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We present variational models to perform texture analysis and/or extraction for image processing. We focus on second order decomposition models. Variational decomposition models have been studied extensively during the past decades. The most famous one is the Rudin-Osher-Fatemi model. We first recall most classical first order models . Then we deal with second order ones : we detail the mathematical framework, theoretical models and numerical implementation. We end with two 3D applications. Eventually, an appendix includes the mathematical tools that are used to perfom this study and Matlab c codes are provided.

Introduction

The question of texture in image processing is an important issue. The definition itself is not clear : some people define it as a random or periodic structure from an image. We rather define it as an inner structure that adds to the image informations which are not necessarily fundamental at a first glimpse. The figure 1.1 of a hut gives an illustration : basic information is given by the contours and image dynamics (one sees a hut in the country). There is no ambiguity. The texture adds a second level of information: the nature of the roof (which gives information on geographical or cultural buildings), nature of the leaves of the tree (winter or summer) and so on. This is comparable to exercises that are proposed to young children studying some language grammar. A complex sentence is given and the pupil has to remove words that are not necessary to understand the basic meaning of the sentence. For example A small white house, with a red roof is build in a dark oaks forest becomes A house is build in a forest.

We just keep the first-level information : everything else is just details, namely texture. It is now more and more important to take textures into account into applications. This makes the di↵erence between 50's cartoons that did not involve much texture and nowadays animation movies that need these textures for the sake of realistic rendering.

Besides the traditional questions of segmentation (contours and/or regions), denoising or restoration, texture management (identification, synthesis) has become an important issue. One may think, of course of computer graphics (animated movies, "realistic" video games). However, textures often contain important "second-level" information: this is the case in medical imaging (detection of tumors in mammograms, bone abnormalities identification in radiograph, automatic di↵erentiation of tissues in MRI).

There are various techniques to study of textures. Especially noteworthy

• statistical methods as in [START_REF] Khelifi | k-NN regression to improve statistical feature extraction for texture retrieval[END_REF], [START_REF] Wen | Simultaneous cartoon and texture reconstruction for image restoration by bivariate function[END_REF][START_REF] Jennane | Variational region-based segmentation using multiple texture statistics[END_REF], [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coe cients[END_REF], [START_REF] Bar-Joseph | Texture mixing and texture movie synthesis using statistical learning[END_REF] or

• probabilistic ones [START_REF] Galerne | Random phase textures: theory and synthesis[END_REF], [START_REF] Grzegorzek | A system for 3D texture-based probabilistic object recognition and its applications[END_REF], [START_REF] Paget | Texture synthesis via a noncausal nonparametric multiscale markov random field[END_REF], [START_REF] Mumford | Stochastic models for generic images[END_REF], [START_REF] Zhu | Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling[END_REF])

• image decomposition methods: one can refer to [START_REF] Gilles | Properties of BV G structures + textures decomposition models. Application to road detection in satellite images[END_REF], [START_REF] Buades | Fast cartoon + texture image filters[END_REF], [START_REF] Duval | Mathematical modeling of textures: application to color image decomposition with a projected gradient algorithm[END_REF], [START_REF] Shahidi | Decorrelating the structure and texture components of a variational decomposition model[END_REF], [START_REF] Aubert | Modeling very oscillating signals. Application to image processing[END_REF] for example.

• wavelets theory as in [START_REF] Eckley | Locally stationary wavelet fields with application to the modelling and analysis of image texture[END_REF], [START_REF] Ramrishnan | Classification of soil texture based on wavelet domain singular values[END_REF], [START_REF] Aujol | Wavelet-based level set evolution for classification of textured images[END_REF], [START_REF] Peyré | Texture synthesis with grouplets[END_REF][START_REF] De Bonet | Multiresolution sampling procedure for analysis and synthesis of texture images[END_REF], [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coe cients[END_REF] and morphological component analysis [START_REF] Elad | Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA)[END_REF], [START_REF] Fadili | Inpainting and zooming using sparse representations[END_REF] • graph cuts techniques [START_REF] Kwatra | Graphcut textures: image and video synthesis using graph cuts[END_REF]) These techniques are then used in di↵erent contexts as, for example

• inpainting [START_REF] Casaburi | A numerical algorithm for image sequence inpainting that preserves fine textures[END_REF], [START_REF] Aujol | Exemplar-based inpainting from a variational point of view[END_REF]),

• texture synthesis, [START_REF] Maurel | Locally parallel texture modeling[END_REF], [START_REF] Peyré | Sparse modeling of textures[END_REF][START_REF] Peyré | Texture synthesis with grouplets[END_REF], [START_REF] Ashikhmin | Synthesizing natural textures[END_REF], [START_REF] Lewis | Texture synthesis for digital painting[END_REF], [START_REF] Lefebvre | Parallel controllable texture synthesis[END_REF], [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF], [START_REF] Kwatra | Texture optimization for example-based synthesis[END_REF],

• similarity analysis, [START_REF] Clarke | Similar symmetries: the role of wallpaper groups in perceptual texture similarity[END_REF][START_REF] De Bonet | Multiresolution sampling procedure for analysis and synthesis of texture images[END_REF] • specific structures modelling, [START_REF] Chen | A generative sketch model for human hair analysis and synthesis[END_REF], [START_REF] Bargteil | A texture synthesis method for liquid animations[END_REF], [START_REF] Kwatra | Texturing fluids[END_REF], [START_REF] Foster | Realistic animation of liquids[END_REF], and

• 3D textures and dynamical textures [START_REF] Grzegorzek | A system for 3D texture-based probabilistic object recognition and its applications[END_REF], [START_REF] Ashikhmin | Synthesizing natural textures[END_REF], [START_REF] Doretto | Dynamic textures[END_REF].

In this work, we focus on variational decomposition models for texture extraction and analysis. The use of such methods has been initiated in [START_REF] Osher | Nonlinear total variation based noise removal algorithms[END_REF] for denoising purpose. The basic philosophy is the following: consider a noisy image f = u + b. We want to get rid of the noise b. The most natural way to do is to minimize this noise which is usually assumed to be gaussian. Unfortunately, this is not su cient to get a unique solution : we have to add priors on the image we want to recover to get uniqueness (and usually stability). The general form of such models is a problem of minimizing an energy functional

F(u) = ku f k X + R(u), u 2 Y ⇢ X,
where X, Y are (real) linear spaces, R is a regularization operator, f is the observed (or measured) noisy image and u is the image to recover. The first term is the fitting data term and the second one is a prior that permits to get a problem which has a unique solution.

During the last decade, many methods have been developed using di↵erent regularization and/or data fidelity terms. Let us mention the use of Sobolev-type spaces (including Besov spaces or BMO) in the regularization term (see Osher et al. (2003), [START_REF] Garnett | Modeling oscillatory components with the homogeneous spaces B ṀO ↵ and Ẇ[END_REF], [START_REF] Kim | Image recovery using functions of bounded variation and Sobolev spaces of negative di↵erentiability[END_REF], [START_REF] Le | ⇤ ) image decomposition models and minimization algorithms[END_REF], [START_REF] Lieu | Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces[END_REF], [START_REF] Garnett | Image decompositions using bounded variation and generalized homogeneous Besov spaces[END_REF], [START_REF] Le | Image decomposition using total variation and div(BMO). Multiscale Model[END_REF], [START_REF] Tadmor | A multiscale image representation using hierarchical (BV, L 2 ) decompositions[END_REF] for example) and/or the use of Meyer space [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF], Aujol et al. (2005), [START_REF] Aubert | Modeling very oscillating signals. Application to image processing[END_REF], [START_REF] Strong | Scale recognition, regularization parameter selection, and Meyer's G norm in total variation regularization[END_REF], [START_REF] Aujol | Some first-order algorithms for total variation based image restoration[END_REF], [START_REF] Gilles | Properties of BV G structures + textures decomposition models. Application to road detection in satellite images[END_REF], [START_REF] Duval | Mathematical modeling of textures: application to color image decomposition with a projected gradient algorithm[END_REF]).

These methods have in common to involve only first-order terms, that deal with first order (generalized) derivative. In this work, we focus on higher order methods, namely second-order ones (see [START_REF] Bergounioux | On poincaré-wirtinger inequalities in bv -spaces[END_REF]Pi↵et (2010, 2013), [START_REF] Bergounioux | Anisotropic second order model for 3d-texture extraction[END_REF], [START_REF] Tran | Denoising 3d medical images using a second order variational model and wavelet shrinkage[END_REF], [START_REF] Bergounioux | On poincaré-wirtinger inequalities in bv -spaces[END_REF], [START_REF] Demengel | Fonctions à hessien borné[END_REF], [START_REF] Hinterberger | Variational methods on the space of functions of bounded Hessian for convexification and denoising[END_REF], [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Bredies | Properties of l 1 -TGV 2 : The one-dimensional case[END_REF], [START_REF] Knoll | Second order total generalized variation (tgv) for mri[END_REF]) that seem promising to deal with image texture.

In next section we define what a variational decomposition model is, and focus on first order ones, with a detailed presentation of the so-called Rudin-Osher-Fatemi model. In section 3 we present second-order models, together with the functional framework and compare with the point of view of [START_REF] Bredies | Total generalized variation[END_REF]. We present numerical algorithms as well. Section 4 is devoted to the 3D case. We propose in section 5, examples and applications. We end with an appendix to provide the main mathematical tools we used and some MATLAB c codes.

First order variational decomposition models

Variational models principle

Variational models in image processing have been extensively studied during the past decade. There are used for segmentation processes (geodesic or geometric contours) and restoration purpose as well. We are mainly interested in the last item which involves denoising or deblurring methods and texture extraction. Shortly speaking, image restoration problems are usually severely ill posed and a Tychonov-like regularization process is needed. The general form of such models consists in the mimization of an energy functional :

F(u) = ku u d k X + R(u) , u 2 Y ⇢ X ,
where X, Y are (real) Banach spaces, R is a regularization operator, u d is the observed (or measured) image and u is the image to recover or denoise. The first term is the fitting data term and the second one permits to get a problem which is no longer ill posed via a regularization process. Let us give an example of such a regularization process. Let be ⌦ a open bounded subset of R 2 and X = H 1 (⌦) and H = L 2 (⌦) the usual Sobolev spaces (see Appendix A.3) endowed with the usual norms:

kuk 2 := kuk L 2 (⌦)
and kuk 2 X := kuk 2 2 + kruk 2 2 . We consider the following (original) fitting data problem :

(P) min u2X ku u d k 2 2 ,
where

u d 2 L 2 (⌦). It is easy to see that the functional u 7 ! ku u d k 2 2 is not coercive on X: let be ⌦ =]0, 1[, u n (x) = x n , u d = 0 for instance. Then ku n k 2 = 1 p 2n , ku 0 n k 2 = n p 2n 1 . So lim n!+1 ku n k X + 1 and lim n!+1
ku n k 2 = 0. Therefore, we do not even know if (P) has (at least) a solution. Let us define the regularized problem as

(P ↵ ) min u2X ku u d k 2 2 + ↵kruk 2 2
where ↵ > 0. We want u to fit the data u d , but ask for the gradient to be small (it depends on ↵).

Proposition 2.1. For every ↵ > 0, problem (P ↵ ) has a unique solution u ↵ . Moreover, assuming that (P) has at least a solution, then one can extract a subsequence of the family (u ↵ ) that weakly converges in X to a solution u ⇤ of (P) as ↵ ! 0.

Proof -Problem (P ↵ ) has a unique solution u ↵ because the functional

u 7 ! J ↵ (u) = ku u d k 2 2 + ↵kruk 2 2
is coercive, continuous and strictly convex (it is the X-norm up to an a ne part) and we may use Theorem A.3. Let us prove that the family (u

↵ ) is uniformly bounded in X with respect to ↵. 8u 2 X J ↵ (u ↵ )  J ↵ (u)
. We have assumed that (P) has at least a solution u = ũ. So

kũk 2 2  ku ↵ k 2 2 | {z } ũ solution to (P)  J ↵ (u ↵ ) = ku ↵ k 2 2 + ↵kru ↵ k 2 2  J ↵ (ũ) | {z } u↵ solution to (P↵) (2.1) = kũk 2 2 + ↵krũk 2 2 . So, J ↵ (u ↵ ) is bounded independently of ↵  ↵ o .
This implies the boundedness of (u ↵ ) ↵↵o in L 2 (⌦). In addition, we get with (2.1)

↵kru ↵ k 2 2  kũk 2 2 + ↵krũk 2 2 ku ↵ k 2 2  kũk 2 2 + ↵krũk 2 2 kũk 2 2 = ↵krũk 2 2 ; consequently (u ↵ )
↵↵o is bounded in X. Therefore, one can extract a subsequence weakly convergent in X to some u ⇤ . We refer to [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF], [START_REF] Brezis | Analyse Fonctionnelle[END_REF] for the weak convergence notion. On the other hand equation (2.1) gives lim

↵!0 J ↵ (u ↵ ) = kũk 2 2 = inf(P).
With the lower semi-continuity of the L 2 -norm, we obtain

ku ⇤ k 2 2  lim inf ↵!0 ku ↵ k 2 2 = lim inf ↵!0 J ↵ (u ↵ )  inf(P),
so that u ⇤ is a solution to (P). ⇤ We want to compute u ↵ numerically. As J ↵ is strictly convex, u ↵ satisfies the necessary and su cient optimality condition :

J 0 ↵ (u ↵ ) = 0. A classical computation gives 8u 2 X 1 2 J 0 ↵ (u ↵ ) • u = Z ⌦ (u ↵ u d )(x)u(x)dx + Z ⌦ ru ↵ (x)ru(x)dx = Z ⌦ (u ↵ u d u ↵ )(x)u(x)dx.
Thus, the solution u ↵ satisfies the Euler equation:

u ↵ u d u ↵ = 0, u ↵ 2 H 1 0 (⌦).
One usually uses a dynamic formulation and rather solves

@u @t u + u = u d . (2.2)
This dynamic approach is equivalent to calculating a minimizing sequence with a gradient method. Indeed, the basic gradient algorithm with constant step t writes u t+ t u t t = J 0 ↵ (u t ); Passing to the limit as t ! 0 gives

@u @t = J 0 ↵ (u) = u u + u d .
The most simple regularization term L(u) := kruk 2 2 (Tychonov regularization) is not well adapted to image restoration : the reconstructed image is too smoothed because the Laplacian is an isotropic di↵usion operator. In particular, edges are degraded which is not acceptable to perform a good segmentation. It is not surprising, however, since the dynamic heat equation (2.2) is related to a gaussian convolution filter. It is well known that using such a filter adds blur to the result.

The Rudin-Osher-Fatemi model

A better approach is the use of a regularization term that preserves contours. This implies to deal with functions that can be discontinuous (the jump-set describes the contours). Such functions cannot belong to H 1 ((⌦) any longer since their distributional derivative may be Dirac measures. So we have to considerer a less restrictive functional space.

The space of bounded variation functions

Let ⌦ be an open bounded subset of R n , n 2 (practically n = 2 or n = 3) smooth enough (with the cone property and C 1 for example). We first recall the definition and the main properties of the space BV (⌦) of bounded variation functions (see [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF], [START_REF] Aubert | Mathematical Problems in Image Processing[END_REF], [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF] for example). It s defined as

BV (⌦) = {u 2 L 1 (⌦) | 1 (u) < +1},
where

1 (u) := sup ⇢Z ⌦ u(x) div ⇠(x) dx | ⇠ = (⇠ 1 , • • • , ⇠ n ) 2 C 1 c (⌦, R n ) k |⇠| k 1  1 . (2.3) Here C 1 c (⌦, R n ) denotes the space of R n valued, C 1 functions with compact support in ⌦ endowed with the uniform (L 1 ) norm, |⇠| := p ⇠ 2 1 + • • • + ⇠ 2 n and div ⇠ = @⇠ 1 @x 1 + • • • + @⇠ n @x n .
The space BV (⌦), endowed with the norm kuk

BV (⌦) = kuk L 1 + 1 (u)
, is a Banach space. The derivative in the sense of the distributions of every u 2 BV (⌦) is a bounded Radon measure, denoted Du, and 1 (u) = R ⌦ |Du| is the total variation of u. We next recall standard properties of bounded variation functions [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF], [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF] 

(u) is lower semi-continuous from BV (⌦) to R + for the L 1 (⌦) topology. 3. BV (⌦) ⇢ L 2 (⌦) with continuous embedding, if n = 2. 4. BV (⌦) ⇢ L p (⌦) with compact embedding, for every p 2 [1, 2), if n = 2.
We end this section with a "density" result in BV (⌦) [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF] Theorem 10.1.2. p 375 for example):

Theorem 2.1. The space C 1 (⌦) is dense in BV (⌦) in the following sense : 8u 2 BV (⌦) there exist a sequence (u n ) n 0 2 C 1 (⌦) such that lim n!+1 ku n uk L 1 = 0 and lim n!+1 1 (u n ) = 1 (u) .
A useful corollary is a Poincaré-Wirtinger inequality in the BV-space

Theorem 2.2. Let ⌦ ⇢ R n be an open connected, bounded set of class C 1 . Then there exists a constant C > 0 such that 8u 2 BV (⌦) ku m(u)k L 1 (⌦)  C 1 (u) ,
where m(u

) := 1 |⌦| Z ⌦ u(x)dx is the mean-value of u. Proof -Let u 2 BV (⌦) and (u n ) n 0 2 C 1 (⌦) be a sequence such that lim n!+1 ku n uk L 1 = 0 and lim n!+1 1 (u n ) = 1 (u) .
It is clear that m(u n ) ! m(u). In addition u n 2 W 1,1 (⌦) since ⌦ is bounded. We use the Poincaré-Witinger inequality [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF], Corollary 5.4.1 p180 for example) to infer

8n ku n m(u n )k L 1 (⌦)  Ckru n k L 1 = 1 (u n ) .
Passing to the limit gives the result. ⇤

The Rudin-Osher-Fatemi model

The most famous model is the Rudin-Osher-Fatemi denoising model (see [START_REF] Acar | Analysis of bounded variation penalty methods for ill-posed problems[END_REF], [START_REF] Osher | Nonlinear total variation based noise removal algorithms[END_REF]). This model involves a regularization term that preserves the solution discontinuities, what a classical H 1 -Tychonov regularization method does not. The observed image to recover is splitted in two parts u d = u + v where v represents the oscillating component (noise or texture) and u is the smooth part (oftenly called the cartoon component). So we look for the solution as u + v with u 2 BV (⌦) and v 2 L 2 (⌦). The regularization term involves only the cartoon component u, while the remainder term v = u d u represents the noise to be minimized. We get min u2BV (⌦)

F 1 (u) := 1 2 ku d uk 2 L 2 (⌦) + 1 (u), (P 1 )
where 1 (u) is the total variation of u and > 0.

Theorem 2.3. Problem (P 1 ) has a unique solution in BV (⌦).

Proof -Let u n 2 BV (⌦) be a minimizing sequence. As u n is bounded in L 2 (⌦) one may extract a subsequence (denoted similarly) that weakly converges to u ⇤ in L 2 (⌦). As the L 2 -norm is lower semi-continuous and convex we have

ku d u ⇤ k 2 2  lim inf n!+1 ku d u n k 2 2 . Moreover u n is bounded in L 1 (⌦) since ⌦ is bounded. As 1 (u n) is bounded as well, then u n is bounded in BV (⌦). As BV (⌦) is compactly embedded in L 1 (⌦) (proposition 2.2 ) this implies that u n strongly converges (up to a subsequence) in L 1 (⌦) to u ⇤ 2 BV (⌦).
In addition, 1 is lower semi-continuous with respect to the L 1 strong topology (proposition 2.2), so that

1 (u ⇤ )  lim inf n!+1 1 (u n ). Eventually 1 2 ku d u ⇤ k 2 2 + 1 (u ⇤ )  lim inf n!+1 1 2 ku d u n k 2 2 + 1 (u n ) = inf(P 1 ).
So u ⇤ is a solution to problem (P 1 ). As the cost functional is strictly convex we get uniqueness. ⇤ Now, we want to set optimality conditions to compute the solution. Unfortunately 1 is not (Gâteaux ) di↵erentiable and we need non smooth analysis tools (see Appendix A.2).

First order optimality condition

The functional F 1 is convex. Therefore ū is solution to (P 1 ) if and only if 0 2 @F 1 (ū) where @F 1 (ū) denotes the subdi↵erential of F 1 at ū ( Appendix A.2.2). We use Theorem A.8 to compute @F 1 (u). Indeed the function

u 7 ! ku u d k 2 2 is continuous on L 2 (⌦) and 1 is finite on BV (⌦) with values in R [ {+1}. As u 7 ! ku u d k 2 2 is Gâteaux-di↵erentiable on L 2 (⌦) as well we get 0 2 @F 1 (ū) = ū u d + @( 1 (ū)) = ū u d + @ 1 (ū) , that is u d ū 2 @ 1 (ū) .
It remains to compute @ 1 (ū). Using corollary A.4, it comes

u d ū 2 @ 1 (ū) () ū 2 @ ⇤ 1 ( u d ū ) ,
where ⇤ 1 is the Legendre-Fenchel conjugate of 1 that we compute now. Theorem 2.4. The Legendre-Fenchel conjugate ⇤ 1 of the total variation 1 is the indicatrix function of the L 2 -closure K 1 of the set K 1 , where

K 1 := ⇠ = div ' | ' 2 C 1 c (⌦) n , k |'| k 1  1 . (2.4)
Proof -The result is well known [START_REF] Aujol | Some first-order algorithms for total variation based image restoration[END_REF], [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] for example) but we give a proof anyway for convenience.

As 1 is a semi-norm, it is positively homogeneous and the conjugate ⇤ 1 is the indicatrix function of a closed convex set K (Proposition A.4). We first show that K 1 ⇢ K: let be u 2 K 1 . The definition of 1 gives

1 (u) = sup ⇠2K 1 (⇠, u) .
(2.5) Therefore (⇠, u)) 1 (u)  0 for every ⇠ 2 K 1 and u 2 L 2 (⌦) (Note that if u 2 L 2 (⌦)\BV (⌦) then 1 (u) = +1). We deduce that

8u ⇤ 2 K 1 ⇤ 1 (u ⇤ ) = sup u2L 2 (⌦) (u ⇤ , u) 1 (u) = sup u2BV (⌦) (u ⇤ , u) 1 (u)  0.
As ⇤ 1 takes only one finite value then ⇤ 1 (u ⇤ ) = 0 and u ⇤ 2 K. Therefore

K 1 ⇢ K; as K is closed then K 1 ⇢ K.
Eventually,

1 (u) = sup ⇠2K 1 (u, ⇠)  sup ⇠2K 1 (u, ⇠)  sup ⇠2 K (u, ⇠) = sup ⇠2 K (u, ⇠) ⇤ 1 (⇠) = ⇤⇤ 1 (u).
As

⇤⇤ 1 = 1 , then sup ⇠2K 1 (u, ⇠)  sup ⇠2 K (u, ⇠)  sup ⇠2K 1 (u, ⇠) , and sup ⇠2K 1 (u, ⇠) = sup ⇠2K 1 (u, ⇠) = sup ⇠2 K (u, ⇠) .
(2.6)

Assume there exists u ⇤ 2 K such that u ⇤ / 2 K 1 . With Hahn-Banach Theorem A.6, one can strictly separate u ⇤ and the closed convex set K 1 . There exists ↵ 2 R and u 0 2 L 2 (⌦) such that

(u 0 , u ⇤ ) > ↵ sup v2K 1 (u 0 , v) .
With (2.6) we obtain

sup ⇠2 K (u 0 , ⇠) (u 0 , u ⇤ ) > ↵ sup v2K 1 (u 0 , v) = sup v2 K (u 0 , v) .
We get a contradiction. Therefore K = K 1 . ⇤ Finally, ū is solution to (P 1 ) if and only if

ū 2 @1 K 1 ( u d ū ). Using proposition A.2 gives ū = c  u d ū + ū c ⇧ K 1 ( u d ū + ū c )
for every c > 0. Here and in the sequel ⇧ K 1 denotes the L 2 projection on K 1 . Now, set c = to obtain :

ū = u d ⇧ K 1 ⇣ u d ⌘ .
As

⇧ K 1 = ⇧ K 1 ⇣ u d ⌘
( with corollary A.3 ) we have the following result:

Theorem 2.5. The function ū is the solution to (P 1 ) if and only if

ū = u d ⇧ K 1 (u d ) where ⇧ K 1 is the L 2 -projection on K 1 .
We shall perform the numerical realization in section 2.4. This model is used for denoising purpose but the use of the total variation implies numerical perturbations. The computed solution turns to be piecewise constant and artificial contours are generated: this is the staircasing e↵ect [START_REF] Buades | The staircasing e↵ect in neighborhood filters and its solution[END_REF]). Therefore, though noise can be succesfully removed, the solution is not satisfactory. This variational model has been improved using di↵erent functional spaces, for the data fitting term and/or the regularizing term.

Some generalizations

Recently people considered that an image can be decomposed into many components, each component describing a particular property of the image (Aujol et al. (2005), [START_REF] Aubert | Modeling very oscillating signals. Application to image processing[END_REF], [START_REF] Garnett | Modeling oscillatory components with the homogeneous spaces B ṀO ↵ and Ẇ[END_REF], [START_REF] Le | ⇤ ) image decomposition models and minimization algorithms[END_REF], [START_REF] Le | Image decomposition using total variation and div(BMO). Multiscale Model[END_REF] and references therein for example). It is assumed that the image to be recovered from the data u d can be decomposed as f = u + v or f = u + v + w where u, v and w are functions that characterize di↵erent parts of f (see Aujol et al. (2005), Osher et al. (2003), [START_REF] Yin | A comparison of three total variation based texture extraction models[END_REF] for example). We cannot present every model since there are too many. We focus on the Meyer model and improved variants by Aujol and al. (Aujol et al. (2005), [START_REF] Aubert | Modeling very oscillating signals. Application to image processing[END_REF], Aujol and Chambolle (2005)).

The Meyer model

Assume we want to decompose the image as u d = u + v where u 2 BV (⌦) is the cartoon part. The remainder term v = u d u should involve the oscillating component (as noise and/or texture). Such decompositions have been performed in [START_REF] Aubert | Modeling very oscillating signals. Application to image processing[END_REF], Aujol et al. (2005) using the Meyer-space of oscillating functions G (see [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF]). This space is defined as follows

G(⌦) := { f = div(g) | g = (g 1 , g 2 ) 2 L 1 (⌦) ⇥ L 1 (⌦) } .
(2.7)

This space equipped with the norm

kf k G := inf{ k |g| k 1 | f = div(g), g = (g 1 , g 2 ) 2 L 1 (⌦) ⇥ L 1 (⌦)
} is a Banach space. In addition, if BV is the closure of the Schwartz class in BV then G is the dual space BV ⇤ of BV. The G -norm is a tool that measures the oscillations. More precisely the more f is oscillating, the less is kf k G . Nevertheless, non oscillating functions may have a small G-norm.

In [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF], the following result is proved, that gives a characterization of the solutions of the Rudin-Osher-Fatemi model (P 1 )) with respect to the parameter .

Theorem 2.6. Let u d , u and v three functions in

L 2 (⌦). If ku d k G > then the (unique) ROF decomposition u d = u + v is characterized by kvk G = and (u, v) 2 = kuk BV .
As already mentionned, oscillating functions have a small G-norm and textures and/or noise may be viewed as the oscillating parts of the image u d . So, the ROF model may be improved by replacing the L 2 -norm by the G-norm in the data fitting term. This model has been investigated in [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF] : [START_REF] Osher | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF] for example.

min u2BV (⌦) F G (u) := 1 2 ku d uk G + 1 (u), (P G ) One can find numerics in

Generalized u + v + w decomposition models

In [START_REF] Aubert | Modeling very oscillating signals. Application to image processing[END_REF], Aujol et al. (2005), the authors investigate a new decomposition model :

u d = u + v + w where • u 2 BV (⌦) is the cartoon part, • v 2 G µ (⌦) is an oscillating part (texture). Here, µ > 0 and G µ (⌦) := {v 2 G(⌦) | kvk G  µ } , • w = u d u v 2 L 2 (⌦) is the remainder part (noise).
The model writes min

(u,v)2BV (⌦)⇥Gµ(⌦) 1 2 ku d u vk 2 2 + 1 (u), (P Gµ )
The discretized problem (P Gµ ) has a unique solution and the authors propose an algorithm to solve it in Aujol et al. (2005) . The link to the Meyer model is done and numerical tests are performed. For more details one can refer to [START_REF] Aubert | Modeling very oscillating signals. Application to image processing[END_REF], Aujol et al. (2005[START_REF] Aujol | Wavelet-based level set evolution for classification of textured images[END_REF], [START_REF] Strong | Scale recognition, regularization parameter selection, and Meyer's G norm in total variation regularization[END_REF], Aujol and Chambolle (2005) 2.4. Numerical computation

Rudin-Osher-Fatemi discrete model

We now consider discrete 2D images (with finite number of pixels) which is the practical case. Such a discrete image is identified to a matrix N ⇥ M that we may view as a vector of length NM. We denote X = R N ⇥M and Y = X ⇥ X. The Hilbert space X is endowed with the usual scalar product

(u, v) X = X 1iN X 1jM u ij v ij ,
and the associated norm k • k X . We now give a discrete formulation of what we have described previously. In particular, we define the discrete total variation which is the `1 -norm of the usual gradient. More precisely, for every u 2 X, the gradient ru is a vector in Y :

(ru) i,j = ((ru) 1 i,j , (ru) 2 i,j
), defined with classical a finite di↵erence scheme, for example

(ru) 1 i,j = ⇢ u i+1,j u i,j if i < N 0 s i i = N , (2.8a) (ru) 2 i,j = ⇢ u i,j+1 u i,j if j < M 0 si j = M (2.8b)
The discrete total variation writes

J 1 (u) = X 1iN X 1jM |(ru) i,j |, (2.9) where |(ru) i,j | := q |(ru) 1 i,j | 2 + |(ru) 2 i,j | 2 .
We use a discrete version of the divergence operator as well, setting div = r ⇤ , where r ⇤ is the adjoint operator of r, that is

8p 2 Y, 8u 2 X ( div p, u) X = (p, ru) Y = (p 1 , r 1 u) X + (p 2 , r 2 u) X .
One can verify that the discrete divergence writes

(div p) i,j = 8 > > < > > : p 1 i,j p 1 i 1,j if 1 < i < N p 1 i,j if i = 1 p 1 i 1,j if i = N (2.10) + 8 > > < > > : p 2 i,j p 2 i,j 1 if 1 < j < M p 2 i,j if j = 1 p 2 i,j 1 if j = M
The discrete laplacian operator is defined as

u = div (ru).
Once this discretization is performed, problems (P 1 ) turns to be

min u2X F 1 (u) := ku u d k 2 X + J 1 (u).
(2.11)

We can prove as in section 2.2 that the discretized problem has a unique solution that we are going to characterize. Similarly

J 1 (u) = sup ⇠2K 1 (u, ⇠) X ,
where

K 1 = {⇠ = div g | g 2 Y, |g i,j |  1, 1  i  N, 1  j  M }, (2.12) and 8g = (g 1 , g 2 ) 2 Y |g i,j | = q (g 1 i,j ) 2 + (g 2 i,j ) 2 .
As in section 2.2 we have Theorem 2.7. [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]The Legendre-Fenchel conjugate J ⇤ 1 of J 1 is the indicatrix function of K 1 given by (2.12). Moreover, ū is the solution to problem (2.11) is and only if

ū = u d P K 1 (u d ), (2.13)
where P C is the orthogonal projector from X on the closed convex set C. Compute the solution to problem (2.12) is equivalent to compute the projection on the set K 1 . Of course, this is not straighforward. We report here two algorithms: the first one [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] ) is a fixed-point type algorithm. The second one is a Nesterov type algorithm [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]) that has been adapted to the context by [START_REF] Weiss | E cient schemes for total variation minimization under constraints in image processing[END_REF].

Chambolle algorithm

We have to compute [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] we use a fixed-point method :

P K 1 (u d ) = argmin { k div (p) u d k 2 X | |p i,j |  1, i = 1, • • • , N, j = 1, • • • , M }. Following
Algorithm 1 Chambolle algorithm Initialization : n = 0; p 0 = 0 Iteration n : set

p n+1 i,j = p n i,j + ⇢ (r[div p n u d / ]) i,j 1 + ⇢ (r[div p n u d / ]) i,j
.

Stopping criterion.

If the parameter ⇢ satisfies ⇢  1/8, then div p n ! P K 1 (u d ) and the solution writes

ū = u d div p 1 where p 1 = lim n!+1 p n .

Nesterov type algorithms

The previous method works well but is rather slow. We now present a faster algorithm. It is derived from a method by Y. Nesterov [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]).The original goal was to solve inf

q2Q E (q) (2.14)
where E is convex, di↵erentiable with Lipschitz derivative and Q is a closed set.

Let d be a convex function , x 0 2 Q and > 0 such that

8x 2 Q d(x) 2 kx x 0 k 2 .

The algorithm writes

Algorithm 2 Nesterov algorithm

Initialization : k = 0; G 0 = 0; x k 2 Q and L is the Lipschitz constant of rE. Iteration k : for 0  k  J do (a) Set ⌘ k = rE (x k ). (b) Compute y k the solution to min y2Q ⇢ (⌘ k , y x k ) X + 1 2 L ky x k k 2 X . (c) G k = G k 1 + k + 1 2 ⌘ k . (d) Compute z k the solution to min z2Q ⇢ L d(z) + (G k , z) X . (e) Set x k = 2 k + 3 z k + k + 1 k + 2 y k . end for It has been proved that if ū is the solution to (2.14) then 0  E (y k ) E (u)  4Ld (u) (k + 1) (k + 2)
.

In our case, [START_REF] Weiss | E cient schemes for total variation minimization under constraints in image processing[END_REF] have adapted the method to solving the dual problem of (2.11). Using Theorem A.10 (A.2.4) gives

min u2X J 1 (u) + 1 2 ku u d k 2 X = max v2X ( J ⇤ 1 ( v) N ⇤ (v)) = min q2X (J ⇤ 1 ( v) + N ⇤ (v)) ,
where

N (u) = 1 2 ku u d k 2 X .
We already noticed that J ⇤ 1 is the indicatrix of the set K 1 defined by (2.12). Let us compute N ⇤ :

N ⇤ (v) = sup u2X ( (u, v) X N (u)) = sup u2X ( (u, v) X 1 2 ku u d k 2 X ) .
The supremum is achived at u = v + u d and

N ⇤ (v) = 2 kvk 2 X + vu d = 1 2 k v + u d k 2 X ku d k 2 2 .
The dual problem writes

min v2K k v + u d k 2 X = min p2B k div(p) + u d k 2 X , (2.15) 
where

B := { p = (p 1 , p 2 ) 2 X ⇥ X| |p i,j |  , 1  i  N, 1  j  M } . The solution ū of the primal problem (2.11) is obtained as follows ū = u d v ,
(2.16)

where v = div p is solution to (2.15). Now, we may use algorithm 2 to solve(2.15).

We set

E(p) = 1 2 k div(p) + u d k 2 X and Q = B , and choose d(x) = 1 2 kxk 2 X with x 0 = 0 and = 1. • Step (a) gives ⌘ k = rE(p k ) = r( div(p k ) + u d ) • Step (b) : as (⌘ k , y x k ) X + L 2 ky x k k 2 X = L 2 y x k + ⌘ k L 2 X k⌘ k k 2 X 2L
we need to compute the solution to

min y2B y p k + ⌘ k L 2 X .
Step (b) turns to calculate q k the `2 (euclidean) projection on the `1-ball

B (see A.1.4) of p k ⌘ k L : q k = ⇧ B ⇣ p k ⌘ k L ⌘ .
• Similarly, step (d) is equivalent to the computation of

z k = ⇧ B ✓ G k L ◆ .
We eventually obtain Algorithm 3 Modified Nesterov algorithm [START_REF] Weiss | E cient schemes for total variation minimization under constraints in image processing[END_REF])

Input : the maximal number of iterations I max and an initial guess p 0 2 B are given. Output : q := q

Imax approximates q solution to (2.15)

Let L = kdivk 2 2 be the discrete divergence operator norm. Set G 1 = 0 for 0  k  I max do ⌘ k = r( div(p k ) + u d ) q k = ⇧ B ⇣ p k ⌘ k L ⌘ . G k = G k 1 + k + 1 2 ⌘ k , z k = ⇧ B ✓ G k L ◆ . p k+1 = 2 k + 3 z k + k + 1 k + 3 q k end for
The solution of problem (2.11 ) is approximated by ũ:

ũ = u d div(q) .
(2.17)

Second order models (2D case)

The ROF variational model is a good tool to perform denoising while preserving contours (what a Gaussian filter does not achieve). However, there are undesired e↵ects that come from the use of first-order (generalized) derivative (total variation or more complicated terms). Roughly speaking, the solution should have a very small first order derivative. Concerning the total variation, which is also the total length of contours, it gives satisfactory denoising but the solution turns to be (more or less) piecewise constant. Therefore, original contours are kept but artificial ones may be created which is not acceptable. This is called the staircasing e↵ect [START_REF] Caselles | The discontinuity set of solutions of the tv denoising problem and some extensions[END_REF], [START_REF] Ring | Structural properties of solutions of total variation regularization problems[END_REF]). We give an example below [START_REF] Bergounioux | A second-order model for image denoising[END_REF]). We infer that the use of a second order penalization term leads to piecewise a ne solutions so that there is no staircasing e↵ect any longer. In this section, we present a second order decomposition model for 2D-denoising and texture extraction. We present the functional framework (space BV 2 ) and compare with the Total Generalized Variation introduced by [START_REF] Bredies | Total generalized variation[END_REF].Then, we give numerical hints and improved variants. We end with a comparison between ROF and the second-order methods.

3.1. The space BV 2 (⌦) 3.1.1. General properties We extend the concept of (first-order) variation definition to the second derivative (in the distributional sense). Recall that the Sobolev space W 1,1 (⌦) is defined as

W 1,1 (⌦) = { u 2 L 1 (⌦) | ru 2 L 1 (⌦) }
where ru stands for the first order derivative of u (in the sense of distributions). Full results can be found in [START_REF] Demengel | Fonctions à hessien borné[END_REF], [START_REF] Hinterberger | Variational methods on the space of functions of bounded Hessian for convexification and denoising[END_REF], [START_REF] Bergounioux | A second-order model for image denoising[END_REF].

Definition 3.1. A function u 2 W 1,1 (⌦) is Hessian bounded if 2 (u) := sup ⇢Z ⌦ hru, div(⇠)i R n | ⇠ 2 C 2 c (⌦, R n⇥n ), k⇠k 1  1 < 1, (3.1)
where

div(⇠) = (div(⇠ 1 ), div(⇠ 2 ), . . . , div(⇠ n )), with 8i, ⇠ i = (⇠ 1 i , ⇠ 2 i , . . . , ⇠ n i ) 2 R n and div(⇠ i ) = n X k=1 @⇠ k i @x k . BV 2 (⌦) is defined as following BV 2 (⌦) := {u 2 W 1,1 (⌦) | 2 (u) < +1}. We recall that if X = R n⇥n , k⇠k 1 = sup x2⌦ v u u t n X i,j=1 ⇠ j i (x) 2 .
We give thereafter many useful properties of BV 2 (⌦) (proofs can be found in [START_REF] Demengel | Fonctions à hessien borné[END_REF], [START_REF] Bergounioux | A second-order model for image denoising[END_REF]).

Theorem 3.1. The space BV 2 (⌦) endowed with the following norm

kf k BV 2 (⌦) = kf k W 1,1 (⌦) + 2 (f ) = kf k L 1 + krf k L 1 + 2 (f ), (3.2)
where 2 is given by (3.1), is a Banach space.

Proposition 3.1. A function u belongs to BV 2 (⌦) if and only if u 2 W 1,1 (⌦) and @u @x i 2 BV (⌦) for i 2 {1, . . . , n}. In particular

2 (u)  n X i=1 1 ✓ @u @x i ◆  n 2 (u).
Remark 3.1. The previous result shows that

BV 2 (⌦) = ⇢ u 2 W 1,1 (⌦) | 8i 2 {1, . . . , n}, @u @x i 2 BV (⌦) .
We get a lower semi-continuity result for the semi-norm 2 as well.

Theorem 3.2. The operator 2 is lower semi-continuous from BV 2 (⌦) endowed with the strong topology of

W 1,1 (⌦) to R. More precisely, if {u k } k2N is a sequence of BV 2 (⌦) that strongly converges to u in W 1,1 (⌦) then 2 (u)  lim inf k!1 2 (u k ). Remark 3.2. In particular, if lim inf k!1 2 (u k ) < 1, then u 2 BV 2 (⌦).
We have embedding results as well:

Theorem 3.3. (Demengel (1984) ) Assume n 2. Then BV 2 (⌦) ,! W 1,q (⌦) with q  n n 1 , (3.3) with continuous embedding. Moreover the embedding is compact if q < n n 1 . In particular BV 2 (⌦) ,! L q (⌦) for q  n n 2 if n > 2 (3.4) BV 2 (⌦) ,! L q (⌦), 8q 2 [1, 1[, if n = 2. (3.5)
In the sequel, we set n = 2 and ⌦ is a Lipschitz bounded, open subset of R 2 , so that BV 2 (⌦) ⇢ H 1 (⌦) with continuous embedding and BV 2 (⌦) ⇢ W 1,1 (⌦) with compact embedding. Let us define the space BV 0 (⌦) as the space of functions of bounded variation that vanish on the boundary @⌦ of ⌦. More precisely as ⌦ is bounded and @⌦ is Lipschitz, functions of BV (⌦) have a trace of class L 1 on @⌦ (see [START_REF] Ziemer | Weakly Di↵erentiable Functions -Sobolev Space and Functions of Bounded Variation[END_REF], [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]), and the trace mapping T : BV (⌦) ! L 1 (@⌦) is linear, continuous from BV (⌦) equipped with the intermediate convergence to L 1 (@⌦) endowed with the strong topology [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF], Theorem 10.2.2 p 386). The space BV 0 (⌦) is then defined as the kernel of T . It is a Banach space, endowed with the induced norm. Note that if u 2 BV 2 (⌦) the trace u |@⌦ belongs to H 1/2 (@⌦) ⇢ L 2 (@⌦):

BV 0 (⌦) := {u 2 BV (⌦) | u |@⌦ = 0 } , Next we define similarly BV 2 0 (⌦) := {u 2 BV 2 (⌦) | u |@⌦ = 0 } , BV m (⌦) := {u 2 BV (⌦) | Z ⌦ u(x) dx = 0 i = 1, • • • , n} , and 
BV 2 m (⌦) := {u 2 BV 2 (⌦) | Z ⌦ @u @x i dx = 0 i = 1, • • • , n} .
At last we shall use the following result of Bergounioux (2011):

Lemma 3.1 (Poincaré-Wirtinger inequalities). Let ⌦ ⇢ R n be an open Lipschitz bounded set.There exist generic constants only depending on ⌦,

C i > 0 such that 8u 2 BV 0 (⌦) kuk L 1 (⌦)  C 1 1 (u), 8u 2 BV m (⌦) kuk L 1 (⌦)  C 2 1 (u), 8u 2 BV 2 0 (⌦) 1 (u)  C 1 2 (u) 8u 2 BV 2 m (⌦) 1 (u)  C 2 2 (u)
We end with a remark related to next subsection. Let us call

K := ⇠ 2 C 2 c (⌦, R n⇥n ), k⇠k 1  1 .
Then, for every function u 2 W 1,1 (⌦) an integration by parts gives

Z ⌦ u div 2 ⇠ dx = Z ⌦ (ru, div ⇠) R d dx . so that 2 (u) := sup ⇢Z ⌦ u div 2 ⇠ dx, ⇠ 2 K .
(3.6)

The Total Generalized Variation

Another definition for second-order total variation spaces has been set in [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Bredies | Properties of l 1 -TGV 2 : The one-dimensional case[END_REF]. The main di↵erence lies in the choice of test functions in the variational formulation. The authors define the Total Generalized Variation T GV 2 (u) as the supremum of the duality product between u and symmetric tests functions that are bounded together with their derivative. Let be ↵ = (↵ 0 , ↵ 1 ) > 0, we call

T GV 2 ↵ (u) = sup ⇢Z ⌦ u div 2 ⇠ dx, ⇠ 2 K ↵ ,
where

K ↵ := {⇠ 2 K, ⇠ ij = ⇠ ji 8i, j, k⇠k 1  ↵ 0 , kdiv ⇠k 1  ↵ 1 } . The BGV 2 ↵ space is defined as following BGV 2 ↵ (⌦) = u 2 L 1 (⌦) , T GV 2 ↵ (u) < +1 . (3.7) Recall that BV 2 (⌦) := {u 2 W 1,1 (⌦) | 2 (u) < +1},
where

2 (u) := sup ⇢Z ⌦ u div 2 ⇠ dx, ⇠ 2 K .
These two spaces are di↵erent : indeed BGV 2 (⌦) functions do not necessarily belong to W 1,1 (⌦) so that BGV 2 (⌦) includes less regular function than BV 2 (⌦). More precisely :

Proposition 3.2. Let be ↵ = (↵ 0 , ↵ 1 ) > 0. For every function u in W 1,1 (⌦) we get T GV 2 ↵ (u)  ↵ 0 T V 2 (u) . Therefore 8↵ > 0 BV 2 (⌦) ⇢ BGV 2 ↵ (⌦) with continuous embedding. Proof -As K ↵ ⇢ K the first relation is obvious. Moreover if u 2 BV 2 (⌦), then u 2 W 1,1 and T GV 2 ↵ (u) < +1. In addition kuk BV G 2 ↵ = kuk L 1 + T GV 2 ↵ (u)  kuk W 1,1 + ↵ 0 T V 2 (u)  max(1, ↵ 0 )kuk BV 2 , which gives the embedding continuity. ⇤ Corollary 3.1. For u 2 BV 2 (⌦), T V 2 (u) = 0 if and only if u is a polynomial function of order 1. Proof -For u 2 BV 2 (⌦), T V 2 (u) = 0 =) T GV 2 ↵ (u) = 0.
We use Proposition 3.3 of [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Bredies | Properties of l 1 -TGV 2 : The one-dimensional case[END_REF]. ⇤

3.2.

A partial second order model 3.2.1. The ROF2 model We now assume (as in the models of subsection 2.3.2) that the image we want to recover from the data u d can be decomposed as u d = u + w where u 2 BV 2 (⌦) and w := u d u 2 L 2 (⌦). We consider the following cost functional defined on BV 2 (⌦) :

F 2 (u) = 1 2 ku d uk 2 L 2 (⌦) + 2 (u), (3.8) 
where > 0. We are looking for a solution to the optimisation problem

inf{ F 2 (u) | u 2 BV 2 0 (⌦) } (P 2 )
The first term ku

d uk 2 L 2 (⌦)
of F 2 is the fitting data term. Here we have chosen the L 2 -norm for simplicity but any L p norm can be used (p 2 [2, +1)). Let us mention that [START_REF] Bredies | Properties of l 1 -TGV 2 : The one-dimensional case[END_REF] have investigated the very case where p = 1 with T GV 2 instead of 2 .

If the image is noisy, the noise is considered as a texture and will be involved in the remainder term u d u: more precisely u should be the part of the image without the oscillating component, that is the denoised part. Such an approach has already been used by [START_REF] Hinterberger | Variational methods on the space of functions of bounded Hessian for convexification and denoising[END_REF] with the BV 2 (⌦) space. Their algorithm is di↵erent from the one we use here.

Theorem 3.4. Assume that > 0. Problem (P 2 ) has at least a solution u.

Proof -Proof -Let u n 2 BV 2 0 (⌦) be a minimizing sequence, i.e.

lim n!+1 F 2 (u n ) = inf(P 2 ) < +1. Therefore 2 (u n ) is bounded and with Lemma 3.1, kru n k L 1 = 1 (u n ) is bounded as well. As u n is L 2 -bounded, it is L 1 -bounded as well. This yields that u n is bounded in W 1,1 (⌦). Therefore the sequence u n is bounded in BV 2 (⌦).
With the compactness result of Theorem 3.3, we deduce that (u n ) n2N strongly converges (up to a subsequence) in W 1,1 (⌦) to u ⇤ 2 BV 2 0 ⌦)(because the trace operator is continuous). With theorem 3.2 we get

2 (u ⇤ )  lim inf n!+1 2 (u n ). So F 2 (u ⇤ )  lim inf n!+1 F 2 (u n ) = inf(P 2 )
, and u ⇤ is a solution to (P 2 ). ⇤

Anisotropic improvment (Pi↵et (2011))

We observe (see section 3.5) that the second order model (P 2 ) removes the staircasing e↵ect. However, as the solution is close to a piecewise a ne one, the model generates a blur e↵ect on the BV 2 -part. This means that contour lines are still partly involved in the oscillating component. As a result, this decomposition model is not e cient for texture extraction. To improve the result, a local modification of the Hessian operator is performed and a local anisotropic strategy is performed, which depends on each pixel and is consistent with the contours. We have noticed that cancelling one or more coe cients of the (local) Hessian matrix permits to get rid of the contours along the corresponding direction. In Figure 3.4 the coe cients (Hv) 1,1 and (Hv) 2,2 of the Hessian matrix have been globally set to 0. We can see that horizontal and vertical contours are not involved in the texture part any longer. However, this method has to been improved since there are two major inconveniences :

-First, the same transform is performed at every pixel, so that the image is globally treated. All the vertical and horizontal lines are removed;

-Second, the transform depends on the chosen (fixed) cartesian axis and it is not possible to remove contours that are not horizontal, vertical or diagonal. Therefore, we perform a local rotation which is driven by the gradient direction, to make the contour direction, horizontal (or vertical). Then we cancel the corresponding terem in the new rotated Hessian matrix. The whole process is detailed in (section 4) . The di↵erent steps are the following :

• Step 1. Detect points of interest which are pixels of contours that appear in the texture component and that need to be removed. This step can be performed using (for example) a thresholding on the image gradient norm. The other pixels are treated with the original model (P 2 ) without any anisotropic strategy. We shall detail the strategy and the implementation in the 3D case (section 4) but we give an example however. We observe in Figures 3.10 and 3.11 that the contour lines of the BV 2component are well preserved using the anisotropic strategy, so that we may use the concept of cartoon t as for the ROF model (see Aujol et al. (2005)). Moreover, we can see on the texture component that contours and edges disappear when using anisotropy strategy. Even if we can notice that the locally anisotropic model gives pretty good results for texture extraction, we still have to carefully analyze this strategy, which is related to the penalization of image curvature. Additional comments, details and examples can be found in [START_REF] Pi↵et | A locally anisotropic model for image texture extraction[END_REF]. We assume once again that the image is squared with size N ⇥ M . We note X := R N ⇥M ' R NM endowed with the usual inner product and the associated euclidean norm and use the discretization process of section 2.4.1. To define a discrete version of the second order total variation 2 we have to introduce the discrete Hessian operator. For any v 2 X, the Hessian matrix of v, denoted Hv is identified to a X 4 vector: (Hv) i,j = ⇣ (Hv) 11 i,j , (Hv) 12 i,j , (Hv) 21 i,j , (Hv) 22 i,j ⌘ , with, for every i = 1, . . . , N, j = 1, . . . , M

(Hv) 11 i,j = 8 < : v i+1,j 2v i,j + v i 1,j if 1 < i < N, v i+1,j v i,j if i = 1, v i 1,j v i,j if i = N, (Hv) 12 i,j = 8 < : v i,j+1 v i,j v i 1,j+1 + v i 1,j if 1 < i  N, 1  j < M, 0 i f i = 1, 0 i f i = N, (Hv) 21 i,j = 8 < : v i+1,j v i,j v i+1,j 1 + v i,j 1 if 1  i < N, 1 < j  M, 0 i f i = 1, 0 i f i = N, (Hv) 22 i,j = 8 < : v i,j+1 2v i,j + v i,j 1 if 1 < j < M, v i,j+1 v i,j if j = 1, v i,j 1 v i,j if j = M.
The discrete second order total variation corresponding to 2 (v) is defined as

J 2 (v) = N X i=1 M X j=1 k(Hv) i,j k R 4 , (3.9) 
where kxk

R 4 = v u u t 4 X i=1 x 2 i for every x = (x 1 , x 2 , x 3 , x 4 ) 2 R 4 . The discretized problem writes inf u2X F 2 (u) := 1 2 ku d uk 2 X + J 2 (u). (P 2 )
Theorem 3.5. Problem (P 2 ) has a unique solution for every > 0.

Proof -The cost functional F 2 is continuous and coercive because of the term ku d vk 2 X . In addition it is strictly convex so that we get the result. ⇤

Optimality conditions

We follow the steps of section 2.5 to get optimality conditions for the solution to (P 2 ). For the sake of simplicity, we perform the study in the finite dimensional case only.

We first compute the Legendre-Fenchel conjugate function of J 2 . As J 2 is positively homogeneous, the Legendre-Fenchel conjugate J ⇤ 2 is the characteristic function of a closed, convex set K. As J ⇤⇤ 2 = J 2 , we get

J 2 (v) = sup u2K hv, ui X .
We use the inner scalar product of X 4 :

hp, qi X 4 = X 1iN X 1jM
p 1 i,j q 1 i,j + p 2 i,j q 2 i,j + p 3 i,j q 3 i,j + p 4 i,j q 4 i,j , for every p = p 1 , p 2 , p 3 , p 4 , q = q 1 , q 2 , q 3 , q 4 2 X 4 . So, for every v 2 X,

J 2 (v) = sup p2C hp, Hvi X 4 , (3.10)
where the feasible set is

C := { p 2 X 4 | kp i,j k R 4  1, 8 1  i  N, 1  j  M } .
Let us compute the adjoint operator of H (which is the discretized "second divergence" operator) :

8p 2 X 4 , 8v 2 X hH ⇤ p, vi X = hp, Hvi X 4 .
We verify that H ⇤ : X 4 ! X satisfies for every p = (p 11 , p 12 , p 21 , p 22 ) 2 X 4 (H ⇤ p) i,j = 8 > < > :

p 11 i 1,j 2p 11 i,j + p 11 i+1,j if 1 < i < N p 11 i+1,j p 11 i,j if i = 1, p 11 i 1,j p 11 i,j if i = N, + 8 > < > : p 22 i,j 1 2p 22 i,j + p 22 i,j+1 if 1 < j < M, p 22 i,j+1 p 22 i,j if j = 1, p 22 i,j 1 p 22 i,j if j = M, + 8 > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > : p 12 i,j 1 p 12 i,j p 12 i+1,j 1 + p 12 i+1,j if 1 < i < N, 1 < j < M, p 12 i+1,j p 12 i+1,j 1 if i = 1, 1 < j < M, p 12 i,j 1 p 12 i,j if i = N, 1 < j < M, p 12 i+1,j p 12 i,j if 1 < i < N, j = 1, p 12 i,j 1 p 12 i+1,j 1 if 1 < i < N, j = M, p 12 i+1,j if i = 1, j = 1, p 12 i+1,j 1 if i = 1, j = M, p 12 i,j if i = N, j = 1, p 12 i,j 1 if i = N, j = M, (3.11) + 8 > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > : p 21 i 1,j p 21 i,j p 21 i 1,j+1 + p 21 i,j+1 if 1 < i < N, 1 < j < M, p 21 i,j+1 p 21 i,j if i = 1, 1 < j < M, p 21 i 1,j p 21 i 1,j+1 if i = N, 1 < j < M, p 21 i,j+1 p 21 i 1,j+1 if 1 < i < N, j = 1, p 21 i 1,j p 21 i,j if 1 < i < N, j = M, p 21 i,j+1 if i = 1, j = 1, p 21 i,j if i = 1, j = M, p 21 i 1,j+1 if i = N, j = 1, p 21 i 1,j if i = N, j = M, Finally, we obtain Theorem 3.6. The Legendre-Fenchel conjugate of J 2 is J ⇤ 2 = 1 K 2 where K 2 := {H ⇤ p | p 2 X 4 , kp i,j k R 4  1, 81  i  N, 1  j  M } ⇢ X. (3.12)
Proof -The proof is the same as the one of theorem 2.4. Alternatively, one may note that J 2 is the support function of K 2 which is the conjugate function of the indicator function 1 [START_REF] Ekeland | Convex Analysis and Variational problems[END_REF] p. 19). Therefore, as K 2 is closed and convvex and J 2 is continuous we get We extend the result of ( Chambolle ( 2004) ) that we recalled in section 2.4.2, to the second-order case. To compute P K 2 (u d ) we have to solve min

K 2 of K 2 (see
J ⇤ 2 = 1 ⇤⇤ K 2 = 1 K 2 . ⇤ Eventually,
n k H ⇤ p u d k 2 X | p 2 X 4 , kp i,j k 2 R 4 1  0, 1  i  N, 1  j  M o . Let us denote R(p) = k H ⇤ p u d k 2 X and g i,j (p) = kp i,j k 2 R 4 1 = (p 11 i,j ) 2 + (p 12 i,j ) 2 + (p 21 i,j ) 2 + (p 22 i,j
) 2 1. First order optimality conditions give the existence of Lagrange multipliers ↵ i,j , (i, j) 2 {1, . . . , N} ⇥ {1, . . . , M}, such that

rR(p) + N X i=1 M X j=1 ↵ i,j rg i,j (p) = 0, (3.13a) ↵ i,j 0 and ↵ i,j g i,j (p) = 0, 1  i  N, 1  j  M. (3.13b) It is easy to see that rR(p) = 2 H [ H ⇤ p u d ] and that N X i=1 M X j=1 ↵ i,j rg i,j (p) = 2↵ i,j (p 11 i,j , p 22 i,j , p 12 i,j , p 21 i,j ) 1iN,1jM .
Therefore relations (3.13) are equivalent to

8(i, j) 2 {1, . . . , N} ⇥ {1, . . . , M} (H [ H ⇤ p u d ]) i,j + ↵ i,j p i,j = 0, (3.14a) 8(i, j) 2 {1, . . . , N} ⇥ {1, . . . , M} ↵ i,j
0 and ↵ i,j g i,j (p) = 0. (3.14b) Let us compute the multipliers ↵ i,j more precisely :

• If ↵ i,j > 0 then kp i,j k R 4 = 1. • If ↵ i,j = 0 then (H [ H ⇤ p u d ])
i,j = 0. In both cases we get

8(i, j) 2 {1, . . . , N} ⇥ {1, . . . , M} ↵ i,j = (H [ H ⇤ p u d ]) i,j R 4
and we finally obtain the following equality : 8(i, j) 2 {1, . . . , N} ⇥ {1, . . . , M} ,

(H [ H ⇤ p u d ]) i,j + (H [ H ⇤ p u d ]) i,j R 4 p i,j = 0. (3.15)
We use a semi-implicit gradient method to solve these equations : this gives Algorithm 4 Second order Chambolle-type algorithm Initialization : n = 0; p 0 = 0 Iteration n : set

p n+1 i,j = p n i,j ⌧ (H [H ⇤ p n u d / ]) i,j 1 + ⌧ (H [H ⇤ p n u d / ]) i,j R 4 . (3.16)
Stopping criterion.

The algorithm step ⌧ > 0 is related to the adjoint operator H ⇤ norm that we call  in the sequel. We first give a  estimate: Lemma 3.2. The adjoint operator H ⇤ norm,  satisfies   8 .

Proof -The definition of  gives

:  = sup kpk X 4 1 kH ⇤ pk X . As kH ⇤ pk X = sup q2 BX (0,1) hH ⇤ p, qi X = sup q2 BX (0,1) hp, Hqi X 4  sup q2 BX (0,1) kHqk X 4 kpk X 4 , we get kH ⇤ pk X  |||H||| kpk X 4 , (3.17) where |||H||| = sup kqk X 1 kHqk X 4 . For any q 2 X kHqk 2 X 4 = N X i=1 M X j=1 h (q i+1,j 2q i,j + q i 1,j ) 2 + (q i,j+1 q i,j q i 1,j+1 + q i 1,j ) 2 + (q i+1,j q i,j q i+1,j 1 + q i,j 1 ) 2 + (q i,j+1 2q i,j + q i,j 1 ) 2 i  4 N X i=1 M X j=1 ⇥ q 2 i+1,j + q 2 i,j + q 2 i,j + q 2 i 1,j + q 2 i,j+1 + q 2 i,j + q 2 i 1,j+1 + q 2 i 1,j + q 2 i+1,j + q 2 i,j + q 2 i+1,j 1 + q 2 i,j 1 + q 2 i,j+1 + q 2 i,j + q 2 i,j + q 2 i,j 1 ⇤  4 ⇥ 16 kqk 2 X = 64 kqk 2 X .
Finally |||H|||  8, and with relation (3.17), kH ⇤ pk X  8 kpk X 4 . We deduce that

  8. ⇤ Theorem 3.8. Let be ⌧  1/64. Then (H ⇤ p n ) n converges to P K 2 (u d ) as n ! +1.
Proof -We refer to [START_REF] Bergounioux | A second-order model for image denoising[END_REF]. ⇤

Nesterov type algorithms

Algorithm 2 is a generic one. As in section 2.4.3, we apply it to solving the dual problem. We set

E(p) = 1 2 kH ⇤ p u d k 2 X and Q = B ,
and choose d(x) = 1 2 kxk 2 X with x 0 = 0 and = 1.

Algorithm 5 Modified Nesterov algorithm fo (P 2 ) Input : the maximal number of iterations I max and an initial guess p 0 2 B are given. Output : q := q Imax approximates q solution to (2.15)

Set L = kH ⇤ k 2 . Set G 1 = 0 for 0  k  I max do ⌘ k = H(H ⇤ p k u d ) q k = ⇧ B ⇣ p k ⌘ k L ⌘ . G k = G k 1 + k + 1 2 ⌘ k , z k = ⇧ B ✓ G k L ◆ . p k+1 = 2 k + 3 z k + k + 1 k + 3 q k end for

A full second order model

The variational model we have previously studied, involves a single second order term 2 . The motivation was to get rid of the staircasing e↵ect while restoring noisy data. We infered that the use of a second order penalization term leads to piecewise a ne solutions so that there is no staircasing any longer. However, we observed that the contours were not kept as well as we wanted and that the resulting image was slightly blurred. To overcome this di culty, we now consider a full second order model involving both first and second order penalization terms. Furthermore, we focus on texture extraction; indeed denoising can be handled in a similar way, considering that noise is a very fine texture.

The model

Specifically, we assume that the image we want to recover from data can be decomposed as u d = w + u + v where u, v and w are functions that characterize the various structures of u d . In the sequel u d 2 L 2 (⌦). We consider the following cost functional defined on BV (⌦) ⇥ BV 2 (⌦) :

F ,µ (u, v) = 1 2 ku d u vk 2 L 2 (⌦) + 1 (u) + µ 2 (v), (3.18)
where , µ > 0. We are looking for a solution to the optimization problem

inf{ F ,µ (u, v) | (u, v) 2 X ⇥ Y } (P ,µ ) where X = BV 0 (⌦) or BV m (⌦) and Y = BV 2 0 (⌦) or BV 2 m (⌦).
In other words we expect

• v to be the smooth colored part of the image (that should be piecewise a ne),

• u to be a BV (⌦)\BV 2 (⌦) function which derivative is a measure supported by the image contours,

• w := u d u v 2 L 2
is the noise and/or fine textures (we detail this point later).

First we give an existence result for problem (P ,µ ). Theorem 3.9 (Existence). Assume that > 0 and µ > 0. The problem (P ,µ ) has at least an optimal solution (u

⇤ , v ⇤ ) 2 X ⇥ Y ⇢ BV (⌦) ⇥ BV 2 (⌦). Proof -Let (u n , v n ) 2 BV 0 (⌦) ⇥ BV 2 0 (⌦) be a minimizing sequence, i.e. lim n!+1 F ,µ (u n , v n ) = inf(P ,µ ) < +1. Therefore • 2 (v n ) is bounded and with Lemma 3.1, krv n k L 1 is bounded as well. • 1 (u n ) is bounded. Using once again Lemma 3.1 this yields that u n is bounded in L 1 (⌦. Therefore the sequence u n is bounded in BV (⌦). • As u n +v n is L 2 -bounded, it is L 1 -bounded as well so that v n is L 1 bounded. As krv n k L 1 and 2 (v n ) are bounded this means that the sequence v n is bounded in BV 2 (⌦).
With the compactness result of Theorem 3.3, we infer that (v n ) n2N strongly converges (up to a subsequence) in W 1,1 (⌦) to v ⇤ 2 BV 2 0 ⌦)(because the trace operator is continuous) and (u n ) n2N strongly converges (up to a subsequence) in

L 1 (⌦) to u ⇤ 2 BV 0 (⌦). Moreover u n + v n weakly converges to u ⇤ + v ⇤ in L 2 (⌦). With Theorem 3.2 we get 1 (u ⇤ )  lim inf n!+1 1 (u n ), 2 (v ⇤ )  lim inf n!+1 2 (v n ). So F ,µ (u ⇤ , v ⇤ )  lim inf n!+1 F ,µ (u n , v n ) = min(P ,µ ), and (u ⇤ , v ⇤ ) is a solution to (P ,µ ). ⇤ It is easy to see that (u ⇤ , v ⇤ ) is a solution to (P ,µ ) if and only if u ⇤ = argmin ⇢ 1 2 ku d v ⇤ uk 2 + 1 (u) , u 2 BV 0 (⌦) , (3.19) v ⇤ = argmin ⇢ 1 2 ku d u ⇤ vk 2 + µ 2 (v), v 2 BV 2 0 (⌦) .
and we may derive optimality conditions in a standard way : Sensibility with respect to parameter . We note that we lose details information when parameter increases, what was expected. However, especially when the data is very noisy, we have a blur (subjective) feeling, that we do not have when restoration is performed with the standard ROF model. As expected, we see on Figure 3.13 that the smoothing process is more ecient when is large. Checking what happens precisely on slices (lines) of the image (Figure 3.15 for example), we remark that the (P 2 ) model keeps contour information pretty well, anyway better than expected watching the image.

Sensitivity with respect to iterations number itmax in Algorithm 5. We fix = 25 and choose = 0.25. Comparison with Rudin-Osher-Fatemi model (P 1 ). We compare the two models on the noisy image with = 0.25. As expected, piecewise constant areas appear with (P 1 ) , while it is not the case with (P 2 ). We still focus on a line that meets contours. .17 is obtained for a large number of iterations and = 50 to show how we deal with the staircasing e↵ect : the image restored with (P 1 ) is clearly piecewise constant while the (P 2 ) one seems to be blurred. However, this is an optical e↵ect: considering a slice shows that the (P 2 ) model removes noise significantly and contours are better preserved: the amplitude of high peaks that correspond to contours is not changed, which is not the case in ROF-model (Figure 3.16). Though the (P ,µ ) model is rather a texture analysis tool, it can been used for denoising as well: indeed noise (and/or fine textures) is included in the L 2 (w) part and the denoised image is v + u. We give an example with Figure 3.18. Additional experiments will be performed in section 5. 

Texture analysis

In this section, we do not report on texture extraction process for (P 2 ). Numerical tests can be found in [START_REF] Bergounioux | A second-order model for image denoising[END_REF]. We focus on (P ,µ ) which can be viewed as a multiscale model for texture extraction. We have performed numerical experimentation on the two (natural) images of Figure 3.19. More results can be found in [START_REF] Bergounioux | A full second order variational model for multiscale texture analysis[END_REF].

• Image (a) is a picture of an old damaged wall which can be considered as pure texture.

• Image (b) involves both sharp contours and small details. The stopping criterion is based on the di↵erence between two consecutive iterates that should be less than 10 3 coupled with a maximal number of iterations (here 175).

Sensitivity with respect to . We can see that the ratio ⇢ := µ is significant :

indeed if µ >> the second-order term is more weighted than the first order one and the BV 2 component has a small second derivative. This means that there are less and less details as the ratio ⇢ grows and the resulting image is more and more blurred.

The ratio ⇢ is less significant for the BV -component u which is sensible to the parameter. One sees that the larger is, the more u looks piecewise constant. This is consistent with the fact that the optimal value for 1 (u) should be smaller as grows.

Moreover, if is large enough then u = 0 (Figure 3.21 (d)). Indeed we have noticed that the optimal solution (u ⇤ , v ⇤ ) satisfies (3.19). This means that u ⇤ is the solution to the classical Rudin-Osher-Fatemi problem

u ⇤ = argmin{ 1 2 kf uk 2 + 1 (u) , u 2 BV(⌦)} with f := u d v ⇤ .
With a result by [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF], Lemma 3, p.42) we know that u Decomposition as three components. We present the three components together for image (a) and di↵erent values of and µ.This image may be considered as pure texture. We clearly see that the BV 2 -component involves the image dynamic, the BV -component u extracts a macro-texture and the remainder term w a micro-structure. The scaling between u and w is tuned via parameters . We end this section with a comparison between (P 1 ), (P 2 ) and (P ,µ ) for texture analysis. 

⇤ = 0 if > ku d v ⇤ k G , where k • k G denotes the G-norm (see section 2.7).

3D second order models

We have investigated the di↵erent models in a continuous setting and the discretized problems in the 2D-case. This section devoted to the 3D numerical realization. A detailed analysis can be found in [START_REF] Bergounioux | Anisotropic second order model for 3d-texture extraction[END_REF]. divergence writes

(div p) i,j,k = 8 > > < > > : p 1 i,j,k p 1 i 1,j,k if 1 < i < N 1 p 1 i,j,k if i = 1 p 1 i 1,j,k if i = N 1 + 8 > > < > > : p 2 i,j,k p 2 i,j 1,k if 1 < j < N 2 p 2 i,j,k if j = 1 p 2 i,j 1,k if j = N 2 (4.2) + 8 > > < > > : p 3 i,j,k p 2 i,j,k 1 if 1 < k < N 3 p 3 i,j,k if k = 1 p 3 i,j,k 1 if k = N 3 (c) Computation of the discrete Hessian and computation of J 2 (v). We have hru, div i = ⌦ , r 2 u ↵ .
Then,

J 2 (v) := N 1 X i=1 N 2 X j=1 N 3 X k=1 k(Hv) i,j,k k R 9
where (Hv) i,j,k =(Hv 11 i,j,k , Hv 12 i,j,k , Hv 13 i,j,k , Hv 21, i,j,k

Hv 22 i,j,k , Hv 23 i,j,k , Hv 31 i,j,k , Hv 32 i,j,k , Hv 33 i,j,k ). For every i = 1, ..., N 1 , j = 1, ..., N 2 and k = 1, ..., N 3 , the computation of Hv gives Let us consider H ⇤ : X 9 ! X defined as follows (H ⇤ is the adjoint of operator H): for every p = (p 11 , p 12 , p 13 , p 21 , p 22 , p 23 , p 31 , p 32 , p 33 ) 2 X 9 , (H ⇤ p) i,j,k = 11 i,j,k + 12 i,j,k + 13 i,j,k + 21 i,j,k + 22 i,j,k

(Hv) 11 i,j,k = 8 < : v i+1,j,k 2v i,j,k + v i 1,j,k 1 < i < N 1 v i+1,j,k v i,j,k i = 1 v i,j,k v i 1,j,k i = N 1 (Hv) 12 i,j,k = 8 > > < > > : v i,j+1,k v i,j,k v i 1,j+1,k + v i 1,j,k 1 < i  N 1 1  j < N 2 0 j = N 2 0 i = 1 (Hv) 13 i,j,k = 8 > > < > > : v i,j,k+1 v i,j,k v i 1,j,k+1 + v i 1,j,k 1 < i  N 1 1  k < N 3 0 i = 1 0 k = N 3 (Hv) 21 i,j,k = 8 > > < > > : v i+1,j,k v i,j,k v i+1,j 1,k + v i,j 1,k 1  i < N 1 1 < k  N 0 i = N 1 0 k = 1 (Hv) 22 i,j,k = 8 < : v i,j+1,k 2v i,j,k + v i,j 1,k 1 < j < N 2 v i,j+1,k v i,j,k j = 1 v i,j,k v i,j 1,k j = N 2 (Hv) 23 i,j,k = 8 > > < > > : v i,j,k+1 v i,j,k v i,j 1,k+1 + v i,j 1,k 1 < j  N 1  k < N 0 j = 1 0 k = N 3 (Hv) 31 i,j,k = 8 > > < > > : v i+1,j,k v i,j,k v i+1,j,k 1 + v i,j,k 1 1 < k  N 1  i < N 1 0 k = 1 0 i = N 1 (Hv) 32 i,j,k = 8 > > < > > : v i,j+1,k v i,j,k v i+,j+1,k 1 + v i,j,k 1 1  j < N 1 < k  N 0 j = N 2 0 k = 1 (Hv) 33 i,j,k = 8 < : v i,j,k+1 2v i,j,k + v i,j,k 1 1 < k < N 3 v i,j,k+1 v i,j,k k = 1 v i,j,k v i,j,k 1 k = N 3 (d)
+ 23 i,j,k + 31 i,j,k + 32 i,j,k + 33 i,j,k
where

11 i,j,k = 8 > > < > > : p 11 i+1,j,k 2p 11 i,j,k + p 11 i 1,j,k 1 < i < N 1 p 11 i+1,j,k p 11 i,j,k i = 1 p 11 i 1,j,k p 11 i,j,k i = N 1 22 i,j,k = 8 > > < > > : p 22 i,j+1,k 2p 22 i,j,k + p 22 i,j 1,k 1 < j < N 2 p 22 i,j+1,k p 22 i,j,k j = 1 p 22 i,j 1,k p 22 i,j,k j = N 2 61 i,j,k = 8 > > < > > : p 33 i,j,k+1 2p 33 i,j,k + p 33 i,j,k 1 1 < k < N 3 p 33 i,j,k+1 p 33 i,j,k k = 1 p 33 i,j,k 1 p 33 i,j,k k = N 3 12 i,j,k = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : p 12 i+1,j,k i = 1, j = 1 p 12 i+1,j 1,k i = 1, j = N 2 p 12 i+1,j,k p 12 i+1,j 1,k i = 1, 1 < j < N 2 p 12 i,j,k i = N 1 , j = 1 p 12 i,j 1,k i = N 1 , j = N 2 p 12 i,j 1,k p 12 i,j,k i = N 1 , 1 < j < N p 12 i+1,j,k p 12 i,j,k 1 < i < N 1 , j = 1 p 12 i,j 1,k p 12 i+1,j 1,k 1 < i < N 1 , j = N p 12 i,j 1,k p 12 i,j,k p 12 i+1,j 1,k + p 12 i+1,j,k 1 < i < N 1 , 1 < j < N 2 13 i,j,k = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : p 13 i+1,j,k i = 1, k = 1 p 13 i+1,j,k 1 i = 1, k = N 3 p 13 i+1,j,k p 13 i+1,j,k 1 i = 1, 1 < j < N 3 p 13 i,j,k i = N 1 , k = 1 p 13 i,j,k 1 i = N 1 , k = N 3 p 13 i,j,k 1 p 13 i,j,k i = N 1 , 1 < k < N p 13 i+1,j,k p 13 i,j,k 1 < i < N 1 , k = 1 p 13 i,j,k 1 p 13 i+1,j,k 1 1 < i < N 1 , k = N p 13 i,j,k 1 p 13 i,j,k p 13 i+1,j,k 1 + p 13 i+1,j,k 1 < i < N 1 , 1 < k < N 3 62 21 i,j,k = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : p 21 i,j+1,k j = 1, i = 1 p 21 i 1,j+1,k j = 1, i = N 1 p 21 i,j+1,k p 21 i 1,j+1,k j = 1, 1 < i < N 1 p 21 i,j,k j = N 2 , i = 1 p 21 i 1,j,k j = N 2 , i = N 1 p 21 i 1,j,k p 21 i,j,k j = N 2 , 1 < i < N p 21 i,j+1,k p 21 i,j,k 1 < j < N 2 , i = 1 p 21 i 1,j,k p 21 i 1,j+1,k 1 < j < N 2 , i = N p 21 i 1,j,k p 21 i,j,k p 21 i 1,j+1,k + p 21 i,j+1,k 1 < j < N 2 , 1 < i < N 1 23 i,j,k = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : p 23 i,j+1,k j = 1, k = 1 p 23 i,j+1,k 1 j = 1, k = N 3 p 23 i,j+1,k p 23 i,j+1,k 1 j = 1, 1 < k < N 3 p 23 i,j,k j = N 2 , k = 1 p 23 i,j,k 1 j = N 2 , k = N 3 p 23 i,j,k 1 p 23 i,j,k j = N 2 , 1 < k < N 3 p 23 i,j+1,k p 23 i,j,k 1 < j < N 2 , k = 1 p 23 i,j,k 1 p 23 i,j+1,k 1 1 < j < N 2 , k = N 3 p 23 i,j,k 1 p 23 i,j,k p 23 i,j+1,k 1 + p 23 i,j+1,k 1 < j < N 2 , 1 < k < N 3 31 i,j,k = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : p 31 i,j,k+1 k = 1, i = 1 p 31 i 1,j,k+1 k = 1, i = N 1 p 31 i,j,k+1 p 31 i 1,j,k+1 k = 1, 1 < i < N 1 p 31 i,j,k k = N 3 , i = 1 p 31 i 1,j,k k = N 3 , i = N 1 p 31 i 1,j,k p 31 i,j,k k = N 3 , 1 < i < N p 31 i,j,k+1 p 31 i,j,k 1 < k < N 3 , i = 1 p 31 i 1,j,k p 31 i 1,j,k+1 1 < k < N 3 , i = N p 31 i 1,j,k p 31 i,j,k p 31 i 1,j,k+1 + p 31 i,j,k+1 1 < k < N 3 , 1 < i < N 1 63 32 i,j,k = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : p 32 i,j,k+1 k = 1, j = 1 p 32 i,j 1,k+1 k = 1, j = N 2 p 32 i,j,k+1 p 32 i,j 1,k+1 k = 1, 1 < j < N 2 p 32 i,j,k k = N 3 , j = 1 p 32 i,j 1,k k = N 3 , j = N 2 p 32 i,j 1,k p 32 i,j,k k = N 3 , 1 < j < N 2 p 32 i,j,k+1 p 32 i,j,k 1 < k < N 3 , j = 1 p 32 i,j 1,k p 32 i,j 1,k+1 1 < k < N 3 , j = N 2 p 32 i,j 1,k p 32 i,j,k p 32 i,j 1,k+1 + p 32 i,j,k+1 1 < k < N 3 , 1 < j < N 2
The algorithms to compute the projections are the same. Let us detail the second order case for example. The solution to problem (P 2 ) verifies:

v = u d P K 2 (u d ) where P K is the orthogonal projector operator on K 2 and K 2 := {H ⇤ p | p 2 X 9 , kp i,j,k k R 9  1, 1  i  N 1 , 1  j  N, 1  k  N 3 }. To compute P K (u d )
we have to solve the following problem:

8 > > < > > : min k H ⇤ p u d k 2 X p 2 X 9 kp i,j,k k 2 R 9  1, 1  i  N 1 , 1  j  N 2 , 1  k  N 3
The di↵erence lies in the definition of K 1 and K 2 .

4.2. Anisotropic variant for (P 2 ) in the 3D case We detail the method that we have presented in section 3.2.2. We perform two rotations r ↵ and r to compute a modified Hessian matrix H 0 at a voxel (i, j, k). More precisely, we perform a change of variables (with the rotations) to compute the Hessian matrix and the adjoint matrix as in the previous section: the local axis (with the gradient vector as z-axis) are considered instead of the original fixed cartesian axis. Then, we may cancel the Hessian matrix terms corresponding to the gradient direction (for example), to get rid of the corresponding contour (if it is significant) in the extracted texture. Finally we go back to the original axis with the inverse rotations. Let us detail the process :

In the sequel, we set ũ( X) := u(X) and R ↵, def := R ↵ R and we compute the first and second order derivative of ũ :

rũ = 0 B B B B B B @ @ ũ @ x @ ũ @ ỹ @ ũ @ z 1 C C C C C C A and H := 0 B B B B B B B @ @ 2 ũ @ x2 @ 2 ũ @ x@ ỹ @ 2 ũ @ x@ z @ 2 ũ @ x@ ỹ @ 2 ũ @ ỹ2 @ 2 ũ @ ỹ@ z @ 2 ũ @ x@ z @ 2 ũ @ ỹ@ z @ 2 ũ @ z2 1 C C C C C C C A .
A short computation gives

@ ũ @ x = @u @x @ x @x + @u @y @ ỹ @x + @u @z @ z @x = ru • @ X @x = ru • R(:, 1) ,
where • denotes the R 3 scalar product and R(:, 1) is the first column of R. Finally, we get rũ = R ↵, ru .

Now we compute H; we set ṽ = @ ũ @

x and estimate rṽ as above : this will be the first column of H.

rṽ = R ↵, rv = R ↵, 0 B B B B B B @ @ 2 u @x 2 @ 2 u @y@x @ 2 u @z@x 1 C C C C C C A . Finally H = R ↵, H . (4.4)
As already mentioned, the idea is to cancel some terms of the Hessian matrix to get rid of (or to keep) the contours. However, without performing the rotations, there would be only few possible directions, for example vertical, horizontal and diagonal in the 2D-case so that many contours are not considered. Performing the change of variables allows to identify the gradient direction (that is the contour direction if the gradient is large enough) with the z-axis and then cancel corresponding terms of the matrix H. Of course, we have to get back to the original situation. Let us denote by L the (linear) transformation that assigns 0 to some coe cients of H (this is a projection). The whole process is described by

H ! H = R ↵ R H ! L( H) := H0 ! [R ↵, ] 1 L( H) = R R ↵ L( H) , that is H ! [R R ↵ LR ↵ R ] H . (4.5)
So, algorithm is modified as follows Algorithm 8 Anisotropic strategy for (P 2 ) Choose ⌧ > 0, µ > 0 and compute ru d . Use a thresholding process to identify the contours (kru d k ⇢) . Set I ⇢ the set of voxels corresponding to these significant contours. For voxels in I µ , modify H with the following rule

H ! H = R ↵ R H ! L( H) = [LR ↵ R
]H := H 0 and compute (H 0 ) ⇤ Perform algorithms (4) or ( 5) with H 0 instead of H.

Examples and applications

We end this paper with two examples in biology and material science. The full second order model behaves well as soon as we have tuned the parameters. This is the most challenging issue of this model. We are not able to provide any automatic tuning of parameters and µ by now. Nevertheless, the 3D-images we study have been obtained in the same experimental conditions. Therefore it is possible to tune the parameters with one 2D slice using PSNR or user expertise. Then these parameters can be used for the whole image stack.

Though we have not yet performed a quantitative, theoretical sharp analysis of these second-order models, we get some hints however. Parameter should be less that µ and the ratio µ gives the scale between the cartoon and the noise parts if the images are pure textures (this is the case for some bone micro-radiographs see [START_REF] Jennane | Variational region-based segmentation using multiple texture statistics[END_REF]). In addition, we know that the larger is, the better is the cartoon part. We give examples thereafter.

X-ray imaging -Material science

The first application concerns X-ray microtomography images on healthy and deteriorated building stones [START_REF] Guillot | A mixed model of active geodesic contours with gradient vector flows for x-ray microtomography segmentation[END_REF]). Geomaterials (Tu↵eau stone) studied here are sedimentary limestones widely utilized during the last centuries for historical monuments construction (chateaux, churches, cathedrals, and houses) along the Loire valley between Orlans and Nantes. Today, Tu↵eau stone is mainly used to restore these monuments. This stone is a yellowish-white porous sedimentary limestone, mainly composed of calcite (40 to 70 %), silica (20 to 60 %) in the form of opal cristobalite-tridymite and quartz and some secondary minerals such as clays and micas. Tu↵eau stones are extremely porous (40 to 50 %) with equivalent pore size distribution ranged from 103 to 10-2 µm in size.

The analysis will make it possible to identify the mineralogical phases and the three-dimensional morphology and structure of the porous and solid phases. The images are 8 bits grey level images: they involve several areas corresponding to various materials composing the stone. In addition the porous media under study structure results in elements of texture we have to analyze and restore. The texture corresponds to pores at a micrometric scale, each pore being represented by few pixels. The segmentation and the restoration thus carried out, it will then be necessary to develop areas segmentation tools. We have here three areas to determine, each one corresponding to the various phases of the material (silica, quartz and pore). Once these three areas are identified, one can get the 3D representation of each one. The study has been done with laboratory ISTO1 .

It is impossible to perform segmentation of such images without any preprocessing. Indeed, images are noisy and involve fine texture areas (due to the micritic calcite part) as well. The denoising process should preserve the texture which involves relevant physical information. As we want to recover the vacuum area we have to perform a contour segmentation and if possible regions classification to recover the di↵erent physical components of the stone. The decomposition model we propose, can be used as a preprocessing to separate the noise and fine texture component w from the macro-texture component u and perform a classical segmentation method on u. The original data is made of 800 2D-images We have computed the decomposition using two methods: first, we used a "false" 3D method by performing a 2D model on every slice. Second, we used the direct 3D method (which is more memory consuming of course). As expected, the solutions are di↵erent. The use of a direct 3D method is much better since we use informations in the three directions to compute the gradients and the hessians. We present below the di↵erence between the solutions. Mice have been genetically modified : some are sick (malaria, cancer) and some are healthy. The goal of the segmentation process is to recover the complete network to get useful indicators as the nodes number, the total volume or the mean size of vessels. Segmentation is quite challenging since images are undersampled and very noisy. Indeed animals are quite small and magnetic fields have to be quite high. Moreover, very small vessels are embedded in noise so that it is quite di cult to recover them. However, these thin structures are of high interest since they are the first to be destroyed during the disease process. The MRI experiments were performed using Manganese Mn2+ by the researchers of the CBM2 in Orléans. The full decomposition model acts as a preprocessing tool to isolate the big vessels in the smooth BV 2 part and the small ones in the BV part. Noise is stored in the L 2 part. Figure (5.9) illustrates the (P 1 ) and (P 2 ) denoising processes respectively. Figure (5.10) gives the decomposition that is obtained using the full second order model. Parameters have not been optimized : these are clearly not the best ones. However, one can see that usual (histogram based ) thresholding process gives interesting results on the BV 2 and BV parts while it is useless on the L 2 part. Proof -Let be x 2 V .

x ⇤ = P ↵C (x) () 8y 2 ↵C (x x ⇤ , y x ⇤ )  0 () 8y 2 C (x x ⇤ , ↵y x ⇤ )  0

() 8y 2 C ✓ x ↵ x ⇤ ↵ , y x ⇤ ↵ ◆  0 
() x ⇤ ↵ = P C ( x ↵ ) () x ⇤ = ↵P C ( x ↵ )
Proposition A.1. The projection P C is Lipschitz-continuous from V to C. More precisely:

8(x, y) 2 V ⇥ V kP C (x) P C (y)k  kx yk. In addition

8(x 1 , x 2 ) 2 V ⇥ V (x 1 x 2 , P C (x 2 ) P C (x 1 ))  kP C (x 2 ) P C (x 1 )k 2 . A.2

. Non smooth Analysis

The results we present here are detailed in [START_REF] Ekeland | Convex Analysis and Variational problems[END_REF], [START_REF] Barbu | Convexity and Optimization in Banach Spaces[END_REF]Precupanu (1978), Hiriart-Urruty (1998). We first recall one of the main tools of convex analysis.

A.2.1. The Hahn -Banach separation Theorem

In what follows, X is a (not necessarily reflexive) real Banach space. The geometrical form of Hahn-Banach theorem allows to separate convex sets. For more details we refer to [START_REF] Brezis | Analyse Fonctionnelle[END_REF] .

Definition A.4 (A ne hyperplan). An closed a ne hyperplan is defined as

H = { x 2 X | ↵(x) + = 0 },
where ↵ 2 X 0 and 2 R.

In the case where X is an Hilbert space, the a ne closed hyperplans are

H = { x 2 H | (↵, x) + = 0 },
where ↵ 2 X , ↵ 6 = 0 and 2 R.

Definition A.5 (Separation). Let A and B be two non empty subsets of X . The a ne hyperplan H whose analytical form is ↵(x) + = 0, separates A and B if 8x 2 A ↵(x) +  0 et 8y 2 B ↵(y) + 0.

The separation is strict if there exists " > 0 such that 8x 2 A ↵(x) +  " et 8y 2 B ↵(y) + ".

The separation Hahn-Banach theorem (geometrical form) writes Theorem A.6. Let A and B be two non empty, convex subsets of X such that A \ B = ;.

• Assume that A is an open set. Then, there exists a closed a ne hyperplan that separates A and B.

• Assume that A is closed and B is compact. Then, there exists a closed a ne hyperplan that strictly separates A and B.

Proposition A.3. For any function f : V ! R [ {+1}, the conjugate f ⇤ is convex and lower semi-continous for the weak star topology.

The following result is very useful when dealing with norms or semi-norms:

Proposition A.4. Let f be a function positively homogeneous (taking at least one finite value) from V to R [ {+1}, that is

8 2 R, 8x 2 V f( x) = | |f (x) .
(A.9)

Then, there exists a closed, convex set K ⇢ V 0 such that f ⇤ = 1 K . Proof -Let f be a function positively homogeneous (taking at least one finite value) from V to R [ {+1}. Let be u ⇤ 2 V 0 .

• If there exists u o 2 V such that hu ⇤ , u o i f (u o ) > 0. With (A.9) we get for every > 0

hu ⇤ , u o i f ( u o ) = [hu ⇤ , u o i f (u o )]  f ⇤ (u ⇤
). Passing to the limit as ! +1 gives f ⇤ (u ⇤ ) = +1.

• Otherwise, 8u 2 V hu ⇤ , ui f (u)  0, so f ⇤ (u ⇤ )  0. The definition of f ⇤ gives hu ⇤ , 0i f (0)  f ⇤ (u ⇤ ) .

Moreover (A.9) implies f (0) = f (n • 0) = nf (0) for every n 2 N. So f (0) = 0 and finally f ⇤ (u ⇤ ) = 0. Let us set K = {u ⇤ 2 V ⇤ | f ⇤ (u ⇤ ) = 0 }. We have just proved that f ⇤ = 1 K . As f ⇤ is convex and lower semi-continuous then K is convex and closed.

Next theorem is one of the most important result for the convex duality theory. It makes the relation between the so-called primal problem ( find the infimum of f + g) with the dual one which deals with maximization of f ⇤ + g ⇤ .

Theorem A.10. Let f, g : V ! R [ {+1} be convex functions such that there exists u 0 2 dom g and f continuous at u 0 . Then

inf u2V (f (u) + g(u)) = max u ⇤ 2V 0 ( f ⇤ (u ⇤ ) g ⇤ ( u ⇤ ))
, where f ⇤ and g ⇤ are the Legendre-Fenchel conjugates of f and g respectively.

Finally we have an "inversion" result:

Theorem A.11. Let f : V ! R [ {+1} be a lower semi-continuous, convex function, with at least one finite value. Then, for every u 2 V f (u) = max u ⇤ 2V 0 (< u ⇤ , u > f ⇤ (u ⇤ )) . This means that f ⇤⇤ = f . A.2.5. Relation with subdi↵erentiablity Theorem A.12. Let be f : V ! R [ {+1} and f ⇤ its conjugate function. Then u ⇤ 2 @f (u) () f (u) + f ⇤ (u ⇤ ) = hu ⇤ , ui .

Corollary A.4. If f : V ! R [ {+1} is a lower semi-continuous , convex function, with at least one finite value, then u ⇤ 2 @f (u) () u 2 @f ⇤ (u ⇤ ).

A.3. Sobolev spaces

This subsection gives basic results on Sobolev spaces. For more details, one can refer to [START_REF] Adams | Sobolev spaces[END_REF], [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF]. Let ⌦ be a bounded, open subset of R n , (n  3) with a smooth boundary . We call D(⌦) the space of C 1 functions with compact support in ⌦. The dual space D 0 (⌦) is the space of distributions on ⌦.

Fore every distribution u 2 D 0 (⌦), the derivative @u @x i is defined (by duality) as following: Definition A.8 (Sobolev spaces). The Sobolev spaces W p,m (⌦), H m (⌦) are defined as:

W p,m (⌦) = { u 2 L p (⌦) | D ↵ u 2 L p (⌦), |↵|  m } , H m (⌦) := W 2,m (⌦){ u 2 D 0 (⌦) | D ↵ u 2 L 2 (⌦), |↵|  m } , H 1 (⌦) = { u 2 L 2 (⌦) | @u @x i 2 L 2 (⌦), i = 1 • • • n } . Remark A.2. H 0 (⌦) = L 2 (⌦).
Let us give main basic properties of the above Sobolev spaces:

Proposition A.5. H m (⌦) endowed with the inner product

(u, v) m = X |↵|m Z ⌦ D ↵ u(x) D ↵ v(x) dx ,
is an Hilbert space.

Proposition A.6.

H m (⌦) ⇢ H m 0 (⌦)
with continuous embedding for m m 0 .

Definition A.9 (Functions with null trace).

H 1 o (⌦) = { u 2 H 1 (⌦) | u | = 0 } . H m o (⌦) = { u 2 H 1 (⌦) | @ j u @n j | = 0, j = 1, • • • , m 1} ,
where @ @n is the outer normal derivative of u on :

@u @n = n X i=1 @u @x i cos(ñ, ẽi ) ,
where ñ is the outer normal vector to .

Definition A.10 (Duality). For every m 2 N, we denote H m (⌦) the dual space of H m o (⌦). Theorem A.13 (Rellich). If ⌦ is a bounded open subset of R n , then for every m 2 N, the embedding of H m+1 o (⌦) in H m o (⌦) is compact. In particula, H 1 o (⌦) is compactly embedded in L 2 (⌦). From a pratical point of view, this means that any sequence whose H 1 o (⌦) norm is bounded weakly converges in H 1 o (⌦) and strongly in L 2 (⌦) (up to a subsequence).

u=(1-ro)*u0+ ro* (ud-v0 -proj_nesterov(ud-v0,itmax,lam)); v= (1-ro)*v0+ ro*(ud-u-proj2_nesterov(ud-u,itmax,mu)); erru=max(max (abs(u-u0)))/max(max (abs(u0))) ; errv=max (max (abs(v-v0)))/max(max (abs(v0))) ; err=max(erru,errv) ; u0=u;v0=v; k=k+1 end % Solution w=ud-u-v; end The related functions are described in the two previous subsections.

  Figure 1.1: Decomposition cartoon + texture

  Figure 1.2: Cartoon versus texture

  Figure 3.1: ROF denoising process -Gaussian noise with standard deviation = 0.25 and =50. Staircasing e↵ect

  Figure 3.4: E↵ects of anisotropic improvement strategy -Pi↵et (2011)

  Figure 3.5: Illustration of the method with "Barbara" example
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 36 Figure 3.6: Pixels of interest which are concerned by the anisotropic strategy.

  Figure3.7: Once the angle ↵ between the direction of the contour (given by the gradient) and the horizontal direction is perform a rotation and set the Hessian component that correspond to the gradient diection to 0 (H 2,2 for example)

  Figure 3.8: Comparison between (P2) model and (P2) with a local anisotropic strategy.
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  Figure 3.9: Original image

  Figure 3.10: (P2) model with and without anisotropy strategy -= 20

  Figure 3.12: Test images

  Figure 3.13: Solution -Standard deviation = 0.15

  Figure 3.14: Sensitivity with respect to the number of iterations -= 0.25, = 25 -Slice of "Lena" image.
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 3 Figure3.14 shows the behavior of a slice (line) during iterations (we can see more easily how noise is removed). The algorithm converges well: the quality of restoration is improved as the number of iterations grows. Noise is removed and contours are preserved.

  Figure 3.15: Comparison between (P1) and (P2) models -= 0.25, = 25

  Figure 3.16: Zoom on "Lena" slices-= 0.25, = 50, 50 iterations

  Figure 3.17: Staircasing e↵ect -= 0.25, = 50.

  Figure 3.18: Comparison of the di↵erent models for denoising purpose.

  Figure 3.19: Examples

  Figure 3.20: BV 2 component -v -µ = 50 -⇢ := µ

  Figure 3.26: Wall for = 1 and µ = 1 -⇢ = 1

  Figure 3.29: Comparison for texture extraction. The textures in (P1) and (P2) are defined as the remainder term "data -solution".The texture in (P ,µ ) is defined as w and we present u + w as well.

  Computation of the adjoint operator of discrete Hessian.

  Figure 5.2: Original and denoised image -= 10, µ = 20 (in Bergounioux and Pi↵et (2013))

  Figure 5.3: 3D X-ray stack of Tu↵eau

  Figure 5.7: Di↵erence between the solutions given by a 2D-slice by slice strategy and a full 3D-strategy -= 5 µ = 10

  Figure 5.8: Original 3D-MRI stack with and without thresholding

  Figure 5.9: Denoising with ROF ( = 30) and ROF2 (µ = 10) models.

  Figure 5.10: Decomposition of a 3D MRI stack with the full second order model -= 10, µ = 30 with and without thresholding

  If ↵ 2 N n , we note D ↵ u = @ ↵ 1 1 u • • • @ ↵n n u et |↵| = ↵ 1 + • • • + ↵ n ; we get 8' 2 D(⌦) hD ↵ u, 'i D 0 (⌦),D(⌦) = ( 1) |↵| hu, D ↵ 'i D 0 (⌦),D(⌦) .

  

  

  ). Let ⌦ be an open subset of R n with Lipschitz boundary. 1. For every u 2 BV (⌦), the Radon measure Du can be decomposed into Du = ru dx + D s u, where ru dx is the absolutely continuous part of Du with respect of the Lebesgue measure and D s u is the singular part. 2. The mapping u 7 ! 1

	Proposition 2.2.

  we get Theorem 3.7. The solution ū of (P 2 ) verifies

		ū = u	d	P	K 2 (u	d ),
	where P	K 2 is the orthogonal projector operator on K 2 .
	3.3.3. A fixed-point algorithm to compute P	K 2

(a) Original u d
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Theorem 3.10. (u ⇤ , v ⇤ ) is a solution to (P ,µ ) if and only if

(3.20a)

The proof is straightforward since 1 and 2 are convex and continuous and variables u and v can be decoupled.

Numerical realization and algorithm

We use the same discretization process as in the previous section. The discretized problem writes inf

(P ,µ )

Theorem 3.11. Assume > 0, µ > 0. Problem (P ,µ ) has a unique solution (u ⇤ , v ⇤ ) .

Proof -The proof is obvious since the cost functional is strictly convex and coercive.

⇤ Using the subdi↵erential properties and decoupling u ⇤ and v ⇤ gives the following necessary and su cient optimality conditions : Proposition 3.3. (u ⇤ , v ⇤ ) is a solution to (P ,µ ) if and only if u d u ⇤ v ⇤ 2 @J 1 (u ⇤ ),

(3.21a)

We can perform an explicit computation to get the following result :

Theorem 3.12. (u ⇤ , v ⇤ ) is a solution to (P ,µ ) if and only if

where K 1 and K 2 are the following convex closed subsets :

. . , N, j = 1, . . . , M}, (3.23a)

and ⇧ K i denotes the orthogonal projection on K i .

Proof -We refer to [START_REF] Bergounioux | A second-order model for image denoising[END_REF], [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]. We use Theorems 2.7 and 3.7. ⇤ We may write relations (3.22) as a fixed point equation (u, v) = G(u, v), where

We use a gradient-type algorithm to compute the solution: for every ↵ > 0, set

This leads to the following :

Algorithm 6 Fixed-point algorithm for (P ,µ ) Initialization step : Choose u 0 and v 0 (for example u 0 = 0 and

Stopping criterion.

We may give a convergence result :

Theorem 3.13. If ↵ > 0 is small enough, the sequence (u n , v n ) converges to the (unique) fixed point of G.

Proof -

The above algorithm is a descent method with step ↵ and direction

Therefore :

. Therefore D is 2-Lipschitz continuous and we use a general convergence result to conclude.

⇤ For the numerical realization a (standard) relaxed version of the algorithm is used.

Algorithm 7 Relaxed fixed-point algorithm for (P ,µ ) Initialization step : Choose u 0 and v 0 (for example u 0 = 0 and v 0 = u d ) and

Stopping criterion.

We perform the computation of projections ⇧ K 1 and ⇧ µK 2 using (for example) Algorithms 3 and 5.

Numerical results

We performs numerical tests to investigate the behavior of the partial second order model (P 2 ) and the full second order (P ,µ ), then compare to the basic first order model (P 1 ). The results we report here can be found in [START_REF] Bergounioux | On poincaré-wirtinger inequalities in bv -spaces[END_REF]Pi↵et (2010, 2013). Numerical computation has been done using Nesterov-type Algorithms 3 and 5.

Denoising

Throughout this section, we consider the following image that is corrupted by a white Gaussian noise with standard deviation = 0.15 or = 0.25 . We report on (P 2 ) which is rather a denoising model. We shall report on (P ,µ ) in next subsection (devoted to texture extraction). The stopping criterion has been set to a maximal number of iterations that can be chosen arbitrary large. Sensitivity with respect to µ . The same comments hold : the ratio ⇢ is the significant quantity with respect to the behaviour of the BV 2 component. The e↵ect of µ on the remainder term w seems more significant than the e↵ect of . Results of section 2.4 (for (P 1 )) and section 3 (for (P 2 )) can be extended to the 3D-case in a straightforward way. We first begin with the discretization process. In the sequel, the dimension space is n = 3 and the image size is N 1 ⇥N 2 ⇥N 3 . The generic component of u is u i,j,k and we denote similarly the continuous function and the corresponding (discretized) tensor. We set X = R N 1 ⇥N 2 ⇥N 3 endowed with inner product and norm

(a) Computation of the discrete gradient ru 2 Y of the image u 2 X and discretization of the term 1 (u) :

Then, using the notations of the previous sections the 3D discrete total variation writes

(b) Computation of the adjoint operator of the discrete gradient: the discrete 

The change of variables from the fixed basis to the local one is given par 

A. Mathematical tools

In this section, we recall the main mathematical results that are used in this paper. In the sequel V is a Banach space (that is a normed linear space such that every Cauchy sequence is convergent) assumed to be reflexive. We call V 0 the V -topological dual space. We denote k k

V the V -norm and h•, •i the duality bracket between V and V 0 :

A.1. Optimization in Banach spaces

For details on the results presented in this subsection one can refer to [START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF], [START_REF] Brezis | Analyse Fonctionnelle[END_REF] (weak topology, basic functional analysis), [START_REF] Azé | Eléments d'analyse convexe et variationnelle[END_REF], [START_REF] Ekeland | Convex Analysis and Variational problems[END_REF], [START_REF] Barbu | Convexity and Optimization in Banach Spaces[END_REF], Hiriart-Urruty (1998) (convex analysis, optimization problems).

A.1.1. Semi-continuity and convexity Definition A.1 (Semi-continuity ). A functional J : V ! R [ {+1} is lower semi-continuous (lsc) on V if one of the following equivalent conditions is satisfied:

Theorem A.1. Every convex function lower semi-continuous for the norm topology (strong) is lower semi-continuous for the weak topology of V .

From a practical point of view, we use the above result to infer Corollary A.1. Let be J a convex, strongly lower semi-continuous from V to R [ {+1}. Let be v n a sequence weakly convergent to some v in V . Then

exists for every v 2 V and the mapping

is linear and continuous.

We denote rJ(u) the Gâteaux derivative of J at u. It belongs to V 0 . When V is a Hilbert space we use the Riesz Theorem (see [START_REF] Brezis | Analyse Fonctionnelle[END_REF] for example) to identify V and V 0 . Then

where (•, •) stands for the inner V -product. The element rJ(u) 2 V is the gradient of J at u.

where C is convex. Then J is convex if and only if

or equivalently

We may define similarly the second (Gâteaux ) derivative of J at u as the (Gâteaux ) derivative of the (vector) function u ! rJ(u). We note D 2 J(u) and call it Hessian function. When V = R n the Hessian function can be identified to a square matrix n ⇥ n.

A.1.3. Minimization in a reflexive Banach space

We begin with the most useful result for minimization in Banach spaces.

Definition A.3 (Coercivity). The function

Theorem A.3. Assume V is a reflexive Banach space. Let be J : V ! R [ {+1}, lower semi-continuous for the weak topology of V . Let K be a nonempty, weakly closed subset of V . We assume there exists v o 2 K such that J(v o ) < +1. Then, the minimization problem

has at least a solution if either J is coercive or K is bounded.

An important corollary holds in the convex case :

Corollary A.2. Assume V is a reflexive Banach space. Let be J : V ! R [ {+1}, convex, lower semi-continuous for the strong topology of V . Let K be a nonempty, closed convex subset of V . Assume again there exists v o 2 K such that J(v o ) < +1. Then, if J is coercive or if K is bounded, (P) has at least a solution. Moreover, if J est strictly convex the solution is unique.

A.2.2. Subdi↵erential Definition A.6 (Subdi↵erential). Let be f : V ! R [ {+1} and u 2 dom f (i.e. f (u) < +1). The subdi↵erential of f at u is the set @f (u) (possibly empty) defined as follows

Conversely, if f is finite, continuous at u and @f (u) is a singleton, then f is Gâteaux-di↵erentiable at u and @f (u) = {r(u)}.

Theorem A.8 (Subdi↵erential of the sum of two functions). Let f and g be convex, lower semi-continuous from V to R [ {+1}. Assume there exists u 0 2dom f \ dom g such that f is continuous at u 0 . Then

We end with a chain rule result for subdi↵erentiability :

Theorem A.9. Let ⇤ be a linear continuous operator from V to W (both Banach spaces). Let f be convex, lower semi-continuous from V to R [ {+1}. Assume, there exists u 0 2dom f such that f is continuous at u 0 . Then

where ⇤ ⇤ (W 0 ! V 0 ) is the adjoint operator of ⇤.

We give now an important example.

A.2.3. Case where f is a set indicatrix.

When f is the indicatrix function of a non empty subset K of V :

an Hilbert space and K is a non empty, closed, convex subset of V . We describe the subdi↵erential of 1 K at u : Proposition A.2. Let be u 2 K, where K is a closed, convex (non empty) subset of the Hilbert space V . Then

for every c > 0 where P K is the projection of

So, letting w = u + c we obtain

A.2.4. Legendre-Fenchel transformation Definition A.7 (Legendre-Fenchel transformation). Let be f : --------------------------- function [u1, u2]= grad(u) %-----------------------------% compute the gradient with forward finite difference [n1 n2] = size(u); for i=1:n1-1 u1(i,:)= u(i+1,:)-u(i,:); end u1(n1,:)= 0; for j=1:n2-1 u2(:,j)= u(:,j+1)-u(:,j); end u2(:,n2)= 0; end %- ------------------------------- --------------------------------% compute the divergence of( p1 p2) % according the finite difference scheme for gradient [n1,n2] = size(p1); for i=2:n1-1 q1(i,:)= p1(i,:)-p1(i-1,:); end q1(1,:) = p1(1,:); q1(n1,:) = -p1(n1-1,:); for j=2:n2-1 q2( :,j)= p2(:,j)-p2(:,j-1); end q2(:,1) = p2(:,1); q2(:,n2) = -p2(:,n2-1); ------------------------------------------------------function [w2]= proj2_nesterov(imag,itmax,lambda) %- ------------------------------------------------------ [n1, n2]= size(phi); g11=0*phi; g22=0*phi; g12=0*phi; g21 = 0*phi; for i=2:n1-1 g11(i,:)= phi(i+1,:)-2*phi(i,:)+ phi(i-1,:); end g11(1,:)=phi(2,:)-phi(1,:); g11(n1,:)=phi(n1-1,:)-phi(n1,:) for j=2:n2-1 g22(:,j)= phi(:,j+1)-2*phi(:,j)+ phi(:,j-1); end g22(:,1)=phi(:,2)-phi(:,1); g22(:,n2)=phi(:,n2-1)-phi(:,n2); for i=2:n1 for j=1:n2-1 g12(i,j)= (phi(i,j+1)-phi(i,j)-phi(i-1,j+1)+phi(i-1,j)); end end for i=1:n1-1 for j=2:n2 g21(i,j)=(phi(i+1,j)-phi(i,j)-phi(i+1,j-1)+phi(i,j-1)); end end g21=g12; H=[g11 g22 g12 g21]; end %- ------------------------------function DV=divdiscret2(p) %-------------------------------% Compute the adjoint of the Hessian : H^* % at p=( p11 p12 p21 p22) [l,c]=size(p); n=c/4; p11=p(:,1:n) ; p22=p(:,n+1:2*n); p12=p(:,2*n+1:3*n);p21=p(:,3*n+1:4*n); DV1=zeros(l,n); for i=2:l-1 DV1(i,:)= p11(i-1,:)-2*p11(i,:)+p11(i+1,:); end DV1(1,:)=p11(2,:)-p11(1,:); DV1(l,:)=p11(l-1,:)-p11(l,:); DV2=zeros(l,n); for j=2:n-1 DV2(:,j)= p22(:,j-1)-2*p22(:,j)+p22(:,j+1); end DV2(:,1)=p22(:,2)-p22(:,1); DV2(:,n)=p22(:,n-1)-p22(:,n); DV3=zeros(l,n); for i=2:l-1 for j=2:n-1 DV3(i,j)= p12(i,j-1)-p12(i,j)-p12(i+1,j-1)+p12(i+1,j) ; end DV3(i,1)= p12(i+1,1)-p12(i,1); DV3(i,n)= p12(i,n-1)-p12(i+1,n-1) ; end for j=2:n-1 DV3(1,j)=p12(2,j)-p12(2,j-1); DV3(l,j)=p12(l,j-1)-p12(l,j); end DV3(1,1)= p12(2,1); DV3(1,n)= -p12(2,n-1); DV3(l,1)= -p12(l,1); DV3(l,n)= p12(l,n-1); DV4=zeros(l,n); for i=2:l-1 for j=2:n-1 DV4(i,j)= p21(i-1,j)-p21(i,j)-p21(i-1,j+1)+p21(i,j+1); end DV4(i,1)= p21(i,2)-p21(i-1,2); DV4(i,n)= p21(i-1,n)-p21(i,n) ; end for j=2:n-1 DV4(1,j)=p21(1,j+1)-p21(1,j); DV4(l,j)=p21(l-1,j)-p21(l-1,j+1); end DV4(1,1)= p21(1,2); DV4(1,n)= -p21(1,n); DV4(l,1)= -p21(l-1,2); DV4(l,n)= p21(l-1,n); DV=DV1+DV2+DV3+DV4; end