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UMR 7349-MAPMO Fédération Denis Poisson
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BP 6759 F-45067 Orleans Cedex 2

Abstract

We present variational models to perform texture analysis and/or extraction for
image processing. We focus on second order decomposition models. Variational
decomposition models have been studied extensively during the past decades.
The most famous one is the Rudin-Osher-Fatemi model.
We first recall most classical first order models . Then we deal with second order
ones : we detail the mathematical framework, theoretical models and numerical
implementation. We end with two 3D applications. Eventually, an appendix
includes the mathematical tools that are used to perfom this study and Matlab c�

codes are provided.
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1. Introduction

The question of texture in image processing is an important issue. The defi-
nition itself is not clear : some people define it as a random or periodic structure
from an image. We rather define it as an inner structure that adds to the image
informations which are not necessarily fundamental at a first glimpse. The figure
1.1 of a hut gives an illustration : basic information is given by the contours and
image dynamics (one sees a hut in the country). There is no ambiguity. The
texture adds a second level of information: the nature of the roof (which gives
information on geographical or cultural buildings), nature of the leaves of the tree
(winter or summer) and so on. This is comparable to exercises that are proposed
to young children studying some language grammar. A complex sentence is given
and the pupil has to remove words that are not necessary to understand the basic
meaning of the sentence. For example

A small white house, with a red roof is build in a dark oaks forest

becomes

A house is build in a forest.

We just keep the first-level information : everything else is just details, namely
texture.

(a) Original Image (b) Cartoon (c) Texture

Figure 1.1: Decomposition cartoon + texture
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It is now more and more important to take textures into account into appli-
cations. This makes the di↵erence between 50’s cartoons that did not involve
much texture and nowadays animation movies that need these textures for the
sake of realistic rendering.

Besides the traditional questions of segmentation (contours and/or regions),
denoising or restoration, texture management (identification, synthesis) has be-
come an important issue. One may think, of course of computer graphics (ani-
mated movies, “realistic” video games). However, textures often contain impor-
tant “second-level” information: this is the case in medical imaging (detection of
tumors in mammograms, bone abnormalities identification in radiograph, auto-
matic di↵erentiation of tissues in MRI).

There are various techniques to study of textures. Especially noteworthy

• statistical methods as in Khelifi and Jiang (2011), Wen et al. (2011), Karoui
et al. (2010), Portilla and Simoncelli (2000), Bar-Joseph et al. (2001) or

• probabilistic ones ( Galerne et al. (2011), Grzegorzek (2010), Paget and
Longsta↵ (1998), Mumford and Gidas (2001), Zhu et al. (1998))

• image decomposition methods: one can refer to Gilles and Meyer (2010),
Buades et al. (2010), Duval et al. (2010), Shahidi and Moloney (2009),
Aubert and Aujol (2005) for example.

• wavelets theory as in Eckley et al. (2010), Ramrishnan and Selvan (2008),
Aujol et al. (2003), Peyré (2010), De Bonet (1997), Portilla and Simoncelli
(2000) and morphological component analysis Elad et al. (2005), Fadili et al.
(2007)

• graph cuts techniques (Kwatra et al. (2003))
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(a) Cartoon (b) Image with texture

Figure 1.2: Cartoon versus texture

These techniques are then used in di↵erent contexts as, for example

• inpainting (Casaburi et al. (2011), Aujol et al. (2010)),

• texture synthesis, Maurel et al. (2011), Peyré (2009, 2010), Ashikhmin
(2001), Lewis (1984), Lefebvre and Hoppe (2005), Efros and Leung (1999),
Kwatra et al. (2005),

• similarity analysis, Clarke et al. (2011), De Bonet (1997)

• specific structures modelling, Chen and Zhu (2006), Bargteil et al. (2006),
Kwatra et al. (2007), Foster and Metaxas (1996), and

• 3D textures and dynamical textures Grzegorzek (2010), Ashikhmin (2001),
Doretto et al. (2003).

In this work, we focus on variational decomposition models for texture
extraction and analysis. The use of such methods has been initiated in Osher
et al. (1992) for denoising purpose. The basic philosophy is the following: consider
a noisy image f = u + b. We want to get rid of the noise b. The most natural
way to do is to minimize this noise which is usually assumed to be gaussian.
Unfortunately, this is not su�cient to get a unique solution : we have to add
priors on the image we want to recover to get uniqueness (and usually stability).
The general form of such models is a problem of minimizing an energy functional

F(u) = ku� fk
X

+R(u), u 2 Y ⇢ X,
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where X, Y are (real) linear spaces, R is a regularization operator, f is the
observed (or measured) noisy image and u is the image to recover. The first
term is the fitting data term and the second one is a prior that permits to get a
problem which has a unique solution.

During the last decade, many methods have been developed using di↵erent
regularization and/or data fidelity terms. Let us mention the use of Sobolev-type
spaces (including Besov spaces or BMO) in the regularization term (see Osher
et al. (2003), Garnett et al. (2011), Kim and Vese (2009), Le et al. (2009), Lieu
and Vese (2008), Garnett et al. (2007), Le and Vese (2005), Tadmor et al. (2004)
for example) and/or the use of Meyer space (Meyer (2001), Aujol et al. (2005),
Aubert and Aujol (2005), Strong et al. (2006), Aujol (2009), Gilles and Meyer
(2010), Duval et al. (2010)).

These methods have in common to involve only first-order terms, that deal
with first order (generalized) derivative. In this work, we focus on higher order
methods, namely second-order ones (see Bergounioux and Pi↵et (2010, 2013),
Bergounioux and Tran (2011), Tran et al. (2012), Bergounioux (2011), Demengel
(1984), Hinterberger and Scherzer (2006), Bredies et al. (2010, 2011), Knoll et al.
(2011)) that seem promising to deal with image texture.

In next section we define what a variational decomposition model is, and
focus on first order ones, with a detailed presentation of the so-called Rudin-
Osher-Fatemi model. In section 3 we present second-order models, together with
the functional framework and compare with the point of view of Bredies et al.
(2010). We present numerical algorithms as well. Section 4 is devoted to the
3D case. We propose in section 5, examples and applications. We end with an
appendix to provide the main mathematical tools we used and some MATLAB c�

codes.

2. First order variational decomposition models

2.1. Variational models principle

Variational models in image processing have been extensively studied during
the past decade. There are used for segmentation processes (geodesic or geomet-
ric contours) and restoration purpose as well. We are mainly interested in the
last item which involves denoising or deblurring methods and texture extraction.
Shortly speaking, image restoration problems are usually severely ill posed and a
Tychonov-like regularization process is needed. The general form of such models
consists in the mimization of an energy functional :

F(u) = ku� u
d

k
X

+R(u) , u 2 Y ⇢ X ,

where X, Y are (real) Banach spaces, R is a regularization operator, u
d

is the
observed (or measured) image and u is the image to recover or denoise. The first
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term is the fitting data term and the second one permits to get a problem which
is no longer ill posed via a regularization process.

Let us give an example of such a regularization process. Let be ⌦ a open
bounded subset of R2 and X = H1(⌦) and H = L2(⌦) the usual Sobolev spaces
(see Appendix A.3) endowed with the usual norms:

kuk2 := kuk
L

2(⌦) and kuk2
X

:= kuk22 + kruk22 .

We consider the following (original) fitting data problem :

(P) min
u2X

ku� u
d

k22,

where u
d

2 L2(⌦). It is easy to see that the functional u 7! ku � u
d

k22 is
not coercive on X: let be ⌦ =]0, 1[, u

n

(x) = xn, u
d

= 0 for instance. Then

ku
n

k2 = 1p
2n

, ku0
n

k2 = np
2n� 1

. So

lim
n!+1

ku
n

k
X

+1 and lim
n!+1

ku
n

k2 = 0.

Therefore, we do not even know if (P) has (at least) a solution. Let us define the
regularized problem as

(P
↵

) min
u2X

ku� u
d

k22 + ↵kruk22
where ↵ > 0. We want u to fit the data u

d

, but ask for the gradient to be small
(it depends on ↵).

Proposition 2.1. For every ↵ > 0, problem (P
↵

) has a unique solution u
↵

.
Moreover, assuming that (P) has at least a solution, then one can extract a
subsequence of the family (u

↵

) that weakly converges in X to a solution u⇤ of (P)
as ↵ ! 0.

Proof - Problem (P
↵

) has a unique solution u
↵

because the functional

u 7! J
↵

(u) = ku� u
d

k22 + ↵kruk22
is coercive, continuous and strictly convex (it is the X-norm up to an a�ne part)
and we may use Theorem A.3. Let us prove that the family (u

↵

) is uniformly
bounded in X with respect to ↵.

8u 2 X J
↵

(u
↵

)  J
↵

(u).

We have assumed that (P) has at least a solution u = ũ. So

kũk22  ku
↵

k22
| {z }

ũ solution to (P)

 J
↵

(u
↵

) = ku
↵

k22 + ↵kru
↵

k22  J
↵

(ũ)
| {z }

u
↵

solution to (P
↵

)

(2.1)

= kũk22 + ↵krũk22.
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So, J
↵

(u
↵

) is bounded independently of ↵  ↵
o

. This implies the boundedness
of (u

↵

)
↵↵

o

in L2(⌦). In addition, we get with (2.1)

↵kru
↵

k22  kũk22 + ↵krũk22 � ku
↵

k22  kũk22 + ↵krũk22 � kũk22 = ↵krũk22 ;

consequently (u
↵

)
↵↵

o

is bounded inX. Therefore, one can extract a subsequence
weakly convergent in X to some u⇤. We refer to Attouch et al. (2006), Brezis
(1987) for the weak convergence notion. On the other hand equation (2.1) gives

lim
↵!0

J
↵

(u
↵

) = kũk22 = inf(P).

With the lower semi-continuity of the L2-norm, we obtain

ku⇤k22  lim inf
↵!0

ku
↵

k22 = lim inf
↵!0

J
↵

(u
↵

)  inf(P),

so that u⇤ is a solution to (P). ⇤
We want to compute u

↵

numerically. As J
↵

is strictly convex, u
↵

satisfies the
necessary and su�cient optimality condition :

J 0
↵

(u
↵

) = 0.

A classical computation gives

8u 2 X
1

2
J 0
↵

(u
↵

) · u =

Z

⌦
(u

↵

� u
d

)(x)u(x)dx+

Z

⌦
ru

↵

(x)ru(x)dx

=

Z

⌦
(u

↵

� u
d

��u
↵

)(x)u(x)dx.

Thus, the solution u
↵

satisfies the Euler equation:

u
↵

� u
d

��u
↵

= 0, u
↵

2 H1
0 (⌦).

One usually uses a dynamic formulation and rather solves

@u

@t
��u+ u = u

d

. (2.2)

This dynamic approach is equivalent to calculating a minimizing sequence with
a gradient method. Indeed, the basic gradient algorithm with constant step �t
writes

u
t+�t

� u
t

�
t

= �J 0
↵

(u
t

);

Passing to the limit as �t ! 0 gives

@u

@t
= �J 0

↵

(u) = �u� u+ u
d

.
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The most simple regularization term L(u) := kruk22 (Tychonov regulariza-
tion) is not well adapted to image restoration : the reconstructed image is too
smoothed because the Laplacian is an isotropic di↵usion operator. In particular,
edges are degraded which is not acceptable to perform a good segmentation. It
is not surprising, however, since the dynamic heat equation (2.2) is related to a
gaussian convolution filter. It is well known that using such a filter adds blur to
the result.

2.2. The Rudin-Osher-Fatemi model

A better approach is the use of a regularization term that preserves contours.
This implies to deal with functions that can be discontinuous (the jump-set de-
scribes the contours). Such functions cannot belong to H1((⌦) any longer since
their distributional derivative may be Dirac measures. So we have to considerer
a less restrictive functional space.

2.2.1. The space of bounded variation functions

Let ⌦ be an open bounded subset of Rn, n � 2 (practically n = 2 or n = 3)
smooth enough (with the cone property and C1 for example). We first recall
the definition and the main properties of the space BV (⌦) of bounded variation
functions (see Ambrosio et al. (2000), Aubert and Kornprobst (2006), Attouch
et al. (2006) for example). It s defined as

BV (⌦) = {u 2 L1(⌦) | �1(u) < +1},

where

�1(u) := sup

⇢

Z

⌦
u(x) div ⇠(x) dx | ⇠ = (⇠1, · · · , ⇠n) 2 C1

c

(⌦,Rn) k |⇠| k1  1

�

.

(2.3)
Here C1

c

(⌦,Rn) denotes the space of Rn valued, C1 functions with compact support
in ⌦ endowed with the uniform (L1) norm, |⇠| :=

p

⇠21 + · · ·+ ⇠2
n

and

div ⇠ =
@⇠1
@x1

+ · · ·+ @⇠
n

@x
n

.

The space BV (⌦), endowed with the norm kuk
BV (⌦) = kuk

L

1+�1(u), is a Banach
space. The derivative in the sense of the distributions of every u 2 BV (⌦)
is a bounded Radon measure, denoted Du, and �1(u) =

R

⌦ |Du| is the total
variation of u. We next recall standard properties of bounded variation functions
(Ambrosio et al. (2000), Attouch et al. (2006)).

Proposition 2.2. Let ⌦ be an open subset of Rn with Lipschitz boundary.
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1. For every u 2 BV (⌦), the Radon measure Du can be decomposed into
Du = ru dx + Dsu, where ru dx is the absolutely continuous part of Du
with respect of the Lebesgue measure and Dsu is the singular part.

2. The mapping u 7! �1(u) is lower semi-continuous from BV (⌦) to R+ for
the L1(⌦) topology.

3. BV (⌦) ⇢ L2(⌦) with continuous embedding, if n = 2.

4. BV (⌦) ⇢ Lp(⌦) with compact embedding, for every p 2 [1, 2), if n = 2.

We end this section with a “density” result in BV (⌦) (Attouch et al. (2006)
Theorem 10.1.2. p 375 for example):

Theorem 2.1. The space C1(⌦) is dense in BV (⌦) in the following sense :
8u 2 BV (⌦) there exist a sequence (u

n

)
n�0 2 C1(⌦) such that

lim
n!+1

ku
n

� uk
L

1 = 0 and lim
n!+1

�1(un) = �1(u) .

A useful corollary is a Poincaré-Wirtinger inequality in the BV- space

Theorem 2.2. Let ⌦ ⇢ Rn be an open connected, bounded set of class C1. Then
there exists a constant C > 0 such that

8u 2 BV (⌦) ku�m(u)k
L

1(⌦)  C�1(u) ,

where m(u) :=
1

|⌦|
Z

⌦
u(x)dx is the mean-value of u.

Proof - Let u 2 BV (⌦) and (u
n

)
n�0 2 C1(⌦) be a sequence such that

lim
n!+1

ku
n

� uk
L

1 = 0 and lim
n!+1

�1(un) = �1(u) .

It is clear that m(u
n

) ! m(u). In addition u
n

2 W 1,1(⌦) since ⌦ is bounded.
We use the Poincaré-Witinger inequality (Attouch et al. (2006), Corollary 5.4.1
p180 for example) to infer

8n ku
n

�m(u
n

)k
L

1(⌦)  Ckru
n

k
L

1 = �1(un) .

Passing to the limit gives the result. ⇤

2.2.2. The Rudin-Osher-Fatemi model

The most famous model is the Rudin-Osher-Fatemi denoising model (see Acar
and Vogel (1994), Osher et al. (1992)). This model involves a regularization
term that preserves the solution discontinuities, what a classical H1-Tychonov
regularization method does not. The observed image to recover is splitted in two
parts u

d

= u+ v where v represents the oscillating component (noise or texture)
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and u is the smooth part (oftenly called the cartoon component). So we look for
the solution as u + v with u 2 BV (⌦) and v 2 L2(⌦). The regularization term
involves only the cartoon component u, while the remainder term v = u

d

� u
represents the noise to be minimized. We get

min
u2BV (⌦)

F1(u) :=
1

2
ku

d

� uk2
L

2(⌦) + ��1(u), (P1)

where �1(u) is the total variation of u and � > 0.

Theorem 2.3. Problem (P1) has a unique solution in BV (⌦).

Proof - Let u
n

2 BV (⌦) be a minimizing sequence. As u
n

is bounded in L2(⌦)
one may extract a subsequence (denoted similarly) that weakly converges to u⇤

in L2(⌦). As the L2-norm is lower semi-continuous and convex we have

ku
d

� u⇤k22  lim inf
n!+1

ku
d

� u
n

k22.

Moreover u
n

is bounded in L1(⌦) since ⌦ is bounded. As �1(u
n) is bounded as

well, then u
n

is bounded in BV (⌦). As BV (⌦) is compactly embedded in L1(⌦)
(proposition 2.2 ) this implies that u

n

strongly converges (up to a subsequence)
in L1(⌦) to u⇤ 2 BV (⌦).
In addition, �1 is lower semi-continuous with respect to the L1 strong topology
(proposition 2.2), so that

�1(u
⇤)  lim inf

n!+1
�1(un).

Eventually

1

2
ku

d

� u⇤k22 + ��1(u
⇤)  lim inf

n!+1

1

2
ku

d

� u
n

k22 + ��1(un) = inf(P1).

So u⇤ is a solution to problem (P1). As the cost functional is strictly convex we
get uniqueness. ⇤

Now, we want to set optimality conditions to compute the solution. Unfortu-
nately �1 is not (Gâteaux ) di↵erentiable and we need non smooth analysis tools
(see Appendix A.2).

2.2.3. First order optimality condition

The functional F1 is convex. Therefore ū is solution to (P1) if and only if
0 2 @F1(ū) where @F1(ū) denotes the subdi↵erential of F1 at ū ( Appendix A.2.2).
We use Theorem A.8 to compute @F1(u). Indeed the function u 7! ku� u

d

k22 is
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continuous on L2(⌦) and �1 is finite on BV (⌦) with values in R [ {+1}. As
u 7! ku� u

d

k22 is Gâteaux-di↵erentiable on L2(⌦) as well we get

0 2 @F1(ū) = ū� u
d

+ @(��1(ū)) = ū� u
d

+ �@�1(ū) ,

that is
u
d

� ū

�
2 @�1(ū) .

It remains to compute @�1(ū). Using corollary A.4, it comes

u
d

� ū

�
2 @�1(ū) () ū 2 @�⇤

1(
u
d

� ū

�
) ,

where �⇤
1 is the Legendre-Fenchel conjugate of �1 that we compute now.

Theorem 2.4. The Legendre-Fenchel conjugate �⇤
1 of the total variation �1 is

the indicatrix function of the L2-closure K1 of the set K1, where

K1 :=
�

⇠ = div ' | ' 2 C1
c

(⌦)n, k |'| k1  1
 

. (2.4)

Proof - The result is well known (Aujol (2009), Chambolle (2004) for example)
but we give a proof anyway for convenience.
As �1 is a semi-norm, it is positively homogeneous and the conjugate �⇤

1 is the
indicatrix function of a closed convex set K̃ (Proposition A.4).
We first show that K1 ⇢ K̃: let be u 2 K1. The definition of �1 gives

�1(u) = sup
⇠2K1

(⇠, u) . (2.5)

Therefore (⇠, u)) � �1(u)  0 for every ⇠ 2 K1 and u 2 L2(⌦) (Note that if
u 2 L2(⌦)\BV (⌦) then �1(u) = +1). We deduce that

8u⇤ 2 K1 �⇤
1(u

⇤) = sup
u2L2(⌦)

(u⇤, u)� �1(u) = sup
u2BV (⌦)

(u⇤, u)� �1(u)  0.

As �⇤
1 takes only one finite value then �⇤

1(u
⇤) = 0 and u⇤ 2 K̃. Therefore K1 ⇢ K̃;

as K̃ is closed then
K1 ⇢ K̃.

Eventually,

�1(u) = sup
⇠2K1

(u, ⇠)  sup
⇠2K1

(u, ⇠)  sup
⇠2K̃

(u, ⇠) = sup
⇠2K̃

(u, ⇠)� �⇤
1(⇠) = �⇤⇤

1 (u).

As �⇤⇤
1 = �1, then

sup
⇠2K1

(u, ⇠)  sup
⇠2K̃

(u, ⇠)  sup
⇠2K1

(u, ⇠) ,
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and
sup
⇠2K1

(u, ⇠) = sup
⇠2K1

(u, ⇠) = sup
⇠2K̃

(u, ⇠) . (2.6)

Assume there exists u⇤ 2 K̃ such that u⇤ /2 K1. With Hahn-Banach Theorem
A.6, one can strictly separate u⇤ and the closed convex set K1. There exists
↵ 2 R and u0 2 L2(⌦) such that

(u0, u
⇤) > ↵ � sup

v2K1

(u0, v) .

With (2.6) we obtain

sup
⇠2K̃

(u0, ⇠) � (u0, u
⇤) > ↵ � sup

v2K1

(u0, v) = sup
v2K̃

(u0, v) .

We get a contradiction. Therefore K̃ = K1. ⇤
Finally, ū is solution to (P1) if and only if

ū 2 @1K1
(
u
d

� ū

�
).

Using proposition A.2 gives

ū = c



u
d

� ū

�
+

ū

c
�⇧K1(

u
d

� ū

�
+

ū

c
)

�

for every c > 0. Here and in the sequel ⇧K1 denotes the L2 projection on K1.
Now, set c = � to obtain :

ū = u
d

� �⇧K1

⇣u
d

�

⌘

.

As ⇧
�K1 = �⇧K1

⇣u
d

�

⌘

( with corollary A.3 ) we have the following result:

Theorem 2.5. The function ū is the solution to (P1) if and only if

ū = u
d

�⇧
�K1(ud)

where ⇧
�K1 is the L2-projection on �K1.

We shall perform the numerical realization in section 2.4. This model is used
for denoising purpose but the use of the total variation implies numerical per-
turbations. The computed solution turns to be piecewise constant and artifi-
cial contours are generated: this is the staircasing e↵ect (Buades et al. (2006)).
Therefore, though noise can be succesfully removed, the solution is not satisfac-
tory. This variational model has been improved using di↵erent functional spaces,
for the data fitting term and/or the regularizing term.

13



2.3. Some generalizations
Recently people considered that an image can be decomposed into many com-

ponents, each component describing a particular property of the image (Aujol
et al. (2005), Aubert and Aujol (2005), Garnett et al. (2011), Le et al. (2009),
Le and Vese (2005) and references therein for example). It is assumed that the
image to be recovered from the data u

d

can be decomposed as f = u + v or
f = u + v + w where u, v and w are functions that characterize di↵erent parts
of f (see Aujol et al. (2005), Osher et al. (2003), Yin et al. (2007) for example).
We cannot present every model since there are too many. We focus on the Meyer
model and improved variants by Aujol and al. (Aujol et al. (2005), Aubert and
Aujol (2005), Aujol and Chambolle (2005)).

2.3.1. The Meyer model

Assume we want to decompose the image as u
d

= u+ v where u 2 BV (⌦) is
the cartoon part. The remainder term v = u

d

� u should involve the oscillating
component (as noise and/or texture). Such decompositions have been performed
in Aubert and Aujol (2005), Aujol et al. (2005) using the Meyer-space of oscil-
lating functions G (see Meyer (2001)). This space is defined as follows

G(⌦) := { f = div(g) | g = (g1, g2) 2 L1(⌦)⇥ L1(⌦) } . (2.7)

This space equipped with the norm

kfk
G

:= inf{ k |g| k1 | f = div(g), g = (g1, g2) 2 L1(⌦)⇥ L1(⌦)}
is a Banach space. In addition, if BV is the closure of the Schwartz class in BV
then G is the dual space BV⇤ of BV . The G - norm is a tool that measures the os-
cillations. More precisely the more f is oscillating, the less is kfk

G

. Nevertheless,
non oscillating functions may have a small G-norm.

In Meyer (2001), the following result is proved, that gives a characteriza-
tion of the solutions of the Rudin-Osher-Fatemi model (P1)) with respect to the
parameter �.

Theorem 2.6. Let u
d

, u and v three functions in L2(⌦). If ku
d

k
G

> � then the
(unique) ROF decomposition u

d

= u+ v is characterized by

kvk
G

= � and (u, v)2 = �kuk
BV

.

As already mentionned, oscillating functions have a small G-norm and tex-
tures and/or noise may be viewed as the oscillating parts of the image u

d

. So,
the ROF model may be improved by replacing the L2-norm by the G-norm in
the data fitting term. This model has been investigated in Meyer (2001) :

min
u2BV (⌦)

F
G

(u) :=
1

2
ku

d

� uk
G

+ ��1(u), (P
G

)

One can find numerics in Osher and Vese (2003) for example.
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2.3.2. Generalized u+ v + w decomposition models

In Aubert and Aujol (2005), Aujol et al. (2005), the authors investigate a new
decomposition model : u

d

= u+ v + w where

• u 2 BV (⌦) is the cartoon part,

• v 2 G
µ

(⌦) is an oscillating part (texture). Here, µ > 0 and

G
µ

(⌦) := {v 2 G(⌦) | kvk
G

 µ } ,

• w = u
d

� u� v 2 L2(⌦) is the remainder part (noise).

The model writes

min
(u,v)2BV (⌦)⇥G

µ

(⌦)

1

2
ku

d

� u� vk22 + ��1(u), (P
G

µ

)

The discretized problem (P
G

µ

) has a unique solution and the authors propose an
algorithm to solve it in Aujol et al. (2005) . The link to the Meyer model is done
and numerical tests are performed. For more details one can refer to Aubert and
Aujol (2005), Aujol et al. (2005, 2003), Strong et al. (2006), Aujol and Chambolle
(2005)

2.4. Numerical computation

2.4.1. Rudin-Osher-Fatemi discrete model

We now consider discrete 2D images (with finite number of pixels) which is
the practical case. Such a discrete image is identified to a matrix N ⇥M that we
may view as a vector of length NM . We denote X = RN⇥M and Y = X ⇥X.
The Hilbert space X is endowed with the usual scalar product

(u, v)
X

=
X

1iN

X

1jM

u
ij

v
ij

,

and the associated norm k · k
X

.
We now give a discrete formulation of what we have described previously. In

particular, we define the discrete total variation which is the `1 -norm of the usual
gradient. More precisely, for every u 2 X, the gradient ru is a vector in Y :

(ru)
i,j

= ((ru)1
i,j

, (ru)2
i,j

),

defined with classical a finite di↵erence scheme, for example

(ru)1
i,j

=

⇢

u
i+1,j � u

i,j

if i < N
0 si i = N

, (2.8a)
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(ru)2
i,j

=

⇢

u
i,j+1 � u

i,j

if j < M
0 si j = M

(2.8b)

The discrete total variation writes

J1(u) =
X

1iN

X

1jM

|(ru)
i,j

|, (2.9)

where |(ru)
i,j

| :=
q

|(ru)1
i,j

|2 + |(ru)2
i,j

|2. We use a discrete version of the

divergence operator as well, setting

div = �r⇤,

where r⇤ is the adjoint operator of r, that is

8p 2 Y, 8u 2 X (�div p, u)
X

= (p,ru)
Y

= (p1,r1u)
X

+ (p2,r2u)
X

.

One can verify that the discrete divergence writes

(div p)
i,j

=

8

>

>

<

>

>

:

p1
i,j

� p1
i�1,j if 1 < i < N

p1
i,j

if i = 1

�p1
i�1,j if i = N

(2.10)

+

8

>

>

<

>

>

:

p2
i,j

� p2
i,j�1 if 1 < j < M

p2
i,j

if j = 1

�p2
i,j�1 if j = M

The discrete laplacian operator is defined as

�u = div (ru).

Once this discretization is performed, problems (P1) turns to be

min
u2X

F1(u) := ku� u
d

k2
X

+ �J1(u). (2.11)

We can prove as in section 2.2 that the discretized problem has a unique solution
that we are going to characterize. Similarly

J1(u) = sup
⇠2K1

(u, ⇠)
X

,

where

K1 = {⇠ = div g | g 2 Y, |g
i,j

|  1, 1  i  N, 1  j  M}, (2.12)

and
8g = (g1, g2) 2 Y |g

i,j

| =
q

(g1
i,j

)2 + (g2
i,j

)2.

As in section 2.2 we have
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Theorem 2.7. Chambolle (2004)The Legendre-Fenchel conjugate J⇤
1 of J1 is the

indicatrix function of K1 given by (2.12).
Moreover, ū is the solution to problem (2.11) is and only if

ū = u
d

� P
�K1(ud), (2.13)

where P
C

is the orthogonal projector from X on the closed convex set C.

Compute the solution to problem (2.12) is equivalent to compute the projec-
tion on the set �K1. Of course, this is not straighforward. We report here two
algorithms: the first one (Chambolle (2004) ) is a fixed-point type algorithm.
The second one is a Nesterov type algorithm (Nesterov (2005)) that has been
adapted to the context by Weiss et al. (2009).

2.4.2. Chambolle algorithm

We have to compute

P
�K1(ud) = argmin { k� div (p)�u

d

k2
X

| |p
i,j

|  1, i = 1, · · · , N, j = 1, · · · ,M }.

Following Chambolle (2004) we use a fixed-point method :

Algorithm 1 Chambolle algorithm

Initialization : n = 0; p0 = 0
Iteration n : set

pn+1
i,j

=
pn
i,j

+ ⇢ (r[div pn � u
d

/�])
i,j

1 + ⇢
�

�

�

(r[div pn � u
d

/�])
i,j

�

�

�

.

Stopping criterion.

If the parameter ⇢ satisfies ⇢  1/8, then � div pn ! P
�K1(ud) and the

solution writes

ū = u
d

� � div p1 where p1 = lim
n!+1

pn.

2.4.3. Nesterov type algorithms

The previous method works well but is rather slow. We now present a faster
algorithm. It is derived from a method by Y. Nesterov (Nesterov (2005)).The
original goal was to solve

inf
q2Q

E (q) (2.14)
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where E is convex, di↵erentiable with Lipschitz derivative and Q is a closed set.
Let d be a convex function , x0 2 Q and � > 0 such that

8x 2 Q d(x) � �

2
kx� x0k2.

The algorithm writes

Algorithm 2 Nesterov algorithm
Initialization : k = 0; G0 = 0; x

k

2 Q and L is the Lipschitz constant of rE.
Iteration k :
for 0  k  J do

(a) Set ⌘
k

= rE (x
k

).
(b) Compute y

k

the solution to

min
y2Q

⇢

(⌘
k

, y � x
k

)
X

+
1

2
L ky � x

k

k2
X

�

.

(c) G
k

= G
k�1 +

k + 1

2
⌘k.

(d) Compute z
k

the solution to

min
z2Q

⇢

L

�
d(z) + (G

k

, z)
X

�

.

(e) Set x
k

=
2

k + 3
z
k

+
k + 1

k + 2
y
k

.

end for

It has been proved that if ū is the solution to (2.14) then

0  E (y
k

)� E (u)  4Ld (u)

� (k + 1) (k + 2)
.

In our case, Weiss et al. (2009) have adapted the method to solving the dual
problem of (2.11). Using Theorem A.10 (A.2.4) gives

min
u2X

J1(u) +
1

2�
ku� u

d

k2
X

= max
v2X

(�J⇤
1 (�v)�N ⇤

�

(v))

= �min
q2X

(J⇤
1 (�v) +N ⇤

�

(v)) ,

where N
�

(u) =
1

2�
ku� u

d

k2
X

. We already noticed that J⇤
1 is the indicatrix of

the set K1 defined by (2.12). Let us compute N ⇤
�

:

N ⇤
�

(v) = sup
u2X

( (u, v)
X

�N
�

(u)) = sup
u2X

( (u, v)
X

� 1

2�
ku� u

d

k2
X

) .
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The supremum is achived at u = �v + u
d

and

N ⇤
�

(v) =
�

2
kvk2

X

+ vu
d

=
1

2�
k�v + u

d

k2
X

� ku
d

k2
2�

.

The dual problem writes

min
v2K

k�v + u
d

k2
X

= min
p2B

�

k � div(p) + u
d

k2
X

, (2.15)

where

B
�

:= { p = (p1, p2) 2 X ⇥X| |p
i,j

|  �, 1  i  N, 1  j  M } .

The solution ū of the primal problem (2.11) is obtained as follows

ū = u
d

� �v̄ , (2.16)

where v̄ = div p̄ is solution to (2.15). Now, we may use algorithm 2 to solve(2.15).
We set

E(p) =
1

2
k � div(p) + u

d

k2
X

and Q = B
�

,

and choose d(x) =
1

2
kxk2

X

with x0 = 0 and � = 1.

• Step (a) gives ⌘
k

= rE(p
k

) = r(�div(p
k

) + u
d

)

• Step (b) : as

(⌘
k

, y � x
k

)
X

+
L

2
ky � x

k

k2
X

=
L

2

�

�

�

y � x
k

+
⌘
k

L

�

�

�

2

X

� k⌘
k

k2
X

2L

we need to compute the solution to

min
y2B

�

�

�

�

y � p
k

+
⌘
k

L

�

�

�

2

X

.

Step (b) turns to calculate q
k

the `2 (euclidean) projection on the `1-ball

B
�

(see A.1.4) of p
k

� ⌘
k

L
:

q
k

= ⇧B
�

⇣

p
k

� ⌘
k

L

⌘

.

• Similarly, step (d) is equivalent to the computation of

z
k

= ⇧B
�

✓

�G
k

L

◆

.
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We eventually obtain

Algorithm 3 Modified Nesterov algorithm (Weiss et al. (2009))

Input : the maximal number of iterations I
max

and an initial guess p0 2 B
�

are given.
Output : q̃ := q

I

max

approximates q̄ solution to (2.15)

Let L = kdivk22 be the discrete divergence operator norm.
Set G�1 = 0
for 0  k  I

max

do
⌘
k

= r(�div(p
k

) + u
d

)

q
k

= ⇧B
�

⇣

p
k

� ⌘
k

L

⌘

.

G
k

= G
k�1 +

k + 1

2
⌘
k

, z
k

= ⇧B
�

✓

�G
k

L

◆

.

p
k+1 =

2

k + 3
z
k

+
k + 1

k + 3
q
k

end for

The solution of problem (2.11 ) is approximated by ũ:

ũ = u
d

� �div(q̃) . (2.17)

3. Second order models (2D case)

The ROF variational model is a good tool to perform denoising while pre-
serving contours (what a Gaussian filter does not achieve). However, there are
undesired e↵ects that come from the use of first-order (generalized) derivative (to-
tal variation or more complicated terms). Roughly speaking, the solution should
have a very small first order derivative. Concerning the total variation, which is
also the total length of contours, it gives satisfactory denoising but the solution
turns to be (more or less) piecewise constant. Therefore, original contours are
kept but artificial ones may be created which is not acceptable. This is called
the staircasing e↵ect (Caselles et al. (2007), Ring (2000)). We give an example
below (Bergounioux and Pi↵et (2010)).

20



(a) Original Image (b) Noisy Image (c) Denoised Image

Figure 3.1: ROF denoising process - Gaussian noise with standard deviation � = 0.25 and �=50.
Staircasing e↵ect

(a) Zoomed area (b) Noisy Image

(c) Denoised

Figure 3.2: ROF denoising process - Zoom -Staircasing e↵ect
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(a) Original slice

(b) Noisy slice

(c) Denoised slice

Figure 3.3: ROFdenoising process - Extraction of a slice -Staircasing e↵ect

We infer that the use of a second order penalization term leads to piecewise
a�ne solutions so that there is no staircasing e↵ect any longer. In this section,
we present a second order decomposition model for 2D- denoising and texture
extraction. We present the functional framework (space BV 2) and compare with
the Total Generalized Variation introduced by Bredies et al. (2010).Then, we give
numerical hints and improved variants. We end with a comparison between ROF
and the second-order methods.

3.1. The space BV 2(⌦)

3.1.1. General properties

We extend the concept of (first-order) variation definition to the second derivative
(in the distributional sense). Recall that the Sobolev space W 1,1(⌦) is defined as

W 1,1(⌦) = { u 2 L1(⌦) | ru 2 L1(⌦) }
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where ru stands for the first order derivative of u (in the sense of distributions).
Full results can be found in Demengel (1984), Hinterberger and Scherzer (2006),
Bergounioux and Pi↵et (2010).

Definition 3.1. A function u 2 W 1,1(⌦) is Hessian bounded if

�2(u) := sup

⇢

Z

⌦
hru, div(⇠)iRn

| ⇠ 2 C2
c

(⌦,Rn⇥n), k⇠k1  1

�

< 1, (3.1)

where
div(⇠) = (div(⇠1), div(⇠2), . . . , div(⇠n)),

with

8i, ⇠
i

= (⇠1
i

, ⇠2
i

, . . . , ⇠n
i

) 2 Rn and div(⇠
i

) =
n

X

k=1

@⇠k
i

@x
k

.

BV 2(⌦) is defined as following

BV 2(⌦) := {u 2 W 1,1(⌦) | �2(u) < +1}.

We recall that if X = Rn⇥n, k⇠k1 = sup
x2⌦

v

u

u

t

n

X

i,j=1

�

�

�

⇠j
i

(x)
�

�

�

2
.

We give thereafter many useful properties of BV 2(⌦) (proofs can be found in
Demengel (1984), Bergounioux and Pi↵et (2010)).

Theorem 3.1. The space BV 2(⌦) endowed with the following norm

kfk
BV

2(⌦) = kfk
W

1,1(⌦) + �2(f) = kfk
L

1 + krfk
L

1 + �2(f), (3.2)

where �2 is given by (3.1), is a Banach space.

Proposition 3.1. A function u belongs to BV 2(⌦) if and only if u 2 W 1,1(⌦)

and
@u

@x
i

2 BV (⌦) for i 2 {1, . . . , n}. In particular

�2(u) 
n

X

i=1

�1

✓

@u

@x
i

◆

 n �2(u).

Remark 3.1. The previous result shows that

BV 2(⌦) =

⇢

u 2 W 1,1(⌦) | 8i 2 {1, . . . , n}, @u

@x
i

2 BV (⌦)

�

.

We get a lower semi-continuity result for the semi-norm �2 as well.
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Theorem 3.2. The operator �2 is lower semi-continuous from BV 2(⌦) endowed
with the strong topology of W 1,1(⌦) to R. More precisely, if {u

k

}
k2N is a sequence

of BV 2(⌦) that strongly converges to u in W 1,1(⌦) then

�2(u)  lim inf
k!1

�2(u
k

).

Remark 3.2. In particular, if lim inf
k!1

�2(u
k

) < 1, then u 2 BV 2(⌦).

We have embedding results as well:

Theorem 3.3. (Demengel (1984) ) Assume n � 2. Then

BV 2(⌦) ,! W 1,q(⌦) with q  n

n� 1
, (3.3)

with continuous embedding. Moreover the embedding is compact if q < n

n�1 . In
particular

BV 2(⌦) ,! Lq(⌦) for q  n

n� 2
if n > 2 (3.4)

BV 2(⌦) ,! Lq(⌦), 8q 2 [1,1[, if n = 2. (3.5)

In the sequel, we set n = 2 and ⌦ is a Lipschitz bounded, open subset of R2, so
that BV 2(⌦) ⇢ H1(⌦) with continuous embedding and BV 2(⌦) ⇢ W 1,1(⌦) with
compact embedding. Let us define the space BV0(⌦) as the space of functions
of bounded variation that vanish on the boundary @⌦ of ⌦. More precisely as
⌦ is bounded and @⌦ is Lipschitz, functions of BV (⌦) have a trace of class
L1 on @⌦ (see Ziemer (1989), Ambrosio et al. (2000)), and the trace mapping
T : BV (⌦) ! L1(@⌦) is linear, continuous from BV (⌦) equipped with the
intermediate convergence to L1(@⌦) endowed with the strong topology (Attouch
et al. (2006), Theorem 10.2.2 p 386). The space BV0(⌦) is then defined as the
kernel of T . It is a Banach space, endowed with the induced norm. Note that if
u 2 BV 2(⌦) the trace u|@⌦ belongs to H1/2(@⌦) ⇢ L2(@⌦):

BV0(⌦) := {u 2 BV (⌦) | u|@⌦ = 0 } ,

Next we define similarly

BV 2
0 (⌦) := {u 2 BV 2(⌦) | u|@⌦ = 0 } ,

BV
m

(⌦) := {u 2 BV (⌦) |
Z

⌦
u(x) dx = 0 i = 1, · · · , n} ,

and

BV 2
m

(⌦) := {u 2 BV 2(⌦) |
Z

⌦

@u

@x
i

dx = 0 i = 1, · · · , n} .

At last we shall use the following result of Bergounioux (2011):
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Lemma 3.1 (Poincaré-Wirtinger inequalities). Let ⌦ ⇢ Rn be an open Lip-
schitz bounded set.There exist generic constants only depending on ⌦, C

i

> 0 such
that

8u 2 BV0(⌦) kuk
L

1(⌦)  C1�1(u),

8u 2 BV
m

(⌦) kuk
L

1(⌦)  C2�1(u),

8u 2 BV 2
0 (⌦) �1(u)  C1�2(u)

8u 2 BV 2
m

(⌦) �1(u)  C2�2(u)

We end with a remark related to next subsection. Let us call

K :=
�

⇠ 2 C2
c

(⌦,Rn⇥n), k⇠k1  1
 

.

Then, for every function u 2 W 1,1(⌦) an integration by parts gives
Z

⌦
u div2⇠ dx = �

Z

⌦
(ru, div ⇠)Rd

dx .

so that

�2(u) := sup

⇢

Z

⌦
u div2⇠ dx, ⇠ 2 K

�

. (3.6)

3.1.2. The Total Generalized Variation

Another definition for second-order total variation spaces has been set in
Bredies et al. (2010, 2011). The main di↵erence lies in the choice of test functions
in the variational formulation. The authors define the Total Generalized Variation
TGV 2(u) as the supremum of the duality product between u and symmetric tests
functions that are bounded together with their derivative. Let be ↵ = (↵0,↵1) >
0, we call

TGV 2
↵

(u) = sup

⇢

Z

⌦
u div2⇠ dx, ⇠ 2 K

↵

�

,

where

K
↵

:= {⇠ 2 K, ⇠
ij

= ⇠
ji

8i, j, k⇠k1  ↵0, kdiv ⇠k1  ↵1 } .
The BGV 2

↵

space is defined as following

BGV 2
↵

(⌦) =
�

u 2 L1(⌦) , TGV 2
↵

(u) < +1  

. (3.7)

Recall that
BV 2(⌦) := {u 2 W 1,1(⌦) | �2(u) < +1},

where

�2(u) := sup

⇢

Z

⌦
u div2⇠ dx, ⇠ 2 K

�

.
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These two spaces are di↵erent : indeed BGV 2(⌦) functions do not necessarily
belong to W 1,1(⌦) so that BGV 2(⌦) includes less regular function than BV 2(⌦).
More precisely :

Proposition 3.2. Let be ↵ = (↵0,↵1) > 0. For every function u in W 1,1(⌦) we
get

TGV 2
↵

(u)  ↵0TV
2(u) .

Therefore
8↵ > 0 BV 2(⌦) ⇢ BGV 2

↵

(⌦)

with continuous embedding.
Proof - As K

↵

⇢ K the first relation is obvious. Moreover if u 2 BV 2(⌦), then
u 2 W 1,1 and TGV 2

↵

(u) < +1. In addition

kuk
BV G

2
↵

= kuk
L

1 + TGV 2
↵

(u)  kuk
W

1,1 + ↵0TV
2(u)  max(1,↵0)kuk

BV

2 ,

which gives the embedding continuity. ⇤

Corollary 3.1. For u 2 BV 2(⌦), TV2(u) = 0 if and only if u is a polynomial
function of order 1.
Proof - For u 2 BV 2(⌦), TV2(u) = 0 =) TGV 2

↵

(u) = 0. We use Proposition 3.3
of Bredies et al. (2010, 2011). ⇤

3.2. A partial second order model

3.2.1. The ROF2 model

We now assume (as in the models of subsection 2.3.2) that the image we want
to recover from the data u

d

can be decomposed as u
d

= u+w where u 2 BV 2(⌦)
and w := u

d

� u 2 L2(⌦). We consider the following cost functional defined on
BV 2(⌦) :

F2(u) =
1

2
ku

d

� uk2
L

2(⌦) + ��2(u), (3.8)

where � > 0. We are looking for a solution to the optimisation problem

inf{ F2(u) | u 2 BV 2
0 (⌦) } (P2)

The first term ku
d

� uk2
L

2(⌦) of F2 is the fitting data term. Here we have chosen

the L2-norm for simplicity but any Lp norm can be used (p 2 [2,+1)). Let us
mention that Bredies et al. (2011) have investigated the very case where p = 1
with TGV2 instead of �2.

If the image is noisy, the noise is considered as a texture and will be involved
in the remainder term u

d

� u: more precisely u should be the part of the image
without the oscillating component, that is the denoised part. Such an approach
has already been used by Hinterberger and Scherzer (2006) with the BV 2(⌦)
space. Their algorithm is di↵erent from the one we use here.
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Theorem 3.4. Assume that � > 0. Problem (P2) has at least a solution u.

Proof - Proof - Let u
n

2 BV 2
0 (⌦) be a minimizing sequence, i.e.

lim
n!+1

F2(un) = inf(P2) < +1.

Therefore �2(un) is bounded and with Lemma 3.1, kru
n

k
L

1 = �1(un) is bounded
as well. As u

n

is L2 -bounded, it is L1 -bounded as well. This yields that u
n

is
bounded in W 1,1(⌦). Therefore the sequence u

n

is bounded in BV 2(⌦).
With the compactness result of Theorem 3.3, we deduce that (u

n

)
n2N strongly

converges (up to a subsequence) in W 1,1(⌦) to u⇤ 2 BV 2
0 ⌦)(because the trace

operator is continuous). With theorem 3.2 we get

�2(u
⇤)  lim inf

n!+1
�2(un).

So
F2(u

⇤)  lim inf
n!+1

F2(un) = inf(P2),

and u⇤ is a solution to (P2). ⇤

3.2.2. Anisotropic improvment (Pi↵et (2011))

We observe (see section 3.5) that the second order model (P2) removes the
staircasing e↵ect. However, as the solution is close to a piecewise a�ne one, the
model generates a blur e↵ect on the BV 2 -part. This means that contour lines are
still partly involved in the oscillating component. As a result, this decomposition
model is not e�cient for texture extraction. To improve the result, a local mod-
ification of the Hessian operator is performed and a local anisotropic strategy is
performed, which depends on each pixel and is consistent with the contours. We
have noticed that cancelling one or more coe�cients of the (local) Hessian matrix
permits to get rid of the contours along the corresponding direction. In Figure
3.4 the coe�cients (Hv)1,1 and (Hv)2,2 of the Hessian matrix have been globally
set to 0. We can see that horizontal and vertical contours are not involved in the
texture part any longer. However, this method has to been improved since there
are two major inconveniences :

- First, the same transform is performed at every pixel, so that the image is
globally treated. All the vertical and horizontal lines are removed;

- Second, the transform depends on the chosen (fixed) cartesian axis and
it is not possible to remove contours that are not horizontal, vertical or
diagonal.
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(a) Original image (Bar-
bara)

(b) Texture part without anisotropic strategy (c) Texture part without horizontal and ver-
tical contours

Figure 3.4: E↵ects of anisotropic improvement strategy -Pi↵et (2011)

Therefore, we perform a local rotation which is driven by the gradient direc-
tion, to make the contour direction, horizontal (or vertical). Then we cancel the
corresponding terem in the new rotated Hessian matrix. The whole process is
detailed in (section 4) .
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(a) (b)

Figure 3.5: Illustration of the method with “Barbara” example

The di↵erent steps are the following :

• Step 1. Detect points of interest which are pixels of contours that appear
in the texture component and that need to be removed. This step can
be performed using (for example) a thresholding on the image gradient
norm. The other pixels are treated with the original model (P2) without
any anisotropic strategy.

Figure 3.6: Pixels of interest which are concerned by the anisotropic strategy.

• Step 2. Compute the image gradient at every point of interest: this gives
the angle ↵ between the normal direction at the point and (for example)
the horizontal line.
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(a) Choice of a significant
pixel

(b) Rotation of the thumbnail

Figure 3.7: Once the angle ↵ between the direction of the contour (given by the gradient) and
the horizontal direction is perform a rotation and set the Hessian component that correspond
to the gradient diection to 0 (H2,2 for example)

• Step 3. Extract a neighborhood (patches of size p ⇥ p) centered at every
interest point, and perform a rotation of angle ↵. Then, compute the
new Hessian matrix at the considered pixel, setting either the horizontal
or vertical component to 0. Large enough patches must be considered to
avoid boundary e↵ects (for example p = 5).

Next figures illustrates the result.

(a) Texture part obtained with
(P2) model

(b) Texture part obtained with
locally anisotropic strategy

Figure 3.8: Comparison between (P2) model and (P2) with a local anisotropic strategy.
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We shall detail the strategy and the implementation in the 3D case (section 4)
but we give an example however.

Figure 3.9: Original image

We observe in Figures 3.10 and 3.11 that the contour lines of the BV 2-
component are well preserved using the anisotropic strategy, so that we may
use the concept of cartoon t as for the ROF model (see Aujol et al. (2005)).
Moreover, we can see on the texture component that contours and edges dis-
appear when using anisotropy strategy. Even if we can notice that the locally
anisotropic model gives pretty good results for texture extraction, we still have
to carefully analyze this strategy, which is related to the penalization of image
curvature. Additional comments, details and examples can be found in Pi↵et
(2011).
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(a) Cartoon without anisotropy strategy (b) Cartoon with anisotropy strategy

(c) Texture without anisotropy strategy (d) Texture with anisotropy strategy

Figure 3.10: (P2) model with and without anisotropy strategy - � = 20

32



(a) Cartoon without anisotropy strategy (b) Cartoon with anisotropy strategy

Figure 3.11: (P2) model with and without anisotropy strategy - � = 100 - Zoom on cartoons

3.3. Numerical experiments

3.3.1. Discretization of problem (P2)

We assume once again that the image is squared with size N ⇥M . We note
X := RN⇥M ' RNM endowed with the usual inner product and the associated
euclidean norm and use the discretization process of section 2.4.1. To define a
discrete version of the second order total variation �2 we have to introduce the
discrete Hessian operator. For any v 2 X, the Hessian matrix of v, denoted Hv

is identified to a X4 vector: (Hv)
i,j

=
⇣

(Hv)11
i,j

, (Hv)12
i,j

, (Hv)21
i,j

, (Hv)22
i,j

⌘

, with,

for every i = 1, . . . , N, j = 1, . . . ,M

(Hv)11
i,j

=

8

<

:

v
i+1,j � 2v

i,j

+ v
i�1,j if 1 < i < N,

v
i+1,j � v

i,j

if i = 1,
v
i�1,j � v

i,j

if i = N,

(Hv)12
i,j

=

8

<

:

v
i,j+1 � v

i,j

� v
i�1,j+1 + v

i�1,j if 1 < i  N, 1  j < M,
0 if i = 1,
0 if i = N,

(Hv)21
i,j

=

8

<

:

v
i+1,j � v

i,j

� v
i+1,j�1 + v

i,j�1 if 1  i < N, 1 < j  M,
0 if i = 1,
0 if i = N,

(Hv)22
i,j

=

8

<

:

v
i,j+1 � 2v

i,j

+ v
i,j�1 if 1 < j < M,

v
i,j+1 � v

i,j

if j = 1,
v
i,j�1 � v

i,j

if j = M.
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The discrete second order total variation corresponding to �2(v) is defined as

J2(v) =
N

X

i=1

M

X

j=1

k(Hv)
i,j

kR4 , (3.9)

where kxkR4 =

v

u

u

t

4
X

i=1

x2
i

for every x = (x1, x2, x3, x4) 2 R4. The discretized

problem writes

inf
u2X

F2(u) :=
1

2
ku

d

� uk2
X

+ �J2(u). (P2)

Theorem 3.5. Problem (P2) has a unique solution for every � > 0.

Proof - The cost functional F2 is continuous and coercive because of the term
ku

d

� vk2
X

. In addition it is strictly convex so that we get the result. ⇤

3.3.2. Optimality conditions

We follow the steps of section 2.5 to get optimality conditions for the solution
to (P2). For the sake of simplicity, we perform the study in the finite dimensional
case only.

We first compute the Legendre-Fenchel conjugate function of J2. As J2 is
positively homogeneous, the Legendre-Fenchel conjugate J⇤

2 is the characteristic
function of a closed, convex set K. As J⇤⇤

2 = J2, we get

J2(v) = sup
u2K

hv, ui
X

.

We use the inner scalar product of X4 :

hp, qi
X

4 =
X

1iN

X

1jM

�

p1
i,j

q1
i,j

+ p2
i,j

q2
i,j

+ p3
i,j

q3
i,j

+ p4
i,j

q4
i,j

�

,

for every p =
�

p1, p2, p3, p4
�

, q =
�

q1, q2, q3, q4
� 2 X4. So, for every v 2 X,

J2(v) = sup
p2C

hp,Hvi
X

4 , (3.10)

where the feasible set is

C := { p 2 X4 | kp
i,j

kR4  1, 8 1  i  N, 1  j  M } .

Let us compute the adjoint operator of H (which is the discretized “second di-
vergence” operator) :

8p 2 X4, 8v 2 X hH⇤p, vi
X

= hp,Hvi
X

4 .
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We verify that H⇤ : X4 ! X satisfies for every p = (p11, p12, p21, p22) 2 X4

(H⇤p)
i,j

=

8

>

<

>

:

p11
i�1,j � 2p11

i,j

+ p11
i+1,j if 1 < i < N

p11
i+1,j � p11

i,j

if i = 1,

p11
i�1,j � p11

i,j

if i = N,

+

8

>

<

>

:

p22
i,j�1 � 2p22

i,j

+ p22
i,j+1 if 1 < j < M,

p22
i,j+1 � p22

i,j

if j = 1,

p22
i,j�1 � p22

i,j

if j = M,

+

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p12
i,j�1 � p12

i,j

�p12
i+1,j�1 + p12

i+1,j if 1 < i < N, 1 < j < M,

p12
i+1,j � p12

i+1,j�1 if i = 1, 1 < j < M,

p12
i,j�1 � p12

i,j

if i = N, 1 < j < M,

p12
i+1,j � p12

i,j

if 1 < i < N, j = 1,

p12
i,j�1 � p12

i+1,j�1 if 1 < i < N, j = M,

p12
i+1,j if i = 1, j = 1,

�p12
i+1,j�1 if i = 1, j = M,

�p12
i,j

if i = N, j = 1,

p12
i,j�1 if i = N, j = M,

(3.11)

+

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p21
i�1,j � p21

i,j

�p21
i�1,j+1 + p21

i,j+1 if 1 < i < N, 1 < j < M,

p21
i,j+1 � p21

i,j

if i = 1, 1 < j < M,

p21
i�1,j � p21

i�1,j+1 if i = N, 1 < j < M,

p21
i,j+1 � p21

i�1,j+1 if 1 < i < N, j = 1,

p21
i�1,j � p21

i,j

if 1 < i < N, j = M,

p21
i,j+1 if i = 1, j = 1,

�p21
i,j

if i = 1, j = M,

�p21
i�1,j+1 if i = N, j = 1,

p21
i�1,j if i = N, j = M,

Finally, we obtain

Theorem 3.6. The Legendre-Fenchel conjugate of J2 is J⇤
2 = 1

K2 where

K2 := {H⇤p | p 2 X4, kp
i,j

kR4  1, 81  i  N, 1  j  M} ⇢ X. (3.12)
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Proof - The proof is the same as the one of theorem 2.4. Alternatively, one may
note that J2 is the support function of K2 which is the conjugate function of the
indicator function 1

K2 of K2 (see Ekeland and Temam (1999) p. 19). Therefore,
as K2 is closed and convvex and J2 is continuous we get J⇤

2 = 1⇤⇤
K2

= 1
K2 . ⇤

Eventually, we get

Theorem 3.7. The solution ū of (P2) verifies

ū = u
d

� P
�K2(ud),

where P
�K2 is the orthogonal projector operator on �K2.

3.3.3. A fixed-point algorithm to compute P
�K2

We extend the result of ( Chambolle (2004) ) that we recalled in section 2.4.2,
to the second-order case. To compute P

�K2(ud) we have to solve

min
n

k�H⇤p� u
d

k2
X

| p 2 X4, kp
i,j

k2R4 � 1  0, 1  i  N, 1  j  M
o

.

Let us denote R(p) = k�H⇤p� u
d

k2
X

and

g
i,j

(p) = kp
i,j

k2R4 � 1 = (p11
i,j

)2 + (p12
i,j

)2 + (p21
i,j

)2 + (p22
i,j

)2 � 1.

First order optimality conditions give the existence of Lagrange multipliers ↵
i,j

,
(i, j) 2 {1, . . . , N}⇥ {1, . . . ,M}, such that

rR(p) +
N

X

i=1

M

X

j=1

↵
i,j

rg
i,j

(p) = 0, (3.13a)

↵
i,j

� 0 and ↵
i,j

g
i,j

(p) = 0, 1  i  N, 1  j  M. (3.13b)

It is easy to see that rR(p) = 2�H [�H⇤p� u
d

] and that

N

X

i=1

M

X

j=1

↵
i,j

rg
i,j

(p) = 2↵
i,j

�

(p11
i,j

, p22
i,j

, p12
i,j

, p21
i,j

)
�

1iN,1jM

.

Therefore relations (3.13) are equivalent to

8(i, j) 2 {1, . . . , N}⇥ {1, . . . ,M} (H [�H⇤p� u
d

])
i,j

+ ↵
i,j

p
i,j

= 0, (3.14a)

8(i, j) 2 {1, . . . , N}⇥ {1, . . . ,M} ↵
i,j

� 0 and ↵
i,j

g
i,j

(p) = 0. (3.14b)

Let us compute the multipliers ↵
i,j

more precisely :

• If ↵
i,j

> 0 then kp
i,j

kR4 = 1.
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• If ↵
i,j

= 0 then (H [�H⇤p� u
d

])
i,j

= 0.

In both cases we get

8(i, j) 2 {1, . . . , N}⇥ {1, . . . ,M} ↵
i,j

=
�

�

�

(H [�H⇤p� u
d

])
i,j

�

�

�

R4

and we finally obtain the following equality : 8(i, j) 2 {1, . . . , N}⇥ {1, . . . ,M} ,

(H [�H⇤p� u
d

])
i,j

+
�

�

�

(H [�H⇤p� u
d

])
i,j

�

�

�

R4
p
i,j

= 0. (3.15)

We use a semi-implicit gradient method to solve these equations : this gives

Algorithm 4 Second order Chambolle-type algorithm

Initialization : n = 0; p0 = 0
Iteration n : set

pn+1
i,j

=
pn
i,j

� ⌧ (H [H⇤pn � u
d

/�])
i,j

1 + ⌧
�

�

�

(H [H⇤pn � u
d

/�])
i,j

�

�

�

R4

. (3.16)

Stopping criterion.

The algorithm step ⌧ > 0 is related to the adjoint operator H⇤ norm that we
call  in the sequel. We first give a  estimate:

Lemma 3.2. The adjoint operator H⇤ norm,  satisfies   8 .

Proof - The definition of  gives :  = sup
kpk

X

41
kH⇤pk

X

. As

kH⇤pk
X

= sup
q2B̄

X

(0,1)
hH⇤p, qi

X

= sup
q2B̄

X

(0,1)
hp,Hqi

X

4  sup
q2B̄

X

(0,1)
kHqk

X

4kpk
X

4 ,

we get
kH⇤pk

X

 |||H||| kpk
X

4 , (3.17)

where
|||H||| = sup

kqk
X

1
kHqk

X

4 .

For any q 2 X
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kHqk2
X

4 =
N

X

i=1

M

X

j=1

h

(q
i+1,j � 2q

i,j

+ q
i�1,j)

2 + (q
i,j+1 � q

i,j

� q
i�1,j+1 + q

i�1,j)
2

+ (q
i+1,j � q

i,j

� q
i+1,j�1 + q

i,j�1)
2 + (q

i,j+1 � 2q
i,j

+ q
i,j�1)

2
i

 4
N

X

i=1

M

X

j=1

⇥

q2
i+1,j + q2

i,j

+ q2
i,j

+ q2
i�1,j + q2

i,j+1 + q2
i,j

+ q2
i�1,j+1 + q2

i�1,j

+ q2
i+1,j + q2

i,j

+ q2
i+1,j�1 + q2

i,j�1 + q2
i,j+1 + q2

i,j

+ q2
i,j

+ q2
i,j�1

⇤

 4⇥ 16 kqk2
X

= 64 kqk2
X

.

Finally |||H|||  8, and with relation (3.17), kH⇤pk
X

 8 kpk
X

4 . We deduce that
  8. ⇤

Theorem 3.8. Let be ⌧  1/64. Then � (H⇤pn)
n

converges to P
�K2(ud) as

n ! +1.

Proof - We refer to Bergounioux and Pi↵et (2010). ⇤

3.3.4. Nesterov type algorithms

Algorithm 2 is a generic one. As in section 2.4.3, we apply it to solving the
dual problem. We set

E(p) =
1

2
kH⇤p� u

d

k2
X

and Q = B
�

,

and choose d(x) =
1

2
kxk2

X

with x0 = 0 and � = 1.
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Algorithm 5 Modified Nesterov algorithm fo (P2)

Input : the maximal number of iterations I
max

and an initial guess p0 2 B
�

are given.
Output : q̃ := q

I

max

approximates q̄ solution to (2.15)

Set L = kH⇤k2.
Set G�1 = 0
for 0  k  I

max

do
⌘
k

= H(H⇤p
k

� u
d

)

q
k

= ⇧B
�

⇣

p
k

� ⌘
k

L

⌘

.

G
k

= G
k�1 +

k + 1

2
⌘
k

, z
k

= ⇧B
�

✓

�G
k

L

◆

.

p
k+1 =

2

k + 3
z
k

+
k + 1

k + 3
q
k

end for

3.4. A full second order model

The variational model we have previously studied, involves a single second
order term �2. The motivation was to get rid of the staircasing e↵ect while
restoring noisy data. We infered that the use of a second order penalization
term leads to piecewise a�ne solutions so that there is no staircasing any longer.
However, we observed that the contours were not kept as well as we wanted and
that the resulting image was slightly blurred. To overcome this di�culty, we now
consider a full second order model involving both first and second order penal-
ization terms. Furthermore, we focus on texture extraction; indeed denoising can
be handled in a similar way, considering that noise is a very fine texture.

3.4.1. The model

Specifically, we assume that the image we want to recover from data can be
decomposed as u

d

= w+ u+ v where u, v and w are functions that characterize
the various structures of u

d

. In the sequel u
d

2 L2(⌦). We consider the following
cost functional defined on BV (⌦)⇥BV 2(⌦) :

F
�,µ

(u, v) =
1

2
ku

d

� u� vk2
L

2(⌦) + ��1(u) + µ�2(v), (3.18)

where �, µ > 0. We are looking for a solution to the optimization problem

inf{ F
�,µ

(u, v) | (u, v) 2 X ⇥ Y } (P
�,µ

)

where X = BV0(⌦) or BV
m

(⌦) and Y = BV 2
0 (⌦) or BV 2

m

(⌦). In other words we
expect
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• v to be the smooth colored part of the image (that should be piecewise
a�ne),

• u to be a BV (⌦)\BV 2(⌦) function which derivative is a measure supported
by the image contours,

• w := u
d

� u� v 2 L2 is the noise and/or fine textures (we detail this point
later).

First we give an existence result for problem (P
�,µ

).

Theorem 3.9 (Existence). Assume that � > 0 and µ > 0. The problem (P
�,µ

)
has at least an optimal solution (u⇤, v⇤) 2 X ⇥ Y ⇢ BV (⌦)⇥BV 2(⌦).

Proof - Let (u
n

, v
n

) 2 BV0(⌦)⇥BV 2
0 (⌦) be a minimizing sequence, i.e.

lim
n!+1

F
�,µ

(u
n

, v
n

) = inf(P
�,µ

) < +1.

Therefore

• �2(vn) is bounded and with Lemma 3.1, krv
n

k
L

1 is bounded as well.

• �1(un) is bounded. Using once again Lemma 3.1 this yields that u
n

is
bounded in L1(⌦. Therefore the sequence u

n

is bounded in BV (⌦).

• As u
n

+v
n

is L2 -bounded, it is L1 -bounded as well so that v
n

is L1 bounded.
As krv

n

k
L

1 and �2(vn) are bounded this means that the sequence v
n

is
bounded in BV 2(⌦).

With the compactness result of Theorem 3.3, we infer that (v
n

)
n2N strongly

converges (up to a subsequence) in W 1,1(⌦) to v⇤ 2 BV 2
0 ⌦)(because the trace

operator is continuous) and (u
n

)
n2N strongly converges (up to a subsequence) in

L1(⌦) to u⇤ 2 BV0(⌦). Moreover u
n

+ v
n

weakly converges to u⇤ + v⇤ in L2(⌦).
With Theorem 3.2 we get

�1(u
⇤)  lim inf

n!+1
�1(un), �2(v

⇤)  lim inf
n!+1

�2(vn).

So
F
�,µ

(u⇤, v⇤)  lim inf
n!+1

F
�,µ

(u
n

, v
n

) = min(P
�,µ

),

and (u⇤, v⇤) is a solution to (P
�,µ

). ⇤
It is easy to see that (u⇤, v⇤) is a solution to (P

�,µ

) if and only if

u⇤ = argmin

⇢

1

2
kud � v⇤ � uk2 + ��1(u) , u 2 BV0(⌦)

�

, (3.19)

v⇤ = argmin

⇢

1

2
kud � u⇤ � vk2 + µ�2(v), v 2 BV2

0(⌦)

�

.

and we may derive optimality conditions in a standard way :
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Theorem 3.10. (u⇤, v⇤) is a solution to (P
�,µ

) if and only if

u
d

� u⇤ � v⇤ 2 �@�1(u
⇤), (3.20a)

u
d

� u⇤ � v⇤ 2 µ@�2(v
⇤). (3.20b)

The proof is straightforward since �1 and �2 are convex and continuous and
variables u and v can be decoupled.

3.4.2. Numerical realization and algorithm

We use the same discretization process as in the previous section. The dis-
cretized problem writes

inf
(u,v)2X⇥X

F
�,µ

(u, v) :=
1

2
ku

d

� u� vk2
X

+ �J1(u) + µJ2(v). (P
�,µ

)

Theorem 3.11. Assume � > 0, µ > 0. Problem (P
�,µ

) has a unique solution
(u⇤, v⇤) .

Proof - The proof is obvious since the cost functional is strictly convex and
coercive. ⇤
Using the subdi↵erential properties and decoupling u⇤ and v⇤ gives the following
necessary and su�cient optimality conditions :

Proposition 3.3. (u⇤, v⇤) is a solution to (P
�,µ

) if and only if

u
d

� u⇤ � v⇤ 2 �@J1(u
⇤), (3.21a)

u
d

� u⇤ � v⇤ 2 µ@J2(v
⇤). (3.21b)

We can perform an explicit computation to get the following result :

Theorem 3.12. (u⇤, v⇤) is a solution to (P
�,µ

) if and only if

u⇤ = u
d

� v⇤ �⇧
�K1 (ud � v⇤) , (3.22a)

v⇤ = u
d

� u⇤ �⇧
µK2 (ud � u⇤) , (3.22b)

where K1 and K2 are the following convex closed subsets :

K1 = {div p | p 2 X2, kp
i,j

kR2  1 8i = 1, . . . , N, j = 1, . . . ,M}, (3.23a)

K2 = {H⇤p | p 2 X4, kp
i,j

kR4  1, 8i = 1, . . . , N, j = 1, . . . ,M}, (3.23b)

and ⇧
K

i

denotes the orthogonal projection on K
i

.
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Proof - We refer to Bergounioux and Pi↵et (2010), Chambolle (2004). We use
Theorems 2.7 and 3.7. ⇤
We may write relations (3.22) as a fixed point equation (u, v) = G(u, v), where

G : X2 ! X2

(u, v) 7!
 

u
d

� v �⇧
�K1 (ud � v)

(u
d

� u�⇧
µK2 (ud � u))

!

.
(3.24)

We use a gradient-type algorithm to compute the solution: for every ↵ > 0, set
✓

u
n+1

v
n+1

◆

=

✓

u
n

v
n

◆

+ ↵

✓

G(u
n

, v
n

)�
✓

u
n

v
n

◆◆

.

This leads to the following :

Algorithm 6 Fixed-point algorithm for (P
�,µ

)

Initialization step : Choose u0 and v0 (for example u0 = 0 and v0 = u
d

) and
0 < ↵ < 1/2. Set n = 0.
Iteration n : Define the sequences (u

n

, v
n

)
n2N as

(

u
n+1 = u

n

+ ↵ (u
d

� v
n

�⇧
�K1 (ud � v

n

)� u
n

)

v
n+1 = v

n

+ ↵ (u
d

� u
n

�⇧
µK2 (ud � u

n

)� v
n

) .

Stopping criterion.

We may give a convergence result :

Theorem 3.13. If ↵ > 0 is small enough, the sequence (u
n

, v
n

) converges to the
(unique) fixed point of G.

Proof - The above algorithm is a descent method with step ↵ and direction
D(u, v) = (u, v) � G(u, v). We have to prove that D = (D1, D2) is Lipschitz
continuous. We set S1(w) := w � ⇧

�K1(w) so that D1(u, v) = u � S1(u
d

� v).
For every (w1, w2),2 X2, we have

kS1(w1)� S1(w2)k2
X

= kw2 � w1k2
X

+ k⇧
�K1(w2)�⇧

�K1(w1)k2
X

+ 2 (w1 � w2,⇧
�K1(w2)�⇧

�K1(w1)) .

With Proposition A.1 ( Appendix A.1.4) we get

kS1(w1)� S1(w2)k2
X

 kw2 � w1k2
X

� k⇧
�K1(w2)�⇧

�K1(w1)k2
X

< kw2 � w1k2
X

= kv2 � v1k2
X

.
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Therefore : kD1(u1, v1)�D1(u2, v2)k
X

< ku2 � u1kX + kv2 � v1kX . A similar
computation gives kD2(u1, v1)�D2(u2, v2)k

X

< ku2 � u1kX + kv2 � v1kX , and
finally

kD(u1, v1)�D(u2, v2)k1,X < 2(ku1 � u2k
X

+ kv1 � v2k
X

).

Therefore D is 2-Lipschitz continuous and we use a general convergence result to
conclude. ⇤
For the numerical realization a (standard) relaxed version of the algorithm is
used.

Algorithm 7 Relaxed fixed-point algorithm for (P
�,µ

)

Initialization step : Choose u0 and v0 (for example u0 = 0 and v0 = u
d

) and
0 < ↵ < 1/2. Set n = 0.
Iteration n : Define the sequences ((u

n

, v
n

))
n

as

(

u
n+1 = u

n

+ ↵ (u
d

� u
n

� v
n

�⇧
�K1 (ud � v

n

))

v
n+1 = v

n

+ ↵ (u
d

� u
n+1 � v

n

�⇧
µK2 (ud � u

n+1)) .

Stopping criterion.

We perform the computation of projections ⇧
�K1 and ⇧

µK2 using (for exam-
ple) Algorithms 3 and 5.

3.5. Numerical results

We performs numerical tests to investigate the behavior of the partial second
order model (P2) and the full second order (P

�,µ

), then compare to the basic first
order model (P1). The results we report here can be found in Bergounioux and
Pi↵et (2010, 2013). Numerical computation has been done using Nesterov-type
Algorithms 3 and 5.

3.5.1. Denoising

Throughout this section, we consider the following image that is corrupted
by a white Gaussian noise with standard deviation � = 0.15 or � = 0.25 . We
report on (P2) which is rather a denoising model. We shall report on (P

�,µ

) in
next subsection (devoted to texture extraction). The stopping criterion has been
set to a maximal number of iterations that can be chosen arbitrary large.

43



(a) Original (b) Noisy image � = 0.15 (c) Noisy image � = 0.25

Figure 3.12: Test images

Sensibility with respect to � parameter . We note that we lose details information
when parameter � increases, what was expected. However, especially when the
data is very noisy, we have a blur (subjective) feeling, that we do not have when
restoration is performed with the standard ROF model.

(a) � = 1 (b) � = 5 (c) � = 15

(d) � = 25 (e) � = 100 (f) � = 500

Figure 3.13: Solution - Standard deviation � = 0.15
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As expected, we see on Figure 3.13 that the smoothing process is more e�-
cient when � is large. Checking what happens precisely on slices (lines) of the
image (Figure 3.15 for example), we remark that the (P2) model keeps contour
information pretty well, anyway better than expected watching the image.

Sensitivity with respect to iterations number itmax in Algorithm 5. We fix � = 25
and choose � = 0.25.

(a) Noisy slice (� = 0.25)

(b) Original slice

(c) 5 iterations

(d) 10 iterations

(e) 20 iterations

(f) 50 iterations

Figure 3.14: Sensitivity with respect to the number of iterations - � = 0.25, � = 25 - Slice of
“Lena” image.
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Figure 3.14 shows the behavior of a slice (line) during iterations (we can see
more easily how noise is removed). The algorithm converges well: the quality of
restoration is improved as the number of iterations grows. Noise is removed and
contours are preserved.

Comparison with Rudin-Osher-Fatemi model (P1). We compare the two models
on the noisy image with � = 0.25. As expected, piecewise constant areas appear
with (P1) , while it is not the case with (P2). We still focus on a line that meets
contours.

(a) Noisy image (b) Noisy slice

(c) (P1) model solution (d) (P1) model slice

(e) (P2) model solution (f) (P2) model slice

Figure 3.15: Comparison between (P1) and (P2) models - � = 0.25, � = 25
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Figures 3.15 and 3.16 are obtained for � = 25 and � = 50 respectively and 200
iterations.

(a) Noisy slice

(b) Original slice

(c) (P2) model .

(d) (P1) model

Figure 3.16: Zoom on “Lena” slices- � = 0.25, � = 50, 50 iterations

Figure 3.17 is obtained for a large number of iterations and � = 50 to show
how we deal with the staircasing e↵ect : the image restored with (P1) is clearly
piecewise constant while the (P2) one seems to be blurred. However, this is
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an optical e↵ect: considering a slice shows that the (P2) model removes noise
significantly and contours are better preserved: the amplitude of high peaks
that correspond to contours is not changed, which is not the case in ROF-model
(Figure 3.16).

(a) Original image (b) Noisy image (c) (P1) model image (d) (P2) model image

Figure 3.17: Staircasing e↵ect - � = 0.25, � = 50.

Though the (P
�,µ

) model is rather a texture analysis tool, it can been used
for denoising as well: indeed noise (and/or fine textures) is included in the L2

(w) part and the denoised image is v + u. We give an example with Figure 3.18.
Additional experiments will be performed in section 5.

(a) Noisy image
(� = 0.25)

(b) (P1) - � = 50 (c) (P2) - � = 50 (d) (P
�,µ

) � � = 5
µ = 10

Figure 3.18: Comparison of the di↵erent models for denoising purpose.

3.5.2. Texture analysis

In this section, we do not report on texture extraction process for (P2). Nu-
merical tests can be found in Bergounioux and Pi↵et (2010). We focus on (P

�,µ

)
which can be viewed as a multiscale model for texture extraction. We have per-
formed numerical experimentation on the two (natural) images of Figure 3.19.
More results can be found in Bergounioux and Pi↵et (2013).

• Image (a) is a picture of an old damaged wall which can be considered as
pure texture.
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• Image (b) involves both sharp contours and small details.

(a) Wall (b) Butterfly

Figure 3.19: Examples

The stopping criterion is based on the di↵erence between two consecutive it-
erates that should be less than 10�3 coupled with a maximal number of iterations
(here 175).

Sensitivity with respect to � . We can see that the ratio ⇢ :=
�

µ
is significant :

indeed if µ >> � the second-order term is more weighted than the first order one
and the BV 2 component has a small second derivative. This means that there
are less and less details as the ratio ⇢ grows and the resulting image is more and
more blurred.

The ratio ⇢ is less significant for the BV -component u which is sensible to the
� parameter. One sees that the larger � is, the more u looks piecewise constant.
This is consistent with the fact that the optimal value for �1(u) should be smaller
as � grows.

Moreover, if � is large enough then u = 0 (Figure 3.21 (d)). Indeed we have
noticed that the optimal solution (u⇤, v⇤) satisfies (3.19). This means that u⇤ is
the solution to the classical Rudin-Osher-Fatemi problem

u⇤ = argmin{1
2
kf � uk2 + ��1(u) , u 2 BV(⌦)}

with f := u
d

� v⇤. With a result by Meyer (Meyer (2001), Lemma 3, p.42) we
know that u⇤ = 0 if � > ku

d

�v⇤k
G

, where k ·k
G

denotes the G-norm (see section
2.7).
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(a) � = 5 (⇢ = 10) (b) � = 10 (⇢ = 5)

(c) � = 20 (⇢ = 2.5) (d) � = 50 (⇢ = 1)

Figure 3.20: BV 2 component - v - µ = 50 - ⇢ :=
�
µ
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(a) � = 5 (b) � = 10

(c) � = 20 (d) � = 50

Figure 3.21: BV component - u - µ = 50
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(a) � = 5 (b) � = 10

(c) � = 20 (d) � = 50

Figure 3.22: L2 component - w = u
d

� u� v- µ = 50

Sensitivity with respect to µ . The same comments hold : the ratio ⇢ is the
significant quantity with respect to the behaviour of the BV 2 component. The
e↵ect of µ on the remainder term w seems more significant than the e↵ect of �.
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(a) µ = 5 (b) µ = 10 (c) µ = 20 (d) µ = 50

Figure 3.23: BV 2 component - v - � = 10

(a) µ = 5 (b) µ = 10

(c) µ = 20 (d) µ = 50

Figure 3.24: BV component - u - � = 10 -
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(a) µ = 5 (b) µ = 10

(c) µ = 20 (d) µ = 50

Figure 3.25: L2 component - w = u
d

� u� v- � = 10

Decomposition as three components. We present the three components together
for image (a) and di↵erent values of � and µ.This image may be considered
as pure texture. We clearly see that the BV 2-component involves the image
dynamic, the BV -component u extracts a macro-texture and the remainder term
w a micro-structure. The scaling between u and w is tuned via parameters �.
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(a) Original u
d

(b) BV 2-component v

(c) BV -component u (d) L2 -component : w

Figure 3.26: Wall for � = 1 and µ = 1 - ⇢ = 1
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(a) Original u
d

(b) BV 2-component v

(c) BV -component u (d) L2 -component : w

Figure 3.27: Wall for � = 5 and µ = 10 - ⇢ = 0.5
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(a) Original u
d

(b) BV 2-component v

(c) BV -component u (d) L2 -component : w

Figure 3.28: Wall for � = 10 and µ = 50 - ⇢ = 0.5

We end this section with a comparison between (P1), (P2) and (P
�,µ

) for
texture analysis.
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(a) (P1) - texture, � = 15 (b) (P2) - texture, � = 15

(c) (P
�,µ

) - L2 part w, � = 5 and µ = 15 (d) (P
�,µ

) - full texture u + w , � = 5 and
µ = 15

Figure 3.29: Comparison for texture extraction. The textures in (P1) and (P2) are defined as
the remainder term “data - solution”.The texture in (P

�,µ

) is defined as w and we present u+w
as well.

4. 3D second order models

We have investigated the di↵erent models in a continuous setting and the
discretized problems in the 2D-case. This section devoted to the 3D numerical
realization. A detailed analysis can be found in Bergounioux and Tran (2011).
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4.1. Resolution of problems (P1) and (P2) in the 3D-case

Results of section 2.4 (for (P1)) and section 3 (for (P2)) can be extended to the
3D-case in a straightforward way. We first begin with the discretization process.
In the sequel, the dimension space is n = 3 and the image size isN1⇥N2⇥N3. The
generic component of u is u

i,j,k

and we denote similarly the continuous function
and the corresponding (discretized) tensor.
We set X = RN1⇥N2⇥N3 endowed with inner product and norm

hu, vi
X

=
N1
X

i=1

N2
X

j=1

N3
X

k=1

u
i,j,k

v
i,j,k

and kuk
X

=

v

u

u

t

N1
X

i=1

N2
X

j=1

N3
X

k=1

u2
i,j,k

and set Y = X ⇥X ⇥X.

(a) Computation of the discrete gradient ru 2 Y of the image u 2 X and
discretization of the term �1(u) :

(ru
i,j,k

) = (ru1
i,j,k

,ru2
i,j,k

,ru3
i,j,k

)

where

ru1
i,j,k

=

⇢

u
i+1,j,k � u

i,j,k

i < N1

0 i = N1

ru2
i,j,k

=

⇢

u
i,j+1,k � u

i,j,k

j < N2

0 j = N2

ru3
i,j,k

=

⇢

u
i,j,k+1 � u

i,j,k

k < N3

0 k = N3

Then, using the notations of the previous sections the 3D discrete total
variation writes

J1(u) =
X

1iN1

X

1jN2

X

1kN3

|(ru)
i,j,k

|, (4.1)

where |(ru)
i,j,k

|) :=
v

u

u

t

3
X

p=1

(rup
i,j,k

)2.

(b) Computation of the adjoint operator of the discrete gradient: the discrete
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divergence writes

(div p)
i,j,k

=

8

>

>

<

>

>

:

p1
i,j,k

� p1
i�1,j,k if 1 < i < N1

p1
i,j,k

if i = 1

�p1
i�1,j,k if i = N1

+

8

>

>

<

>

>

:

p2
i,j,k

� p2
i,j�1,k if 1 < j < N2

p2
i,j,k

if j = 1

�p2
i,j�1,k if j = N2

(4.2)

+

8

>

>

<

>

>

:

p3
i,j,k

� p2
i,j,k�1 if 1 < k < N3

p3
i,j,k

if k = 1

�p3
i,j,k�1 if k = N3

(c) Computation of the discrete Hessian and computation of J2(v).
We have

hru, div�i = � ⌦�,r2u
↵

.

Then,

J2(v) :=
N1
X

i=1

N2
X

j=1

N3
X

k=1

k(Hv)
i,j,k

kR9

where

(Hv)
i,j,k

=(Hv11
i,j,k

, Hv12
i,j,k

, Hv13
i,j,k

, Hv21,
i,j,k

Hv22
i,j,k

, Hv23
i,j,k

, Hv31
i,j,k

, Hv32
i,j,k

, Hv33
i,j,k

).

For every i = 1, ..., N1, j = 1, ..., N2 and k = 1, ..., N3, the computation of
Hv gives

(Hv)11
i,j,k

=

8

<

:

v
i+1,j,k � 2v

i,j,k

+ v
i�1,j,k 1 < i < N1

v
i+1,j,k � v

i,j,k

i = 1
v
i,j,k

� v
i�1,j,k i = N1

(Hv)12
i,j,k

=

8

>

>

<

>

>

:

v
i,j+1,k � v

i,j,k

� v
i�1,j+1,k + v

i�1,j,k 1 < i  N1

1  j < N2

0 j = N2

0 i = 1

(Hv)13
i,j,k

=

8

>

>

<

>

>

:

v
i,j,k+1 � v

i,j,k

� v
i�1,j,k+1 + v

i�1,j,k 1 < i  N1

1  k < N3

0 i = 1
0 k = N3
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(Hv)21
i,j,k

=

8

>

>

<

>

>

:

v
i+1,j,k � v

i,j,k

� v
i+1,j�1,k + v

i,j�1,k 1  i < N1

1 < k  N3

0 i = N1

0 k = 1

(Hv)22
i,j,k

=

8

<

:

v
i,j+1,k � 2v

i,j,k

+ v
i,j�1,k 1 < j < N2

v
i,j+1,k � v

i,j,k

j = 1
v
i,j,k

� v
i,j�1,k j = N2

(Hv)23
i,j,k

=

8

>

>

<

>

>

:

v
i,j,k+1 � v

i,j,k

� v
i,j�1,k+1 + v

i,j�1,k 1 < j  N
1  k < N3

0 j = 1
0 k = N3

(Hv)31
i,j,k

=

8

>

>

<

>

>

:

v
i+1,j,k � v

i,j,k

� v
i+1,j,k�1 + v

i,j,k�1 1 < k  N3

1  i < N1

0 k = 1
0 i = N1

(Hv)32
i,j,k

=

8

>

>

<

>

>

:

v
i,j+1,k � v

i,j,k

� v
i+,j+1,k�1 + v

i,j,k�1 1  j < N
1 < k  N3

0 j = N2

0 k = 1

(Hv)33
i,j,k

=

8

<

:

v
i,j,k+1 � 2v

i,j,k

+ v
i,j,k�1 1 < k < N3

v
i,j,k+1 � v

i,j,k

k = 1
v
i,j,k

� v
i,j,k�1 k = N3

(d) Computation of the adjoint operator of discrete Hessian.
Let us consider H⇤ : X9 ! X defined as follows (H⇤ is the adjoint of
operator H): for every p = (p11, p12, p13, p21, p22, p23, p31, p32, p33) 2 X9,

(H⇤p)
i,j,k

= �11
i,j,k

+ �12
i,j,k

+ �13
i,j,k

+ �21
i,j,k

+ �22
i,j,k

+ �23
i,j,k

+ �31
i,j,k

+ �32
i,j,k

+ �33
i,j,k

where

�11
i,j,k

=

8

>

>

<

>

>

:

p11
i+1,j,k � 2p11

i,j,k

+ p11
i�1,j,k 1 < i < N1

p11
i+1,j,k � p11

i,j,k

i = 1

p11
i�1,j,k � p11

i,j,k

i = N1

�22
i,j,k

=

8

>

>

<

>

>

:

p22
i,j+1,k � 2p22

i,j,k

+ p22
i,j�1,k 1 < j < N2

p22
i,j+1,k � p22

i,j,k

j = 1

p22
i,j�1,k � p22

i,j,k

j = N2
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�33
i,j,k

=

8

>

>

<

>

>

:

p33
i,j,k+1 � 2p33

i,j,k

+ p33
i,j,k�1 1 < k < N3

p33
i,j,k+1 � p33

i,j,k

k = 1

p33
i,j,k�1 � p33

i,j,k

k = N3

�12
i,j,k

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p12
i+1,j,k i = 1, j = 1

�p12
i+1,j�1,k i = 1, j = N2

p12
i+1,j,k � p12

i+1,j�1,k i = 1, 1 < j < N2

�p12
i,j,k

i = N1, j = 1

p12
i,j�1,k i = N1, j = N2

p12
i,j�1,k � p12

i,j,k

i = N1, 1 < j < N2

p12
i+1,j,k � p12

i,j,k

1 < i < N1, j = 1

p12
i,j�1,k � p12

i+1,j�1,k 1 < i < N1, j = N2

p12
i,j�1,k � p12

i,j,k

� p12
i+1,j�1,k + p12

i+1,j,k 1 < i < N1, 1 < j < N2

�13
i,j,k

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p13
i+1,j,k i = 1, k = 1

�p13
i+1,j,k�1 i = 1, k = N3

p13
i+1,j,k � p13

i+1,j,k�1 i = 1, 1 < j < N3

�p13
i,j,k

i = N1, k = 1

p13
i,j,k�1 i = N1, k = N3

p13
i,j,k�1 � p13

i,j,k

i = N1, 1 < k < N3

p13
i+1,j,k � p13

i,j,k

1 < i < N1, k = 1

p13
i,j,k�1 � p13

i+1,j,k�1 1 < i < N1, k = N3

p13
i,j,k�1 � p13

i,j,k

� p13
i+1,j,k�1 + p13

i+1,j,k 1 < i < N1, 1 < k < N3

62



�21
i,j,k

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p21
i,j+1,k j = 1, i = 1

�p21
i�1,j+1,k j = 1, i = N1

p21
i,j+1,k � p21

i�1,j+1,k j = 1, 1 < i < N1

�p21
i,j,k

j = N2, i = 1

p21
i�1,j,k j = N2, i = N1

p21
i�1,j,k � p21

i,j,k

j = N2, 1 < i < N1

p21
i,j+1,k � p21

i,j,k

1 < j < N2, i = 1

p21
i�1,j,k � p21

i�1,j+1,k 1 < j < N2, i = N1

p21
i�1,j,k � p21

i,j,k

� p21
i�1,j+1,k + p21

i,j+1,k 1 < j < N2, 1 < i < N1

�23
i,j,k

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p23
i,j+1,k j = 1, k = 1

�p23
i,j+1,k�1 j = 1, k = N3

p23
i,j+1,k � p23

i,j+1,k�1 j = 1, 1 < k < N3

�p23
i,j,k

j = N2, k = 1

p23
i,j,k�1 j = N2, k = N3

p23
i,j,k�1 � p23

i,j,k

j = N2, 1 < k < N3

p23
i,j+1,k � p23

i,j,k

1 < j < N2, k = 1

p23
i,j,k�1 � p23

i,j+1,k�1 1 < j < N2, k = N3

p23
i,j,k�1 � p23

i,j,k

� p23
i,j+1,k�1 + p23

i,j+1,k 1 < j < N2, 1 < k < N3

�31
i,j,k

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p31
i,j,k+1 k = 1, i = 1

�p31
i�1,j,k+1 k = 1, i = N1

p31
i,j,k+1 � p31

i�1,j,k+1 k = 1, 1 < i < N1

�p31
i,j,k

k = N3, i = 1

p31
i�1,j,k k = N3, i = N1

p31
i�1,j,k � p31

i,j,k

k = N3, 1 < i < N1

p31
i,j,k+1 � p31

i,j,k

1 < k < N3, i = 1

p31
i�1,j,k � p31

i�1,j,k+1 1 < k < N3, i = N1

p31
i�1,j,k � p31

i,j,k

� p31
i�1,j,k+1 + p31

i,j,k+1 1 < k < N3, 1 < i < N1
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�32
i,j,k

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

p32
i,j,k+1 k = 1, j = 1

�p32
i,j�1,k+1 k = 1, j = N2

p32
i,j,k+1 � p32

i,j�1,k+1 k = 1, 1 < j < N2

�p32
i,j,k

k = N3, j = 1

p32
i,j�1,k k = N3, j = N2

p32
i,j�1,k � p32

i,j,k

k = N3, 1 < j < N2

p32
i,j,k+1 � p32

i,j,k

1 < k < N3, j = 1

p32
i,j�1,k � p32

i,j�1,k+1 1 < k < N3, j = N2

p32
i,j�1,k � p32

i,j,k

� p32
i,j�1,k+1 + p32

i,j,k+1 1 < k < N3, 1 < j < N2

The algorithms to compute the projections are the same. Let us detail the
second order case for example. The solution to problem (P2) verifies:

v = u
d

� P
�K2(ud)

where P
�K

is the orthogonal projector operator on �K2 and

K2 := {H⇤p | p 2 X9, kp
i,j,k

kR9  1, 1  i  N1, 1  j  N, 1  k  N3}.

To compute P
�K

(u
d

) we have to solve the following problem:
8

>

>

<

>

>

:

min k�H⇤p� u
d

k2
X

p 2 X9

kp
i,j,k

k2R9  1, 1  i  N1, 1  j  N2, 1  k  N3

The di↵erence lies in the definition of K1 and K2.

4.2. Anisotropic variant for (P2) in the 3D case

We detail the method that we have presented in section 3.2.2. We perform two
rotations r

↵

and r
�

to compute a modified Hessian matrix H 0 at a voxel (i, j, k).
More precisely, we perform a change of variables (with the rotations) to compute
the Hessian matrix and the adjoint matrix as in the previous section: the local
axis (with the gradient vector as z-axis) are considered instead of the original fixed
cartesian axis. Then, we may cancel the Hessian matrix terms corresponding to
the gradient direction (for example), to get rid of the corresponding contour (if
it is significant) in the extracted texture. Finally we go back to the original axis
with the inverse rotations. Let us detail the process :
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Figure 4.1: Definition of local axis and angles ↵ and �

The angles ↵ and � are defined at point X
o

= (x
o

, y
o

, z
o

) as follows : ↵ is the
(azimuthal) angle between the gradient ru(x

o

, y
o

, z
o

) and the z-axis . � is the
angle between the orthogonal projection of

ru(x
o

, y
o

, z
o

) :=

0

@

u
x

u
y

u
z

1

A (x
o

, y
o

, z
o

)

(on the xOy plane) and the x -axis. Note that we can perform this transformation
with axis Ox or Oy instead of Oz . Let us define the two rotations : r

↵

and r
�

which matrices are :

R
↵

=

0

@

1 0 0
0 cos↵ � sin↵
0 sin↵ cos↵

1

A and R
�

=

0

@

cos� � sin� 0
sin� cos� 0
0 0 1

1

A ,

with

↵ = atan

0

@

u
z

q

u2
x

+ u2
y

1

A (X
o

), � = atan

✓

u
y

u
x

◆

(X
o

) .

The change of variables from the fixed basis to the local one is given par

X̃ = R
�

R
↵

X, with X = (x, y, z) 2 R3 .

Moreover
X = (R

�

R
↵

)�1X̃ = R�1
↵

R�1
�

X̃ = R�↵

R��

X̃ .
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In the sequel, we set ũ(X̃) := u(X) and R
↵,�

def

:= R�↵

R��

and we compute the
first and second order derivative of ũ :

rũ =

0

B

B

B

B

B

B

@

@ũ

@x̃
@ũ

@ỹ
@ũ

@z̃

1

C

C

C

C

C

C

A

and H̃ :=

0

B

B

B

B

B

B

B

@

@2ũ

@x̃2
@2ũ

@x̃@ỹ

@2ũ

@x̃@z̃
@2ũ

@x̃@ỹ

@2ũ

@ỹ2
@2ũ

@ỹ@z̃
@2ũ

@x̃@z̃

@2ũ

@ỹ@z̃

@2ũ

@z̃2

1

C

C

C

C

C

C

C

A

.

A short computation gives

@ũ

@x̃
=

@u

@x

@x̃

@x
+

@u

@y

@ỹ

@x
+

@u

@z

@z̃

@x
= ru · @X̃

@x
= ru ·R(:, 1) ,

where · denotes the R3 scalar product and R(:, 1) is the first column of R. Finally,
we get

rũ = R
↵,�

ru . (4.3)

Now we compute H̃; we set ṽ =
@ũ

@x̃
and estimate rṽ as above : this will be the

first column of H̃.

rṽ = R
↵,�

rv = R
↵,�

0

B

B

B

B

B

B

@

@2u

@x2

@2u

@y@x
@2u

@z@x

1

C

C

C

C

C

C

A

.

Finally
H̃ = R

↵,�

H . (4.4)

As already mentioned, the idea is to cancel some terms of the Hessian matrix to
get rid of (or to keep) the contours. However, without performing the rotations,
there would be only few possible directions, for example vertical, horizontal and
diagonal in the 2D-case so that many contours are not considered. Performing
the change of variables allows to identify the gradient direction (that is the con-
tour direction if the gradient is large enough) with the z-axis and then cancel
corresponding terms of the matrix H̃. Of course, we have to get back to the
original situation. Let us denote by L the (linear) transformation that assigns 0
to some coe�cients of H̃ (this is a projection). The whole process is described
by

H ! H̃ = R�↵

R��

H ! L(H̃) := H̃ 0 ! [R
↵,�

]�1L(H̃) = R
�

R
↵

L(H̃) ,
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that is
H ! [R

�

R
↵

LR�↵

R��

]H . (4.5)

So, algorithm is modified as follows

Algorithm 8 Anisotropic strategy for (P2)

Choose ⌧ > 0, µ > 0 and compute ru
d

.
Use a thresholding process to identify the contours (kru

d

k � ⇢) .
Set I

⇢

the set of voxels corresponding to these significant contours.
For voxels in I

µ

, modify H with the following rule

H ! H̃ = R�↵

R��

H ! L(H̃) = [LR�↵

R��

]H := H 0

and compute (H 0)⇤

Perform algorithms (4) or (5) with H 0 instead of H.

5. Examples and applications

We end this paper with two examples in biology and material science. The
full second order model behaves well as soon as we have tuned the parameters.
This is the most challenging issue of this model. We are not able to provide any
automatic tuning of parameters � and µ by now. Nevertheless, the 3D-images we
study have been obtained in the same experimental conditions. Therefore it is
possible to tune the parameters with one 2D slice using PSNR or user expertise.
Then these parameters can be used for the whole image stack.

Though we have not yet performed a quantitative, theoretical sharp analysis
of these second-order models, we get some hints however. Parameter � should be

less that µ and the ratio
�

µ
gives the scale between the cartoon and the noise parts

if the images are pure textures (this is the case for some bone micro-radiographs
see Jennane et al. (2013)). In addition, we know that the larger � is, the better
is the cartoon part. We give examples thereafter.

5.1. X-ray imaging - Material science

The first application concerns X-ray microtomography images on healthy
and deteriorated building stones (Guillot et al. (2009)). Geomaterials (Tu↵eau
stone) studied here are sedimentary limestones widely utilized during the last
centuries for historical monuments construction (chateaux, churches, cathedrals,
and houses) along the Loire valley between Orlans and Nantes. Today, Tu↵eau
stone is mainly used to restore these monuments. This stone is a yellowish-white
porous sedimentary limestone, mainly composed of calcite (40 to 70 %), silica (20
to 60 %) in the form of opal cristobalite-tridymite and quartz and some secondary
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minerals such as clays and micas. Tu↵eau stones are extremely porous (40 to 50
%) with equivalent pore size distribution ranged from 103 to 10-2 µm in size.

The analysis will make it possible to identify the mineralogical phases and
the three-dimensional morphology and structure of the porous and solid phases.
The images are 8 bits grey level images: they involve several areas corresponding
to various materials composing the stone. In addition the porous media under
study structure results in elements of texture we have to analyze and restore. The
texture corresponds to pores at a micrometric scale, each pore being represented
by few pixels. The segmentation and the restoration thus carried out, it will then
be necessary to develop areas segmentation tools. We have here three areas to
determine, each one corresponding to the various phases of the material (silica,
quartz and pore). Once these three areas are identified, one can get the 3D
representation of each one. The study has been done with laboratory ISTO 1.

It is impossible to perform segmentation of such images without any pre-
processing. Indeed, images are noisy and involve fine texture areas (due to the
micritic calcite part) as well. The denoising process should preserve the tex-
ture which involves relevant physical information. As we want to recover the
vacuum area we have to perform a contour segmentation and if possible regions
classification to recover the di↵erent physical components of the stone. The de-
composition model we propose, can be used as a preprocessing to separate the
noise and fine texture component w from the macro-texture component u and
perform a classical segmentation method on u.

1We thank Olivier Rozenbaum at ISTO( http://www.isto.cnrs-orleans.fr/) who per-
formed acquisition.
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(a) Original image (b) BV -component : u

(c) L2 -component : w = u
d

� u� v (d) BV 2-component : v

Figure 5.1: Decomposition - � = 10, µ = 20 (in Bergounioux and Pi↵et (2013))
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(a) Original (noisy) image u
d

(b) Component u+ v (denoised image)

Figure 5.2: Original and denoised image - � = 10, µ = 20 (in Bergounioux and Pi↵et (2013))

The original data is made of 800 2D-images

(a) Original Image

Figure 5.3: 3D X-ray stack of Tu↵eau
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(a) BV part -u (b) BV2 - part v

(c) L2 - part w

Figure 5.4: Decomposition of a 3D X-ray stack - Tu↵eau - � = 5, µ = 10
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We show on the same 3D picture the e↵ect of parameters � and µ

(a) BV part -u

(b) BV2 - part v

Figure 5.5: The original data is made of 800 2D-images . The volume corresponding to the first
200 slices has been decomposed with � = 5 µ = 10, the volume 201 to 400 with � = 1 µ = 10,
the volume 401 to 600 with � = 10 µ = 10 and the volume 601 to 800 , with � = 20 µ = 50.
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Figure 5.6: (c) L2 - part w - The volume corresponding to the first 200 slices has been
decomposed with � = 5 µ = 10, the volume 201 to 400 with � = 1 µ = 10, the volume 401 to
600 with � = 10 µ = 10 and the volume 601 to 800 , with � = 20 µ = 50.

We have computed the decomposition using two methods: first, we used a
“false” 3D method by performing a 2D model on every slice. Second, we used
the direct 3D method (which is more memory consuming of course). As expected,
the solutions are di↵erent. The use of a direct 3D method is much better since
we use informations in the three directions to compute the gradients and the
hessians. We present below the di↵erence between the solutions.
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(a) BV part -u

(b) L2 - part w

Figure 5.7: Di↵erence between the solutions given by a 2D- slice by slice strategy and a full
3D-strategy - � = 5 µ = 10
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5.2. MRI imaging -Biology

This example deals with MRI 3D-images of mice brain vessel network.

(a) Original Image

(b) Original Image with thresholding

Figure 5.8: Original 3D- MRI stack with and without thresholding

Mice have been genetically modified : some are sick (malaria, cancer) and
some are healthy. The goal of the segmentation process is to recover the com-
plete network to get useful indicators as the nodes number, the total volume or
the mean size of vessels. Segmentation is quite challenging since images are un-
dersampled and very noisy. Indeed animals are quite small and magnetic fields
have to be quite high. Moreover, very small vessels are embedded in noise so that
it is quite di�cult to recover them. However, these thin structures are of high
interest since they are the first to be destroyed during the disease process.

75



(a) ROF model � = 30 - denoised image (b) ROF model � = 30 - noise

(c) ROF2 model µ = 10 - denoised image (d) ROF2 model µ = 10 - noise

Figure 5.9: Denoising with ROF (� = 30) and ROF2 (µ = 10) models.

The MRI experiments were performed using Manganese Mn2+ by the re-
searchers of the CBM2 in Orléans. The full decomposition model acts as a pre-
processing tool to isolate the big vessels in the smooth BV 2 part and the small
ones in the BV part. Noise is stored in the L2 part. Figure (5.9) illustrates the
(P1) and (P2) denoising processes respectively.

Figure (5.10) gives the decomposition that is obtained using the full second
order model. Parameters have not been optimized : these are clearly not the best
ones. However, one can see that usual (histogram based ) thresholding process
gives interesting results on the BV 2 and BV parts while it is useless on the L2

part.

2We thank Jean-Claude Belœil, Sandra Même and Frédéric Szeremeta at CBM http://cbm.

cnrs-orleans.fr/
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(a) BV part -u (b) BV part -u with thresholding

(c) BV2 - part v (d) BV2 - part v with thresholding

(e) L2 - part w (f) L2 - part w with thresholding

Figure 5.10: Decomposition of a 3D MRI stack with the full second order model - � = 10, µ = 30
with and without thresholding
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A. Mathematical tools

In this section, we recall the main mathematical results that are used in this
paper. In the sequel V is a Banach space (that is a normed linear space such
that every Cauchy sequence is convergent) assumed to be reflexive. We call V 0

the V -topological dual space. We denote k k
V

the V -norm and h·, ·i the duality
bracket between V and V 0:

8v 2 V, 8' 2 V 0 h', vi := '(v) .

A.1. Optimization in Banach spaces

For details on the results presented in this subsection one can refer to Attouch
et al. (2006), Brezis (1987) (weak topology, basic functional analysis), Azé (1997),
Ekeland and Temam (1999), Barbu and Precupanu (1978), Hiriart-Urruty (1998)
(convex analysis, optimization problems).

A.1.1. Semi-continuity and convexity

Definition A.1 (Semi-continuity ). A functional J : V ! R[{+1} is lower
semi-continuous (lsc) on V if one of the following equivalent conditions is satis-
fied:

• 8a 2 R, { u 2 V | J(u)  a } is a closed subset of V

• 8ū 2 V, lim inf
u!ū

J(u) � J(ū).

Theorem A.1. Every convex function lower semi-continuous for the norm topol-
ogy (strong) is lower semi-continuous for the weak topology of V .

From a practical point of view, we use the above result to infer

Corollary A.1. Let be J a convex, strongly lower semi-continuous from V to
R [ {+1}. Let be v

n

a sequence weakly convergent to some v in V . Then

J(v)  lim inf
n!+1

J(v
n

).

A.1.2. Gâteaux-di↵erentiability

Definition A.2 (Gâteaux-di↵erentiability). The function J : V ! R[{+1}
is Gâteaux-di↵erentiable at u 2 dom (J) if

J 0(u; v) = lim
t!0+

J(u+ tv)� J(u)

t
,

exists for every v 2 V and the mapping

v 7! J 0(u; v)

is linear and continuous.
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We denote rJ(u) the Gâteaux derivative of J at u. It belongs to V 0.
When V is a Hilbert space we use the Riesz Theorem (see Brezis (1987) for
example) to identify V and V 0. Then

8(u, v) 2 V ⇥ V J 0(u; v) = (rJ(u), v) ,

where (·, ·) stands for the inner V -product. The element rJ(u) 2 V is the
gradient of J at u.

Theorem A.2. Assume that J : C ⇢ V ! R is Gâteaux -di↵erentiable on C
where C is convex. Then J is convex if and only if

8(u, v) 2 C ⇥ C J(v) � J(u) + hrJ(u), v � ui (A.1)

or equivalently

8(u, v) 2 C ⇥ C hrJ(u)�rJ(v), u� vi � 0. (A.2)

We may define similarly the second (Gâteaux ) derivative of J at u as the
(Gâteaux ) derivative of the (vector) function u ! rJ(u). We note D2J(u) and
call it Hessian function. When V = Rn the Hessian function can be identified to
a square matrix n⇥ n.

A.1.3. Minimization in a reflexive Banach space

We begin with the most useful result for minimization in Banach spaces.

Definition A.3 (Coercivity). The function J : V ! R is coercive if

lim
kxk

V

!+1
J(x) = +1.

Theorem A.3. Assume V is a reflexive Banach space. Let be J : V ! R [
{+1}, lower semi-continuous for the weak topology of V . Let K be a nonempty,
weakly closed subset of V . We assume there exists v

o

2 K such that J(v
o

) < +1.
Then, the minimization problem

(P)

⇢

Find u such that
J(u) = inf { J(v) | v 2 K }, (A.3)

has at least a solution if either J is coercive or K is bounded.

An important corollary holds in the convex case :

Corollary A.2. Assume V is a reflexive Banach space. Let be J : V ! R [
{+1}, convex, lower semi-continuous for the strong topology of V . Let K be a
nonempty, closed convex subset of V . Assume again there exists v

o

2 K such
that J(v

o

) < +1. Then, if J is coercive or if K is bounded, (P) has at least a
solution. Moreover, if J est strictly convex the solution is unique.
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Let us end with necessary first order optimality condition:

Theorem A.4. Let K be a non empty, convex subset of V and J : K ! R be
Gâteaux-di↵erentiable on K. If u 2 V is a solution to problem (P) then

8v 2 K, < rJ(u), v � u >� 0. (A.4)

A.1.4. Example: projection on a closed convex set

In what follows V is an Hilbert space endowed with the inner product (·, ·) and
the associated norm k · k, and C is a closed, convex (non empty) subset of V .

Theorem A.5. Let C be a closed, convex (non empty) subset of V and x 2 V .
Then the problem

min { kx� yk2, y 2 C }
has a unique solution x⇤ 2 C which is characterized as

8y 2 C (x� x⇤, y � x⇤)  0. (A.5)

or equivalently
8y 2 C (x⇤ � y, y � x)  0. (A.6)

The mapping P
C

: V ! C that associates x⇤ to x is the (orthogonal) projection
on C. Therefore P

C

(x) is the element of C the nearest of x. If we define the
distance function as

d(x,C) = inf
y2C

kx� yk. (A.7)

then d(x,C) = kx� P
C

(x)k when C is a non empty, closed, convex subset of V .
We shall use the following corollary

Corollary A.3. Let C be a a closed, convex set and ↵ > 0. Then, for every
x 2 V

P
↵C

(x) = ↵P
C

(
x

↵
) .

Proof - Let be x 2 V .

x⇤ = P
↵C

(x) () 8y 2 ↵C (x� x⇤, y � x⇤)  0

() 8y 2 C (x� x⇤,↵y � x⇤)  0

() 8y 2 C

✓

x

↵
� x⇤

↵
, y � x⇤

↵

◆

 0

() x⇤

↵
= P

C

(
x

↵
)

() x⇤ = ↵P
C

(
x

↵
)
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Proposition A.1. The projection P
C

is Lipschitz-continuous from V to C. More
precisely:

8(x, y) 2 V ⇥ V kP
C

(x)� P
C

(y)k  kx� yk.
In addition

8(x1, x2) 2 V ⇥ V (x1 � x2, PC

(x2)� P
C

(x1))  �kP
C

(x2)� P
C

(x1)k2 .

A.2. Non smooth Analysis

The results we present here are detailed in Ekeland and Temam (1999), Barbu
and Precupanu (1978), Hiriart-Urruty (1998). We first recall one of the main tools
of convex analysis.

A.2.1. The Hahn -Banach separation Theorem

In what follows, X is a (not necessarily reflexive) real Banach space. The
geometrical form of Hahn-Banach theorem allows to separate convex sets. For
more details we refer to Brezis (1987) .

Definition A.4 (A�ne hyperplan). An closed a�ne hyperplan is defined as

H = { x 2 X | ↵(x) + � = 0 },
where ↵ 2 X 0 and � 2 R.

In the case where X is an Hilbert space, the a�ne closed hyperplans are

H = { x 2 H | (↵, x) + � = 0 },
where ↵ 2 X , ↵ 6= 0 and � 2 R.

Definition A.5 (Separation). Let A and B be two non empty subsets of X .
The a�ne hyperplan H whose analytical form is ↵(x) + � = 0, separates A and
B if

8x 2 A ↵(x) + �  0 et 8y 2 B ↵(y) + � � 0.

The separation is strict if there exists " > 0 such that

8x 2 A ↵(x) + �  �" et 8y 2 B ↵(y) + � � ".

The separation Hahn-Banach theorem (geometrical form) writes

Theorem A.6. Let A and B be two non empty, convex subsets of X such that
A \B = ;.
• Assume that A is an open set. Then, there exists a closed a�ne hyperplan that
separates A and B.
• Assume that A is closed and B is compact. Then, there exists a closed a�ne
hyperplan that strictly separates A and B.
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A.2.2. Subdi↵erential

Definition A.6 (Subdi↵erential). Let be f : V ! R [ {+1} and u 2 dom f
(i.e. f(u) < +1). The subdi↵erential of f at u is the set @f(u) (possibly empty)
defined as follows

@f(u) := {u⇤ 2 V 0 | 8v 2 V, f(v) � f(u) + hu⇤, v � ui }.
Elements u⇤ 2 @f(u) are called subgradients. If @f(u) 6= ;, f is sub di↵erentiable
at u.

Remark A.1. 1. f : V ! R[{+1} achieves its minimum at u 2 dom f if and
only if 0 2 @f(u).
2. If f, g : V ! R [ {+1} and u 2 dom f\ dom g, then

@f(u) + @g(u) ⇢ @(f + g)(u).

3.As
@f(u) =

\

v2V
{u⇤ 2 V 0 | hu⇤, v � ui  f(v)� f(u) },

@f(u) is a convex, weakly star closed subset of V 0. .
4. For every � > 0 we have @(�f)(u) = �@f(u).

Theorem A.7 (Relation with Gâteaux-di↵erentiability). Let f : V ! R[
{+1} be a convex function.
If f is Gâteaux-di↵erentiable at u 2 dom f , it is subdi↵erentiable at u and
@f(u) = {f 0(u)}.
Conversely, if f is finite, continuous at u and @f(u) is a singleton, then f is
Gâteaux-di↵erentiable at u and @f(u) = {r(u)}.
Theorem A.8 (Subdi↵erential of the sum of two functions). Let f and g
be convex, lower semi-continuous from V to R [ {+1}. Assume there exists
u0 2dom f\ dom g such that f is continuous at u0. Then

8u 2 V @(f + g)(u) = @f(u) + @g(u).

We end with a chain rule result for subdi↵erentiability :

Theorem A.9. Let ⇤ be a linear continuous operator from V to W (both Banach
spaces). Let f be convex, lower semi-continuous from V to R [ {+1}. Assume,
there exists u0 2dom f such that f is continuous at u0. Then

8u 2 V @(f � ⇤)(u) = ⇤⇤@f(⇤u),

where ⇤⇤ (W 0 ! V 0) is the adjoint operator of ⇤.

We give now an important example.
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A.2.3. Case where f is a set indicatrix.

When f is the indicatrix function of a non empty subset K of V :

f(u)
def

= 1
K

(u) =

⇢

0 if u 2 K,
+1 else

the subdi↵erential of f en u 2 V is the normal cone of K at u:

@1
K

(u) := N
K

(u) = { u⇤ 2 V 0 | 8v 2 K hu⇤, v � ui  0 }.
Assume V is an Hilbert space and K is a non empty, closed, convex subset of V .
We describe the subdi↵erential of 1

K

at u :

Proposition A.2. Let be u 2 K, where K is a closed, convex (non empty) subset
of the Hilbert space V . Then

� 2 @1
K

(u) () � = c[u+
�

c
� P

K

(u+
�

c
)]

for every c > 0 where P
K

is the projection of V on K.

Proof - We first note that @1
K

(u) ⇢ V (since V = V 0). Relation (A.5) of
Theorem A.5 gives

8v 2 K (w � P
K

(w), v � P
K

(w))
V

 0.

As
� 2 @1

K

(u) () 8v 2 K (�, v � u)
V

 0

we get for every c > 0

8v 2 K

✓

u+
�

c
� u, v � u

◆

V

 0.

So, letting w = u+
�

c
we obtain

� 2 @1
K

(u) () u = P
K

(u+
�

c
) () � = c[u+

�

c
� P

K

(u+
�

c
)].

A.2.4. Legendre-Fenchel transformation

Definition A.7 (Legendre-Fenchel transformation). Let be f : V ! R [
{+1}. The Legendre-Fenchel conjugate of f is the function f⇤ : V 0 ! R̄ defined
as

8u⇤ 2 V 0 f⇤(u⇤) = sup
u2V

{ hu⇤, ui � f(u) }. (A.8)
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Proposition A.3. For any function f : V ! R [ {+1}, the conjugate f⇤ is
convex and lower semi-continous for the weak star topology.

The following result is very useful when dealing with norms or semi-norms:

Proposition A.4. Let f be a function positively homogeneous (taking at least
one finite value) from V to R [ {+1}, that is

8� 2 R, 8x 2 V f(�x) = |�|f(x) . (A.9)

Then, there exists a closed, convex set K ⇢ V 0 such that f⇤ = 1
K

.

Proof - Let f be a function positively homogeneous (taking at least one finite
value) from V to R [ {+1}. Let be u⇤ 2 V 0.
• If there exists u

o

2 V such that hu⇤, u
o

i � f(u
o

) > 0. With (A.9) we get for
every � > 0

hu⇤,�u
o

i � f(�u
o

) = �[hu⇤, u
o

i � f(u
o

)]  f⇤(u⇤).

Passing to the limit as � ! +1 gives f⇤(u⇤) = +1.
• Otherwise,

8u 2 V hu⇤, ui � f(u)  0,

so f⇤(u⇤)  0. The definition of f⇤ gives

hu⇤, 0i � f(0)  f⇤(u⇤) .

Moreover (A.9) implies f(0) = f(n · 0) = nf(0) for every n 2 N. So f(0) = 0 and
finally f⇤(u⇤) = 0.
Let us set K = {u⇤ 2 V ⇤ | f⇤(u⇤) = 0 }. We have just proved that f⇤ = 1

K

. As
f⇤ is convex and lower semi-continuous then K is convex and closed.

Next theorem is one of the most important result for the convex duality theory.
It makes the relation between the so-called primal problem ( find the infimum of
f + g) with the dual one which deals with maximization of f⇤ + g⇤ .

Theorem A.10. Let f, g : V ! R [ {+1} be convex functions such that there
exists u0 2 dom g and f continuous at u0. Then

inf
u2V

(f(u) + g(u)) = max
u

⇤2V 0
(�f⇤(u⇤)� g⇤(�u⇤)) ,

where f⇤ and g⇤ are the Legendre-Fenchel conjugates of f and g respectively.

Finally we have an “inversion” result:

Theorem A.11. Let f : V ! R [ {+1} be a lower semi-continuous, convex
function, with at least one finite value. Then, for every u 2 V

f(u) = max
u

⇤2V 0
(< u⇤, u > �f⇤(u⇤)) .

This means that f⇤⇤ = f .
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A.2.5. Relation with subdi↵erentiablity

Theorem A.12. Let be f : V ! R[{+1} and f⇤ its conjugate function. Then

u⇤ 2 @f(u) () f(u) + f⇤(u⇤) = hu⇤, ui .

Corollary A.4. If f : V ! R [ {+1} is a lower semi-continuous , convex
function, with at least one finite value, then

u⇤ 2 @f(u) () u 2 @f⇤(u⇤).

A.3. Sobolev spaces

This subsection gives basic results on Sobolev spaces. For more details, one
can refer to Adams (1978), Attouch et al. (2006).
Let ⌦ be a bounded, open subset of Rn, (n  3) with a smooth boundary �. We
call D(⌦) the space of C1 functions with compact support in ⌦. The dual space
D0(⌦) is the space of distributions on ⌦.

Fore every distribution u 2 D0(⌦), the derivative
@u

@x
i

is defined (by duality) as

following:

8' 2 D(⌦)

⌧

@u

@x
i

,'

�

D0(⌦),D(⌦)

def⌘ �
⌧

u,
@'

@x
i

�

D0(⌦),D(⌦)

.

The derivative of u in the distribution sense writes D
i

u,
@u

@x
i

or @
i

u.

If ↵ 2 Nn, we note D↵u = @↵1
1 u · · · @↵

n

n

u et |↵| = ↵1 + · · ·+ ↵
n

; we get

8' 2 D(⌦) hD↵u,'iD0(⌦),D(⌦) = (�1)|↵| hu,D↵'iD0(⌦),D(⌦) .

Definition A.8 (Sobolev spaces). The Sobolev spaces W p,m(⌦), Hm(⌦) are
defined as:

W p,m(⌦) = { u 2 Lp(⌦) | D↵u 2 Lp(⌦), |↵|  m } ,

Hm(⌦) := W 2,m(⌦){ u 2 D0(⌦) | D↵u 2 L2(⌦), |↵|  m } ,

H1(⌦) = { u 2 L2(⌦) | @u

@x
i

2 L2(⌦), i = 1 · · ·n } .

Remark A.2. H0(⌦) = L2(⌦).

Let us give main basic properties of the above Sobolev spaces:
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Proposition A.5. Hm(⌦) endowed with the inner product

(u, v)
m

=
X

|↵|m

Z

⌦
D↵u(x) D↵v(x) dx ,

is an Hilbert space.

Proposition A.6.
Hm(⌦) ⇢ Hm

0
(⌦)

with continuous embedding for m � m0.

Definition A.9 (Functions with null trace).

H1
o

(⌦) = { u 2 H1(⌦) | u|� = 0 } .

Hm

o

(⌦) = { u 2 H1(⌦) | @ju

@nj |�
= 0, j = 1, · · · ,m� 1} ,

where
@

@n
is the outer normal derivative of u on � :

@u

@n
=

n

X

i=1

@u

@x
i

cos(~n, ~e
i

) ,

where ~n is the outer normal vector to �.

Definition A.10 (Duality). For every m 2 N, we denote H�m(⌦) the dual
space of Hm

o

(⌦).

Theorem A.13 (Rellich). If ⌦ is a bounded open subset of Rn, then for every
m 2 N, the embedding of Hm+1

o

(⌦) in Hm

o

(⌦) is compact.

In particula, H1
o

(⌦) is compactly embedded in L2(⌦). From a pratical point
of view, this means that any sequence whose H1

o

(⌦) norm is bounded weakly
converges in H1

o

(⌦) and strongly in L2(⌦) (up to a subsequence).
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B. 2D-MATLAB c� codes

B.1. Problem (P1)

%==========================================

function [usol]= ROFNest(imag, lambda,itmax);

%==========================================

% Denoising with ROF model using Nesterov algorithm

% usol =argmin lambda * J(u) + | udata-u|^2

udata=double(imag);

rho= 0.25;

tol =1e-5

usol= udata- proj_nesterov(udata,itmax,lambda);

end

%****************** subfunctions************

%----------------------------------------------------

function [w]=proj_nesterov(imag,itmax,lambda)

%----------------------------------------------------

% Compute the projection w on lambda K

% with Nesterov -Weiss

udata=double(imag);

L=8;

%initialization

g1=zeros(size(imag)) ;

g2=zeros(size(imag)) ;

x1=zeros(size(imag)) ;

x2=zeros(size(imag)) ;

itnest=0;

%iteration

for k=0:itmax-1

x=[x1,x2];

[eta1,eta2]=grad(-divdiscret(x1,x2)+udata/lambda);

normg=sqrt((x1-eta1/L).^2+(x2-eta2/L).^2);

y1=(x1-eta1/L)./max(1,normg);
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y2=(x2-eta2/L)./max(1,normg);

g1=g1+((k+1)/2)*eta1;

g2=g2+((k+1)/2)*eta2;

normh=sqrt(g1.^2+g2.^2)/L;

v1=(-g1/L)./max(1,normh);

v2=(-g2/L)./max(1,normh);

x1=(2/(k+3))*v1+((k+1)/(k+3))*y1;

x2=(2/(k+3))*v2+((k+1)/(k+3))*y2;

itnest=itnest+1

end

%solution

w=lambda*divdiscret(x1,x2);

end

%-----------------------------

function [u1, u2]= grad(u)

%-----------------------------

% compute the gradient with forward finite difference

[n1 n2] = size(u);

for i=1:n1-1

u1(i,:)= u(i+1,:)-u(i,:);

end

u1(n1,:)= 0;

for j=1:n2-1

u2(:,j)= u(:,j+1)-u(:,j);

end

u2(:,n2)= 0;

end

%---------------------------------

function q = divdiscret(p1, p2)

%---------------------------------

% compute the divergence of( p1 p2)

% according the finite difference scheme for gradient

[n1,n2] = size(p1);

for i=2:n1-1
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q1(i,:)= p1(i,:)-p1(i-1,:);

end

q1(1,:) = p1(1,:);

q1(n1,:) = - p1(n1-1,:);

for j=2:n2-1

q2( :,j)= p2(:,j)-p2(:,j-1);

end

q2(:,1) = p2(:,1);

q2(:,n2) = - p2(:,n2-1);

q=q1+q2;

end

B.2. Problem P2

%==========================================

function [usol]= ROF2Nest(imag,lambda,itmax)

%==========================================

%Denoising with ROF2 model using Nesterov algorithm

%usol =arg min lambda * J_2(u) + | udata-u|^2

udata=double(imag); rho= 0.25;

usol= udata- proj2_nesterov(udata,itmax,lambda);

end

%****************** subfunctions************

%--------------------------------------------------------

function [w2]= proj2_nesterov(imag,itmax,lambda)

%--------------------------------------------------------

% Compute the projection w2 on lambda K_2

% with Nesterov -Weiss

udata=double(imag); L=64;

% Initialization

k=0;

g1=zeros(size(imag)) ; g2=g1;g3=g1;g4=g1;

x1=zeros(size(imag)) ;x2=x1;x3=x1;x4=x1;

% Iteration

while (k< itmax)

x=[x1,x2,x3,x4];

eta=gradsec2(divdiscret2(x)-udata/lambda);

[h1,h2]=size(eta);

eta1=eta(:,1:h2/4);eta2=eta(:,h2/4+1:2*h2/4);

eta3=eta(:,2*h2/4+1:3*h2/4); eta4=eta(:,3*h2/4+1:h2);
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normg=sqrt((x1-eta1/L).^2+(x2-eta2/L).^2+...

(x3-eta3/L).^2+(x4-eta4/L).^2);

y1=(x1-eta1/L)./max(1,normg); y2=(x2-eta2/L)./max(1,normg);

y3=(x3-eta3/L)./max(1,normg); y4=(x4-eta4/L)./max(1,normg);

g1=g1+((k+1)/2)*eta1; g2=g2+((k+1)/2)*eta2;

g3=g3+((k+1)/2)*eta3; g4=g4+((k+1)/2)*eta4;

normh=sqrt(g1.^2+g2.^2+g3.^2+g4.^2)/L;

v1=(-g1/L)./max(1,normh);v2=(-g2/L)./max(1,normh);

v3=(-g3/L)./max(1,normh);v4=(-g4/L)./max(1,normh);

x1=(2/(k+3))*v1+((k+1)/(k+3))*y1;x2=(2/(k+3))*v2+((k+1)/(k+3))*y2;

x3=(2/(k+3))*v3+((k+1)/(k+3))*y3 x4=(2/(k+3))*v4+((k+1)/(k+3))*y4;

x=[x1,x2,x3,x4];

k=k+1;

end

%Solution

w2=lambda*divdiscret2(x);

end

%----------------------------

function H=gradsec2(phi)

%----------------------------

% compute the Hessian H of phi

[n1, n2]= size(phi);

g11=0*phi; g22=0*phi; g12=0*phi; g21 = 0*phi;

for i=2:n1-1

g11(i,:)= phi(i+1,:)-2*phi(i,:)+ phi(i-1,:);

end

g11(1,:)=phi(2,:)-phi(1,:);

g11(n1,:)=phi(n1-1,:)-phi(n1,:)

for j=2:n2-1

g22(:,j)= phi(:,j+1)-2*phi(:,j)+ phi(:,j-1);

end

g22(:,1)=phi(:,2)-phi(:,1);

g22(:,n2)=phi(:,n2-1)-phi(:,n2);

for i=2:n1

for j=1:n2-1

g12(i,j)= (phi(i,j+1)- phi(i,j)- phi(i-1,j+1)+phi(i-1,j));

end

end

for i=1:n1-1
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for j=2:n2

g21(i,j)=(phi(i+1,j)- phi(i,j)- phi(i+1,j-1)+phi(i,j-1));

end

end

g21=g12;

H=[g11 g22 g12 g21];

end

%--------------------------------

function DV=divdiscret2(p)

%-------------------------------

% Compute the adjoint of the Hessian : H^*

% at p=( p11 p12 p21 p22)

[l,c]=size(p); n=c/4;

p11=p(:,1:n) ; p22=p(:,n+1:2*n);

p12=p(:,2*n+1:3*n);p21=p(:,3*n+1:4*n);

DV1=zeros(l,n);

for i=2:l-1

DV1(i,:)= p11(i-1,:)-2*p11(i,:)+p11(i+1,:);

end

DV1(1,:)=p11(2,:)-p11(1,:);

DV1(l,:)=p11(l-1,:)-p11(l,:);

DV2=zeros(l,n);

for j=2:n-1

DV2(:,j)= p22(:,j-1)-2*p22(:,j)+p22(:,j+1);

end

DV2(:,1)=p22(:,2)-p22(:,1);

DV2(:,n)=p22(:,n-1)-p22(:,n);

DV3=zeros(l,n);

for i=2:l-1

for j=2:n-1

DV3(i,j)= p12(i,j-1)-p12(i,j)-p12(i+1,j-1)+p12(i+1,j) ;

end

DV3(i,1)= p12(i+1,1)-p12(i,1); DV3(i,n)= p12(i,n-1)-p12(i+1,n-1) ;

end

for j=2:n-1

DV3(1,j)=p12(2,j)-p12(2,j-1);

DV3(l,j)=p12(l,j-1)-p12(l,j);

end
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DV3(1,1)= p12(2,1); DV3(1,n)= - p12(2,n-1);

DV3(l,1)= - p12(l,1); DV3(l,n)= p12(l,n-1);

DV4=zeros(l,n);

for i=2:l-1

for j=2:n-1

DV4(i,j)= p21(i-1,j)-p21(i,j)-p21(i-1,j+1)+p21(i,j+1);

end

DV4(i,1)= p21(i,2)-p21(i-1,2);

DV4(i,n)= p21(i-1,n)-p21(i,n) ;

end

for j=2:n-1

DV4(1,j)=p21(1,j+1)-p21(1,j);

DV4(l,j)=p21(l-1,j)-p21(l-1,j+1);

end

DV4(1,1)= p21(1,2);

DV4(1,n)= - p21(1,n);

DV4(l,1)= - p21(l-1,2);

DV4(l,n)= p21(l-1,n);

DV=DV1+DV2+DV3+DV4;

end

B.3. Problem (P
�,µ

)

function [u,v,w]= mixte(udata,lam,mu,kmax);

% Fixed point algorithm for the full second order model

%Input : udata: image to decompose

% lambda (lam) and mu - kmax : maximal number of iterations

% Output : u -BV part, v- BV2 part, w- L2 part

ud =double(udata);

% Number of iterations od Nesterov algorithms and descent step

itmax=30 ;

ro=0.25;

% Normalisation of the image

% ud is double and normalized : between 0 and 1

a=min(min(ud));

b=max(max(ud));

ud= (ud-a)/(b-a);

% Initialization

v0=ud; u0= 0*ud;

k=1;err=1;

%Iteration

while (k < kmax) & (err > 1e-05)
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u=(1-ro)*u0+ ro*(ud-v0 -proj_nesterov(ud-v0,itmax,lam));

v= (1-ro)*v0+ ro*(ud-u- proj2_nesterov(ud-u,itmax,mu));

erru=max(max (abs(u-u0)))/max(max (abs(u0))) ;

errv=max(max (abs(v-v0)))/max(max (abs(v0))) ;

err=max(erru,errv) ;

u0=u;v0=v;

k=k+1

end

% Solution

w=ud-u-v;

end

The related functions are described in the two previous subsections.
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