A4(R) + 2
αp

2(p−1)
2(p− 1)

αp
A5(R)R

αp
2(p−1) ,

δ0 =
θδ

2A1
=

1

4
3−

η
p−1−η

(

p− 1− η

12(p− 1)

)
p−1

p−1−η

(

1 ∧

(

αp

2

(

p− 1

p− 1− η

)− p−1
p−1−η

))

αp log(2).

Which completes the proof of the Theorem.

In the next result we obtain estimate on iterative solutions of Wolff integral inequalities. We
recall that Hl and Pl,a,β have been defined in (1.14) and (1.11).

Theorem 2.4 Let N ∈ N, p > 1,α > 0, a > 0, b ≥ 0, K > 0, R > 0, l ∈ N
∗ and β ≥ 1 such

that lβ > p− 1 and 0 < αp < N . Suppose that {um} is a sequence of nonnegative functions in
R

N that satisfies
um+1 ≤ KWR

α,p[Pl,a,β(um) + µ] + b ∀m ∈ N,

u0 ≤ KWR
α,p[µ] + b,

(2.8)

where µ ∈ M
+(RN ). Then there exist b0 ∈ (0, 1] and M0 > 0 depending on N,α, p, β, a, l,K

and R such that if b ≤ b0 and

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ M0,

there holds

exp

(

a
(

K
(

1 ∨ 2
2−p
p−1

)

WR
α,p[µ] + 2b0

)β
)

∈ L1
loc(R

N )

and ∥

∥

∥W
R
α,p

[

Pl,a,β

(

K
(

1 ∨ 2
2−p
p−1

)

WR
α,p[µ] + 2b0

)] ∥

∥

∥

L∞(RN )
< +∞

and finally

um ≤ K
(

1 ∨ 2
2−p
p−1

)

WR
α,p[µ] + 2b0 ∀m ∈ N. (2.9)

10



Proof. By Theorem 2.3 with η = (p−1)(β−1)
β

, there exist C = C(N,α, p, β,R) > 0 and δ0 =

δ0(N,α, p, β) > 0 such that if

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ M,

then
WR

α,p

[

exp
(

δ0M
− β

p−1
(

WR
α,p [µ]

)β
)]

(x) ≤ C x ∈ R
N . (2.10)

Take b0 ∈ [b, 1]. We will choose b0 and M0 later on. Clearly, (2.9) holds with m = 0. Now,
assume that (2.9) holds with m = n, we need to prove that

un+1 ≤ K
(

1 ∨ 2
2−p
p−1

)

WR
α,p[µ] + 2b0.

In fact, by the definition of un+1 and the sub-additive property of WR
α,p[.], we have

un+1 ≤ K
(

1 ∨ 2
2−p
p−1

)

WR
α,p[µ] + K

(

1 ∨ 2
2−p
p−1

)

WR
α,p[Pl,a,β(un)] + b.

So, it is sufficient to prove that

P1 := K
(

1 ∨ 2
2−p
p−1

)

WR
α,p[Pl,a,β(un)] ≤ b0. (2.11)

Since (2.9) holds with m = n,

uβ
n ≤ Kβ2β−1

(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
+ 22β−1bβ0 ,

which implies

Pl,a,β(un) ≤ Hl

(

Kβ2β−1
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
+ 22β−1bβ0

)

≤
1

2
Hl

(

Kβ2β
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
)

+
1

2
Hl(2

2βbβ0 )

≤
1

2
Hl

(

Kβ2β
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
)

+
1

2
blβ0 Hl(2

2β),

since b0 ≤ 1. Thus,

WR
α,p [Pl,a,β(un)] ≤ WR

α,p

[

1
2Hl

(

Kβ2β
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
)

+ 1
2b

mβ
0 Hl(2

2β)

]

≤ 2−
1

p−1

(

1 ∨ 2
2−p
p−1

)

WR
α,p

[

Hl

(

Kβ2β
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
)]

+ 2−
1

p−1

(

1 ∨ 2
2−p
p−1

)

WR
α,p

[

blβ0 Hl(2
2β)
]

= 2−
1

p−1

(

1 ∨ 2
2−p
p−1

)

WR
α,p

[

Hl

(

Kβ2β
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
)]

+ C1(R)b
lβ

p−1

0 ,
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where

C1(R) =
p− 1

2
1

p−1αp

(

1 ∨ 2
2−p
p−1

)

(

Hl(2
2β)
)

1
p−1 |B1|

1
p−1R

αp
p−1 .

Thus

P1 ≤ K2−
1

p−1

(

1 ∨ 2
2−p
p−1

)2

WR
α,p

[

Hl

(

Kβ2β
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
)]

+ C1(R)K
(

1 ∨ 2
2−p
p−1

)

b
lβ

p−1

0 .

(2.12)

Note that

C1(R)K
(

1 ∨ 2
2−p
p−1

)

b
lβ

p−1

0 ≤
b0
2

⇔ b0 ≤
(

2C1(R)K
(

1 ∨ 2
2−p
p−1

))
p−1

lβ−p+1

.

Now we choose

b0 = b0(N,α, p, β,K,R) := 1 ∧
(

2C1(R)K
(

1 ∨ 2
2−p
p−1

))
p−1

lβ−p+1

,

and we derive

C1(R)K
(

1 ∨ 2
2−p
p−1

)

b
lβ

p−1

0 ≤
b0
2
. (2.13)

Next, set γ ∈ (0, 1]; since Hl(s) ≤ γHl(γ
−1s) for all s ≥ 0,

P2 := K2−
1

p−1

(

1 ∨ 2
2−p
p−1

)2

WR
α,p

[

Hl

(

Kβ2β
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
)]

≤ K2−
1

p−1

(

1 ∨ 2
2−p
p−1

)2

γ
1

p−1WR
α,p

[

Hl

(

γ−1Kβ2β
(

1 ∨ 2
2−p
p−1

)β
(

WR
α,p[µ]

)β
)]

.

From (2.10), we assert that if

γ−1Kβ2β
(

1 ∨ 2
2−p
p−1

)β

≤ δ0M
− β

p−1 ⇐⇒ M ≤

(

δ0K
−β2−β

(

1 ∨ 2
2−p
p−1

)−β
)

p−1
β

γ
p−1
β ,

then

P2 ≤ K2−
1

p−1

(

1 ∨ 2
2−p
p−1

)2

γ
1

p−1C.

This will be achieved if we prove that

K2−
1

p−1

(

1 ∨ 2
2−p
p−1

)2

γ
1

p−1C ≤
b0
2
,

which is equivalent to

γ ≤

(

K−12
2−p
p−1

(

1 ∨ 2
2−p
p−1

)−2

C−1b0

)p−1

.

Thus, we can choose

γ = γ(N,α, p, β,K,R) = 1 ∧

(

K−12
2−p
p−1

(

1 ∨ 2
2−p
p−1

)−2

C−1b0

)p−1
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and

M0 = M0(N,α, p, β,K,R) =

(

δ0K
−β2−β

(

1 ∨ 2
2−p
p−1

)−β
)

p−1
β

γ
p−1
β

and we obtain that if M ≤ M0 there holds

P2 ≤
b0
2
.

Combining this with (2.13) gives (2.11). This completes the proof of the theorem.

Let P ∈ C(R+) be a decreasing positive function; the (α, P )-Orlicz-Bessel capacity of a Borel
set E ⊂ R

N is defined by (see [1, Sect 2.6])

capGα,P (E) = inf







∫

RN

P (f) : Gα ∗ f ≥ χE , f ≥ 0, P (f) ∈ L1(RN )







.

Theorem 2.5 Let N ∈ N, p > 1, α > 0 a > 0, c > 0, δ ∈ (0, 1], l ∈ N
∗ and β ≥ 1 such that

lβ > p − 1 and 0 < αp < N . Let Ω be a bounded domain in R
N and µ ∈ M

+
b (Ω). If u is a

nonnegative Borel function in Ω such that Pl,a,β(u) ∈ L1(Ω) and

u(x) ≥ cWδd(x,∂Ω)
α,p [ω](x) ∀x ∈ Ω (2.14)

where dω = Pl,a,β(u)dx+dµ, then, for any a compact set K ⊂ Ω, there exists a positive constant
C depending on N,α, p, c, β and dist(K, ∂Ω) such that

∫

E

Pl,a,β(u)dx + µ(E) ≤ CcapGαp,Q∗

p
(E) ∀E ⊂ K,E Borel,

where Q∗
p is the complementary function to Qp.

Proof. Let K ⊂ Ω. Set rK = dist(K, ∂Ω) and ΩK = {x ∈ Ω : d(x,K)} < rK/2}. We have

Pl,a,β

(

cWδd(x,∂Ω)
α,p [ω]

)

dx ≤ dω in Ω

Let Mω denote the centered Hardy-Littlewood maximal function which is defined for any f ∈
Lloc(R

N , dω) by

Mωf(x) = sup
t>0

∫

Bt(x)

|f |dω

ω(Bt(x))
.

Thus, for any Borel set E ⊂ K

∫

Ω

(MωχE)
lβ

p−1Pl,a,β

(

cWδd(x,∂Ω)
α,p [ω]

)

dx ≤

∫

Ω

(MωχE)
mβ
p−1 dω.
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Since Mω is bounded on Ls(RN , dω), s > 1, we deduce from Fefferman’s result [9] that
∫

Ω

(MωχE)
lβ

p−1Pl,a,β

(

cWδd(x,∂Ω)
α,p [ω]

)

dx ≤ c4ω(E),

for some constant c4 only depends on N and lβ
p−1 . Since MωχE ≤ 1, we derive

(MωχE(x))
lβ

p−1Pl,a,β

(

cWδd(x,∂Ω)
α,p [ω](x)

)

≥ Pl,a,β

(

c (MωχE(x))
1

p−1 Wδd(x,∂Ω)
α,p [ω](x)

)

≥ Pl,a,β

(

cWδd(x,∂Ω)
α,p [ωE ](x)

)

.

This implies
∫

Ω

Pl,a,β

(

cWδd(x,∂Ω)
α,p [ωE ](x)

)

dx ≤ c4ω(E) ∀E ⊂ K,E Borel. (2.15)

Note that if x ∈ Ω and d(x, ∂Ω) ≤ rK/8, then Bt(x) ⊂ Ω\ΩK for all t ∈ (0, δd(x, ∂Ω)); indeed,
for all y ∈ Bt(x)

d(y, ∂Ω) ≤ d(x, ∂Ω) + |x− y| < (1 + δ)d(x, ∂Ω) <
1

4
rK

thus

d(y,K) ≥ d(K, ∂Ω)− d(y, ∂Ω) >
3

4
rK >

1

2
rK

which implies y /∈ ΩK . We deduce that

Wδd(x,∂Ω)
α,p [ωE ](x) ≥ W

δ
8 rK
α,p [ωE ](x) ∀x ∈ Ω,

and

W
δ
8 rK
α,p [ωE ](x) = 0 ∀x ∈ Ωc.

Hence we obtain from (2.15),
∫

RN

Pl,a,β

(

cW
δ
8 rK
α,p [ωE ](x)

)

dx ≤ c4ω(E) ∀E ⊂ K, E Borel. (2.16)

From (2.1) and (2.2) we get
∫

RN

Pl,a,β

(

cW
δ
8 rK
α,p [ωE ](x)

)

dx ≥

∫

RN

Qp (c5Gαp[ωE](x)) dx,

where Qp is defined by (1.12) and c5 = (c1β)
−1a

p−1
β cp−1 if p 6= 2, c5 = c−1

1 a
1
β c if p = 2 (the

constant c1 defined in (2.1), depends on R, therefore c5 = c5(rK)). Thus, from (2.16) we obtain
∫

RN

Qp (c5Gαp[ωE ](x)) dx ≤ c4ω(E) ∀E ⊂ K, E Borel.
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We recall that Q∗
p(s) = supt>0{st − Qp(t)} and we note that Q∗

p satisfies the sub-additivity
∆2-condition (see Chapter 2 in [8]). Let E ⊂ K be a Borel set. For every f ≥ 0, Q∗

p(f) ∈ L1(Ω)
such that Gαp ∗ f ≥ χE , we have

ω(E) ≤

∫

RN

Gαp ∗ fdωE =

∫

RN

Gαp [ωE ] fdx

= (2c4)
−1

∫

RN

(c5Gαp [ωE ])
(

2c4c
−1
5 f

)

dx

≤ (2c4)
−1

∫

RN

Qp (c5Gαp [ωE ]) dx+ (2c4)
−1

∫

RN

Q∗
p

(

2c4c
−1
5 f

)

dx

≤ 2−1ω(E) + c6

∫

RN

Q∗
p (f) dx,

the last inequality following from the ∆2-condition. Notice that c6, as well as the next constant
c7, depends on rK . Thus,

ω(E) ≤ 2−1c6

∫

R

Q∗
p (f)dx.

Then, we get
ω(E) ≤ c7capGαp,Q∗

p
(E) ∀E ⊂ K, E Borel.

This completes the proof of the Theorem.

3 Quasilinear Dirichlet Problems

Let Ω be a bounded domain in R
N . If µ ∈ Mb(Ω), we denote by µ+ and µ− respectively its

positive and negative part in the Jordan decomposition. We denote by M0(Ω) the space of
measures in Ω which are absolutely continuous with respect to the cΩ1,p-capacity defined on a
compact set K ⊂ Ω by

cΩ1,p(K) = inf

{∫

Ω

|∇ϕ|pdx : ϕ ≥ χK , ϕ ∈ C∞
c (Ω)

}

.

We also denote Ms(Ω) the space of measures in Ω with support on a set of zero cΩ1,p-capacity.
Classically, any µ ∈ Mb(Ω) can be written in a unique way under the form µ = µ0 + µs where
µ0 ∈ M0(Ω) ∩Mb(Ω) and µs ∈ Ms(Ω). It is well known that any µ0 ∈ M0(Ω) ∩Mb(Ω) can be
written under the form µ0 = f − div g where f ∈ L1(Ω) and g ∈ Lp′

(Ω).
For k > 0 and s ∈ R

N we set Tk(s) = max{min{s, k},−k}. If u is a measurable function
defined and finite a.e. in Ω, such that Tk(u) ∈ W 1,p

0 (Ω) for any k > 0, there exists a measurable
function v : Ω → R

N such that ∇Tk(u) = χ|u|≤kv a.e. in Ω and for all k > 0. We define the
gradient ∇u of u by v = ∇u. We recall the definition of a renormalized solution given in [3].
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Definition 3.1 Let µ = µ0 + µs ∈ Mb(Ω). A measurable function u defined in Ω and finite
a.e. is called a renormalized solution of

−∆pu = µ in Ω
u = 0 on ∂Ω.

(3.1)

if Tk(u) ∈ W 1,p
0 (Ω) for any k > 0, |∇u|p−1 ∈ Lr(Ω) for any 0 < r < N

N−1 , and u has the

property that for any k > 0 there exist λ+
k and λ−

k belonging to Mb+ ∩ M0(Ω), respectively
concentrated on the sets u = k and u = −k, with the property that µ+

k ⇀ µ+
s , µ

−
k ⇀ λ−

s in the
narrow topology of measures and such that

∫

{|u|<k}

|∇u|p−2 ∇u.∇ϕdx =

∫

{|u|<k}

ϕdµ0 +

∫

Ω

ϕdλ+
k −

∫

Ω

ϕdλ−
k

for every ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Remark 3.2 We recall that if u is a renormalized solution to problem (3.1) and µ ∈ M
+
b (Ω),

then u ≧ 0 a.e. in Ω.

The following general stability result has been proved in [3, Th 4.1, Sec 5.1].

Theorem 3.3 1- Let {un} be a sequence of measurable functions, finite a.e.in Ω. We assume

that Tk(un) ∈ W 1,p
0 (Ω) for any k > 0, |∇un|

p−1 ∈ Lr (Ω) ∀r < N
N−1 , and for any n ∈ N

1
k

∫

Ω |∇Tk(un)|
pdx ≤ M for some constant M . Then, up to a subsequence, {un} and {∇un}

are Cauchy sequences in measure; {un} converges a.e. to a function u finite a.e in Ω such that
Tk(u) ∈ W 1,p

0 (Ω) for any k > 0, {Tk(un)} converges to Tk(u) weakly in W 1,p
0 (Ω) and ∇un con-

verges a.e. to ∇u; finally |∇u|p−1 ∈ Lr (Ω) for all r ∈ [1, N
N−1 ) and {|∇un|

p−2 ∇un} converges

to |∇u|p−2 ∇u strongly in Lr (Ω).
2- As a consequence, if {µn} is a bounded sequence in Mb(Ω) and {un} a sequence of renormal-
ized solutions of problem

−∆pun = µn in Ω
un = 0 on ∂Ω,

(3.2)

then, up to a subsequence, {un} converges a.e. to a solution of equation −∆pu = µ in D′(Ω),
and such that 1

k

∫

Ω |∇Tk(u)|
pdx ≤ M for every k > 0.

The next result is a sharp extension of the stability Theorem 3.3.

Theorem 3.4 Let µ = µ0 + µ+
s − µ−

s , with µ0 = F − div g ∈ M0(Ω) and µ+
s , µ

−
s belonging to

M
+
s (Ω). Let µn = Fn − div gn + ρn − ηn with Fn ∈ L1(Ω), gn ∈ (Lp′

(Ω))N and ρn, ηn belonging
to M

+
b (Ω). Assume that {Fn} converges to F weakly in L1(Ω), {gn} converges to g strongly

in (Lp′

(Ω))N and (div gn) is bounded in Mb(Ω); assume also that {ρn} converges to µ+
s and

{ηn} to µ−
s in the narrow topology. If {un} is a sequence of renormalized solutions of (3.2),

then, up to a subsequence, it converges a.e. in Ω to a renormalized solution U of problem (3.1).
Furthermore {Tk(un)} converges to Tk(u) in W 1,p

0 (Ω).

We also recall the following estimate [10, Th 2.1].
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Theorem 3.5 Let Ω be a bounded domain of R
N . Then there exists a constant K1 > 0,

depending on p and N such that if µ ∈ M
+
b (Ω) and u is a nonnegative renormalized solution of

problem (3.1) with data µ, there holds

1

K1
W

d(x,∂Ω)
3

1,p [µ](x) ≤ u(x) ≤ K1W
R
1,p[µ](x) ∀x ∈ Ω (3.3)

where R = diam(Ω)
2 and K1 is a constant independent of x, u and Ω.

Proof of Theorem 1.1. Let {um}m∈N be a sequence of nonnegative renormalized solutions
of the following problems

−∆pu0 = µ in Ω
u0 = 0 on ∂Ω,

and, for m ∈ N,
−∆pum+1 = Pl,a,β(um) + µ in Ω

um+1 = 0 on ∂Ω.

By Theorem 3.5 we have for all x ∈ Ω

χΩu0(x) ≤ K1W
R
1,p[χΩµ](x)

χΩum+1(x) ≤ K1W
R
1,p[χΩPl,a,β(um) + χΩµ].

Thus, by Theorem 2.4 there exist b0 ∈ (0, 1] and M0 > 0 depending on N, p, β, a, l and R such
that

um(x) ≤ K1

(

1 ∨ 2
2−p
p−1

)

WR
1,p[χΩµ](x) + 2b0 ∀x ∈ Ω,m ∈ N (3.4)

and

exp

(

a
(

K
(

1 ∨ 2
2−p
p−1

)

WR
1,p[µ] + 2b0

)β
)

∈ L1
loc(R

N ), (3.5)

provided that

||M
(p−1)(β−1)

β

p,R [χΩµ]||L∞(RN ) ≤ M0.

This implies that {um} is well defined; by Theorem 3.3 it contains a subsequence that we
still denote by {um} which converges a.e in Ω to function u for which (1.16) is satisfied in
Ω. Furthermore, we deduce from (3.4)-(3.5) and the dominated convergence theorem that
Pl,a,β(um) → Pl,a,β(u) in L1(Ω). Finally, by Theorem 3.4 we obtain that u is a renormalized
solution of (1.15).
Conversely, assume that (1.15) admits a nonnegative renormalized solution u. By Theorem 3.5
there holds

u(x) ≥
1

K1
W

d(x,∂Ω)
3

1,p [ω](x) for all x ∈ Ω,

where dω = (Pl,a,β(u)dx+ dµ). By Theorem 2.5, we obtain (1.18).

Applications 1. We consider the case p = 2, β = 1. Then l = 2 and

Pl,a,β(r) = ear − 1− ar.
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If Ω is a bounded domain in R
N , there exists M0 > 0 and b0 ∈ (0, 1) such that if µ is a positive

Radon measure in Ω which satisfies

µ(Bt(x)) ≤ M0t
N−2 ∀t > 0 and almost all x ∈ Ω, (3.6)

there exists a positive solution u to the following problem

−∆u = eau − 1− au in Ω
u = 0 on ∂Ω.

(3.7)

Furthermore

u(x) ≤ K(N)

∫ 2 diamΩ

0

µ(Bt(x))

tN−1
dt+ 2b0 ∀x ∈ Ω. (3.8)

In the case N = 2 this result has already been proved by Richard and Véron [12, Prop 2.4].

4 Hessian equations

In this section Ω ⊂ R
N is a bounded domain with a C2 boundary. For k = 1, .., N and u ∈ C2(Ω)

the k-hessian operator Fk is defined by

Fk[u] = Sk(λ(D
2u))

where λ(D2u) = λ = (λ1, λ2, ..., λN ) denotes the eigenvalues of the Hessian matrix of second
partial derivative D2u and Sk is the k-th elementary symmetric polynomial that is

Sk(λ) =
∑

1≤i1<...<ik≤N

λi1 ...λik

We can see that
Fk[u] =

[

D2u
]

k

where for a matrix A = (aij), [A]k denotes the sum of the k -th principal minors. We assume
that ∂Ω is uniformly (k-1)-convex that is

Sk−1(κ) ≥ c0 > 0 on ∂Ω

for some positive constant c0, where κ = (κ1, κ2, ..., κn−1) denote the principal curvatures of ∂Ω
with respect to its inner normal.

Definition 4.1 An upper-semicontinuous function u : Ω → [−∞,∞) is k-convex (k-subharmonic)

if, for every open set Ω′ ⊂ Ω
′
⊂ Ω and for every function v ∈ C2(Ω′)∩C(Ω) satisfying Fk[v] ≤ 0

in Ω′, the following implication is true

u ≤ v on ∂Ω′ =⇒ u ≤ v in Ω′.

We denote by Φk(Ω) the class of all k-subharmonic functions in Ω which are not identically
equal to −∞.
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The following weak convergence result for k-Hessian operators proved in [TW2] is fundamental
in our study.

Theorem 4.2 Let Ω be a bounded uniformly (k-1)-convex in R
N . For each u ∈ Φk(Ω), there

exist a nonnegative Radon measure µk[u] in Ω such that

a. µk[u] = Fk[u] for u ∈ C2(Ω).

b. If {un} is a sequence of k-convex functions which converges to u a.e then µk[un] ⇀ µk[u] in
the weak sense of measures.

As in the case of quasilinear equations with measure data, precise estimates of solutions of
k-Hessian equations with measures data are expressed in terms of Wolff potentials. The next
result is proved in [7].

Theorem 4.3 Let Ω ⊂ R
N be a bounded C2, uniformly (k − 1)-convex domain. Let ϕ be a

nonnegative continuous function on ∂Ω and µ be a nonnegative Radon measure. Suppose that
µ can be decomposed as

µ = µ1 + f

such that µ1 is a measure with compact support in Ω and f ∈ Lq(Ω) for some q > N
2k if k ≤ N

2

or p = 1 if k > N
2 . Then there exists a nonnegative function u in Ω such that −u ∈ Φk(Ω),

continuous near ∂Ω and u is a solution to the problem

Fk[−u] = µ in Ω
u = ϕ on ∂Ω.

Furthermore, for any nonnegative function u such that −u ∈ Φk(Ω), which is continuous near
∂Ω and is a solution of above equation, there holds

1

K2
W

d(x,∂Ω)
8

2k
k+1 ,k+1

[µ] ≤ u(x) ≤ K2

(

W2diamΩ
2k

k+1 ,k+1
[µ](x) + max

∂Ω
ϕ

)

. (4.1)

where K2 is a positive constant independent of x, u and Ω.

Proof of Theorem 1.2. We defined a sequence of nonnegative functions um, continuous near
∂Ω and such that −um ∈ Φk(Ω), by the following iterative scheme

Fk[−u0] = µ in Ω
u0 = ϕ on ∂Ω

(4.2)

and, for m ≥ 0,
Fk[−um+1] = Pl,a,βum) + µ in Ω

um+1 = ϕ on ∂Ω.
(4.3)

By Theorem 3.5 we have for all x ∈ R
N ,

χΩu0(x) ≤ K2W
R
2k

k+1 ,k+1
[χΩµ](x) + b

χΩum+1(x) ≤ K2W
R
2k

k+1 ,k+1
[χΩHl(au

β
m) + χΩµ](x) + b,

(4.4)
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where b = K2max∂Ω ϕ. Thus, by Theorem 2.4 there exist b0 ∈ (0, 1] and M0 > 0 depending on
N, p, β, a,m and R such that

um(x) ≤ K2W
R
2k

k+1 ,k+1
[χΩµ](x) + 2b0 ∀x ∈ Ω, ∀m ≥ 0, (4.5)

and
Pl,a,β

(

K2W
R
2k

k+1 ,k+1
[µ] + 2b0

)

∈ L1
loc(R

N ), (4.6)

provided that

||M
k(β−1)

β

2k,R [χΩµ]||L∞(RN ) ≤ M0.

Note that because we can write

ω = Pl,a,β(um) + µ = (µ1 + χΩδ
Pl,a,β(um)) + ((1 − χΩδ

)Pl,a,β(um) + f) ,

where Ωδ = {x ∈ Ω : d(x, ∂Ω) < δ} and δ > 0 is small enough, then ω satisfies the assumptions
of the data in Theorem 4.3 since um is continuous near ∂Ω. Therefore the sequence {um} is well
defined. Since um is k-superharmonic and (4.5) holds, the sequence {um} is relatively compact
in L1

loc (see e.g. [4]); we can find a subsequence, still denoted by the index m, such that um

converges a.e in Ω to function u for which (1.21) is satisfied in Ω. Furthermore, we deduce
from (4.5)-(4.6) and the dominated convergence theorem that Pl,a,β(um) → Pl,a,β(u) in L1(Ω).
Finally, by Theorem 4.2, we obtain that u satisfies (1.20) and (1.21).
Conversely, assume that (1.20) admits nonnegative solution u, continuous near ∂Ω, such that
−u ∈ Φk(Ω) and Pl,a,β(u) ∈ L1(Ω). Then by Theorem 4.3 we have

u(x) ≥
1

K2
W

d(x,∂Ω)
8

2k
k+1 ,k+1

[ω](x) for all x ∈ Ω,

where dω = Pl,a,β(u)dx+ dµ. Using Theorem 2.5, we conclude that (1.22) holds.

5 Wolff integral equations

Proof of Theorem 1.3. Let ε > 0, assume that exp((a + ε)fβ) ∈ L1
loc(R

N ) and consider

the measure dµ = Pl,a,β (a+ ε)f) dx. By Theorem 2.3 with η = (p−1)(β−1)
β

, there exist C =

C(N,α, p, β,R) > 0 and δ0 = δ0(N,α, p, β) > 0 such that if

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ M,

there holds
WR

α,p

[

exp
(

δ0M
− β

p−1
(

WR
α,p [µ]

)β
)]

(x) ≤ C ∀x ∈ R
N . (5.1)

Consider the sequence {um}m≥0 of nonnegative functions defined by u0 = f and

um+1 = WR
α,p[Pl,a,β(um)] + f in R

N ∀m ≥ 0.
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Step 1. We claim that there exist b0 ∈ (0, 1] and M0 > 0 depending on N,α, p, β, a,m and R
such that if

||M
(p−1)(β−1)

β

αp,R [µ]||L∞(RN ) ≤ M0,

then the sequence {um}m≥0 is well defined and there holds

um ≤ F :=
(

1 ∨ 3
2−p
p−1

)

WR
α,p[µ] + f + b0 ∀m ≥ 0, (5.2)

and
exp(aF β) ∈ L1

loc(R
N ) and

∥

∥WR
α,p[Pl,a,β(F )]

∥

∥

L∞(RN )
< +∞. (5.3)

Clearly, (5.2) holds with m = 0, thus we assume that (5.2) holds with m = n, then it follows

un
β ≤ C1

(

1 ∨ 3
2−p
p−1

)β
(

WR
α,p[µ]

)β
+ C2b0

β +
a+ 2−1ε

a
fβ.

Here, we have used the inequality

(X + Y + Z)β ≤ C1X
β + C2Y

β +
2a+ ε

2a
Zβ ∀X,Y, Z ≥ 0

where the constants C1, C2 depend on a, ε and β. Since s 7→ Hl(s) is convex in [0,+∞), there
holds

Hl(aun
β) ≤

ε

4(a+ ε)
Hl

(

C3

(

WR
α,p[µ]

)β
)

+
ε

4(a+ ε)
Hl

(

C4b0
β
)

+
2a+ ε

2(a+ ε)
Hl

(

(a+ ε)fβ
)

≤ Hl

(

C3

(

WR
α,p[µ]

)β
)

+ bmβ
0 Hl (C4) +Hl

(

(a+ ε)fβ
)

,

where

C3 = aC1

(

1 ∨ 3
2−p
p−1

)β 4(a+ ε)

ε
and C4 = aC2

4(a+ ε)

ε
.

Thus,

un+1 = WR
α,p

[

Hl(aun
β)
]

+ f

≤
(

1 ∨ 3
2−p
p−1

)

WR
α,p

[

Hl

(

C3

(

WR
α,p[µ]

)β
)]

+
(

1 ∨ 3
2−p
p−1

)

b0
lβ

p−1WR
α,p [Hl(C4)]

+
(

1 ∨ 3
2−p
p−1

)

WR
α,p

[

Hl

(

(a+ ε)fβ
)]

+ f

≤
(

1 ∨ 3
2−p
p−1

)

WR
α,p

[

Hl

(

(a+ ε)fβ
)]

+ f

+
(

1 ∨ 3
2−p
p−1

)

WR
α,p

[

Hl

(

C3

(

WR
α,p[µ]

)β
)]

+ C5b0
lβ

p−1 ,

(5.4)
where

C5 =
(

1 ∨ 3
2−p
p−1

)

(Hl(C4))
1

p−1 |B1|
1

p−1
p− 1

αp
R

αp
p−1 .

Note that

C5b0
lβ

p−1 ≤
b0
2

⇔ b0 ≤ (2C5)
− p−1

lβ−p+1 .
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Next, if we choose b0 = b0(N,α, p, β,K,R) = 1 ∧ (2C5)
− p−1

mβ−p+1 we have

C5b
lβ

p−1

0 ≤
b0
2
. (5.5)

Furthermore, since Hl(s) ≤ γHl(γ
−1s) for all γ ∈ (0, 1] and s ≥ 0, we have

P :=
(

1 ∨ 3
2−p
p−1

)

WR
α,p

[

Hl

(

C3

(

WR
α,p[µ]

)β
)]

≤
(

1 ∨ 3
2−p
p−1

)

γ
1

p−1WR
α,p

[

Hl

(

γ−1C3

(

WR
α,p[µ]

)β
)]

.

If [γ−1C3 ≤ δ0M
− β

p−1 , which is equivalent to M ≤
(

δ0C
−1
3

)

p−1
β γ

p−1
β , we deduce

P ≤
(

1 ∨ 3
2−p
p−1

)

γ
1

p−1C

from (5.1). In order to insure
(

1 ∨ 3
2−p
p−1

)

γ
1

p−1C ≤
b0
2
,

which is equivalent to

γ ≤ bp−1
0

(

2C
(

1 ∨ 3
2−p
p−1

))−p+1

,

we can choose

γ = γ(N,α, p, β,K,R) = 1 ∧

(

bp−1
0

(

2C
(

1 ∨ 3
2−p
p−1

))−p+1
)

and

M0 = M0(N,α, p, β,K,R) =
(

δ0C
−1
3

)

p−1
β γ

p−1
β .

Having made those choices, we obtain

P ≤
b0
2

(5.6)

provided M ≤ M0. Jointly with (5.5) and (5.4) it yields to

un+1 ≤
(

1 ∨ 3
2−p
p−1

)

WR
α,p[µ] + f + b0. (5.7)

This implies that {um}m≥0 is well defined and (5.2) and (5.3) are satisfied. It is easy to see
that un is nondecreasing. Hence, from (5.2) and (5.3), we obtain that u(x) = lim

n→∞
un(x) is a

solution to equation (1.23) which satisfies (1.24).

Step 2. Conversely, we assume that (1.23) admits a nonnegative solution u. There holds

uβ ≥
(

WR
α,p[Pl,a,β(u)]

)β
+ fβ ,

and thus,
Pl,a,β(u) ≥ Pl,a,β

(

WR
α,p[Pl,a,β(u)]

)

+ Pl,a,β(f).

This implies
dµ ≥ Pl,a,β

(

WR
α,p[µ]

)

dx,
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where
dµ = Pl,a,β

(

WR
α,p[Pl,a,β(u)]

)

dx+ Pl,a,β (f)dx.

If E ⊂ R
N is a Borel set, we deduce

∫

RN

(MµχE)
lβ

p−1Pl,a,β

(

WR
α,p[µ]

)

dx ≤

∫

RN

(MµχE)
lβ

p−1 dµ.

Since Mω is bounded in Ls(RN , dω) for s > 1 by Fefferman’s differentiation theorem [9], we
derive

∫

RN

(MµχE)
lβ

p−1Pl,a,β

(

WR
α,p[µ]

)

dx ≤ c8µ(E),

for some constant c4 only depends on N and lβ
p−1 . Because

(MµχE)
lβ

p−1Pl,a,β

(

WR
α,p[µ]

)

≥ Pl,a,β

(

WR
α,p[µE ]

)

,

we finally deduce
∫

E

Pl,a,β

(

WR
α,p[µ]

)

dx ≤ c8µ(E) ∀E ⊂ R
N , E Borel.

As in the proof of Theorem 2.5, it is easy to see that we get

µ(E) ≤ c9capGαp,Q∗

p
(E) ∀E ⊂ R

N , E Borel,

where the positive constant c9 depends on N,α, p, β and R. Finally we obtain that for any Borel
subset E ⊂ R

N there holds
∫

E

Pl,a,β

(

WR
α,p[Pl,a,β(u)]

)

dx+

∫

E

Pl,a,β(f)dx ≤ c9capGαp,Q∗

p
(E),

which completes the proof of the Theorem.

Applications 2. When α = 1, the equation (1.20) with R = ∞ is equivalent to

−∆p(u− f) = Pl,a,β(u) in R
N .

and when α = 2k
k+1 and p = k + 1, it is equivalent to

Fk(−u+ f) = Pl,a,β(u) in R
N .

If p = 2 equation (1.20) becomes linear. If we set γ = 2α, then

Wγ,2[µ](x) =

∫ ∞

0

µ(Bt(x))
dt

tN−γ−1

=

∫

RN

(

∫ ∞

|x−y|

dt

tN−γ−1

)

dµ(y)

=

∫

RN

dµ(y)

|x− y|N−γ

= Iγ ∗ µ
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where Iγ is the Riesz kernel of order γ. Thus (1.20) with R = ∞ is equivalent to

(−∆)α(u− f) = Pl,a,β(u) in R
N .
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