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Abstract—In this paper, we present a new method for the
control of soft robots with elastic behavior, piloted by several
actuators. The central contribution of this work is the use of
the Finite Element Method (FEM), computed in real-time, in
the control algorithm. The FEM based simulation computes the
nonlinear deformations of the robots at interactive rates. The
model is completed by Lagrange multipliers at the actuation
zones and at the end-effector position. A reduced compliance
matrix is built in order to deal with the necessary inversion of the
model. Then, an iterative algorithm uses this compliance matrix
to find the contribution of the actuators (force and/or position)
that will deform the structure so that the terminal end of the
robot follows a given position. Additional constraints, like rigid
or deformable obstacles, or the internal characteristics of the
actuators are integrated in the control algorithm. We illustrate
our method using simulated examples of both serial and parallel
structures and we validate it on a real 3D soft robot made of
silicone.

Index Terms—Soft robots, Elastic robots, Finite Element
Method (FEM), Real-time, constraints-based mechanics, Me-
chanical Compliance, Control algorithms.

I. INTRODUCTION

Traditional robots are based on articulated rigid structures
and the design usually aims at finding the best trade off
between a high stiffness and a large workspace of these rigid
robots. High stiffness of the structure is often a goal so that
vibration and/or deformations will not deviate the robot from
its prescribed motion. Moreover, this high stiffness leads to a
natural use of rigid bodies in the kinematic and mechanical
models of the robot.

At the opposite, since about ten years, some work is
centered on the use of soft robots that may a low stiffness on
purpose. These approaches are often inspired from examples
found in nature. Indeed, soft robots are particularly adapted to
exploration and manipulation in a fragile environment. Their
natural compliance allows to tolerate collision while reducing
the risks for the robot and the environment. This is particularly
suitable, for instance, for medical applications. Soft robots can
be made of a unique piece and a variety of actuations could
be used: pneumatic, hydraulic, cables, electroactive polymers,
piezzo...

Contrary to rigid robots, the number of degrees of freedom
(dof) of soft robots is infinite. This makes their control tricky:
On the one hand, it seems natural to use a large number of
actuators, to be able to impose a deformation everywhere.
On the other hand, the actuators are coupled together by

the deformation of the robot and controlling this redundant
and coupled actuation is far from trivial. One important step
towards the control soft robots is to be able to estimate, in any
configuration, the mechanical coupling between the actuators
and between the actuators and the end effector.

In this paper, we propose to use a real-time implementation
of the Finite Element Method (FEM) in order to accurately
model the deformations that are the cause of this mechanical
coupling. Over other approaches for modeling deformations,
FEM has the advantage to start from the constitutive law of the
material which is measurable experimentally. From the FEM
model, we extract the reduced mechanical compliance in the
space of the actuators and of the end-effector thanks to the use
of Lagrange multipliers. Then, a constraint-based approach,
solved by an iterative Gauss-Seidel (GS) type algorithm,
allows to find a contribution of the actuators which moves
(while deforming) the end effector to the targeted position.
Additional constraints (like the specification of the actuators
and the contact response with the environment) is also included
in the constraint solver. This work has been implemented and
tested in SOFA [1], an open-source framework that contains
fast implementations of FEM as well as constraint-based
models1.

To our best knowledge, this is the first paper that proposes
a control method for deformable robots directly based on a
real-time computation of the FEM. The first results of this
work suggest that this type of approach may provide a part of
the answer to the problem of control for soft robots.

The following of the paper begins by a quick overview of
the related work. The FEM model of volume deformation is
presented in section 3 (in the concrete case of robots made of
a soft silicon) with the computation of the reduced compliance
and the constraint-based models. Section 4 provides the details
about the iterative algorithm which provides the control of
the robot. Numerical results as well as concrete testing on
a naive soft-robot are shown in section 5. A study of the
computation time performance of the control method is also
presented before the conclusion and the perspectives of this
work.

II. RELATED WORK

An excellent state of the art [2] summaries the motivations
and the novel capabilities of the soft robots. Several challenges

1www.sofa-framework.org



like the design and the realization are presented but the paper
insists on the difficulties for modeling and controlling the
robot. Indeed, the deformations of soft robots are difficult to
anticipate and, in addition, the actuators are often integrated
into the structure leading to coupled actuation. The actuator
itself is sometimes complex, like when using pneumatic arti-
ficial muscle (PAM) [3]. Unlike traditional rigid robots, that
have often only few degrees of freedom and can be controlled
by solving a small system of kinematic equations, deformable
robots have an infinite number of degrees of freedom. This
makes their controllability particularly challenging.

Several advances have been made for controlling the de-
formations of continuum robots. These robots have the struc-
ture of a deformable rod that is continuously curving (see
for instance [4]). Due to their relatively simple geometrical
shape (deformable curve), fast models based on Cosserat
rod theory [5] can be used. Moreover, the computation of
the kinematic models and the compliance matrices can be
obtained by propagating the deformations along the curvilinear
structure of the robot [6]. However, this type of modeling
is not adequate for volume deformations or actuation on de-
formable parallel architectures (i.e. similar to parallel robots).
The control method is only adapted to curve-like robots (it
limits the geometrical design), actuated in a serial manner. In
addition, it supposes that the robot’s structure is stiffer than
its surrounding environment (i.e. the kinematic equations are
not impacted by contact response).

Biomimetics is often a motivation for the work on soft
robots. Many existing approaches, that uses the Finite Ele-
ment Method, aims at an accurate simulation of biological
muscular tissue dynamic motion. For instance, [7] studies the
behavior of muscle during active and passive conditions and
[8] reproduces the hyperelastic behavior of an octopus arm
through simulation. This type of work tries to reproduce or
predict the mechanical behavior of the living tissues. However,
it does not seek to leverage the simulation for an interactive
control of these tissue deformations, which would necessitate
an inverse approach of their model.

For an interactive control of a soft robot, real-time compu-
tation of FEM is needed. Given the complexity of the models,
obtaining this performance is challenging. Nonetheless, recent
advances in interactive medical simulation yet obtain fast
simulation of complex deformations like visco-hyperelastic
models [9].

In any case, solving the FEM model only provides the
motion created on a deformable object under known external
loads or displacements (like a direct kinematic model). When
computing the robot control, the forces or the displacements
applied by the actuators are the unknown output of the
command. This problem is similar when computing multi-
point contact response on deformable objects: the contact
force / displacement needed to fulfill the unilateral constraint
is not known before computing the deformations [10]. The
solving process makes use of Lagrange multipliers and finds a
solution using a solver for complementarity problem. Recently,
this approach was generalized to other type of mechanical

interaction (like insertion of flexible needles in soft-tissue) and
was extended to haptic feedback rendering in [11]. Finally, the
computation time can be greatly reduced for large problems
thanks to algorithms adapted to GPU [12]. The new approach
for piloting soft robots presented in this paper is strongly in-
spired by these works on real-time constraint-based modeling
on deformable objects.

III. MODELS

In this section, FEM modeling is quickly presented, by
using an example of soft silicone material. After measuring
the constitutive law, a volume-based approach is used, based
on tetrahedral elements. Then, we introduce the mathematical
formulation of the constraints. This formulation brings up a
compliance matrix of a reduced size, on which we will rely (in
the following section) to solve inverse kinematics. Finally, we
present a set of constraint models for end-effector, actuators
and contact response.

A. FEM model of the soft-robot

The non-linear deformation of the volumetric soft robot is
computed using FEM. The method integrates over the whole of
the structure, a constitutive law of the deformable material. In
this work, a soft silicone was used in order to get pure elastic
deformation for quite large strain. Strain/stress measures were
performed on 3 samples (see figure 1). A good repeatability

Fig. 1. Mechanical experiments to obtain the constitutive law of the Silicone.
(Left) Photos of the uniaxial tension experiment (Right) stress/strain response
of the silicon.

was observed and the measures show that the strain/stress ratio
is not far from linear over quite large strains. Consequently,
Hooke’s law was used to characterize the behavior of this
silicone with a Young Modulus of 150kPa.

The corotational implementation of volume FEM, presented
in [13], is particularly suitable for linear elasticity under the
hypothesis of large transformations. The approach relies on
a decomposition of each element’s motion in a rigid rotation
and a pure deformation. The strain/stress relation is evaluated
in the frame of the element and the linear elasticity hypothesis
allows some local pre-computations which accelerate the on-
line execution. The computed rotations handle the geometrical
non-linearities inherent to a volume deformation and after



assembling each element, the global stiffness model is no
more linear. The approach is particularly fast to compute,
numerically stable and an implementation in C++ is available
freely in the open-source framework SOFA.

During each step i of the control, based on the simulation,
the following linearization of the internal forces is computed:

f(xi) ≈ f(xi−1) + K(xi−1)dx (1)

where f provides the volumetric internal stiffness forces at a
given position x of the nodes, K(x) is the tangent stiffness
matrix that depends on the actual position of the nodes and dx
is the difference between positions dx = xi−xi−1. The lines
and columns that correspond to fix nodes are removed from
the system to improve the condition number of the matrix K.
A dynamic model could also be used in our approach, using
implicit integration but it would add the problem of real-time
temporal integration (the time step used in the simulation must
be strictly equal to the computation time). In a first approach,
a quasi-static approach is chosen as the control of the robot is
performed at low velocities.

One seeks to establish static equilibrium (sum of external
and internal force equal to zero) at each step:

−K(xi−1)dx = p + f(xi−1) + JTλ. (2)

where p represents the external forces (e.g. gravity) and JTλ
gathers the contributions of the actuators and the contact forces
(if applicable).

It should be noticed that the matrix K is highly sparse.
A conjugate gradient solver is used and preconditioned by a
sparse LDLT decomposition. For a mesh composed of about
1000 nodes and about 3000 tetrahedral element, a refresh
rate of 60Hz is obtained with the implementation available
in SOFA. For larger meshes or faster updates, the LDLT

decomposition is unsynchronized and the resulting matrices
be warped as it is explained in [14].

B. Reduced compliance on the constraint space

Complementary to the FEM formulation, a constraint-based
approach accounts for the actuation and the contact with the
environment. Each constraint adds a new direction that is
gathered in the matrix JT in a sparse manner2. λ is not known
at the beginning of the process. This is a specificity of the
constraint-based solver that solves the constraints in a separate
process, while using specific laws for each of them.

Thus three steps are followed: (I), a free configuration xfree

of the robot is found by solving the structure with λ = 0. For
each constraint, a violation is estimated δfree given the free
configuration. (II) The constraint-based solver computes the
value of λ given the laws of the constraint (between δ and λ)
and the value of W:

δ =
[
JK−1JT

]︸ ︷︷ ︸
W

λ + δfree (3)

2The direction is mapped to the FE nodes using barycentric coordinates if
the contact point does not coincide with any FE node.

(III) The final configuration of the soft robot, at the end of
the time step, is corrected by using the value of the constraint
response:

xt = xfree + K−1JTλ.

It should be emphasized that one of the main difficulty is
to compute W in a fast manner. No pre-computation is
possible as the value of W changes at each iteration. The
implementation of these 3 steps in SOFA is explained in [1] .

C. Terminal effector, actuator and contact models

As presented above, the method relies on the computation of
the compliance along the constraint directions. If both actuator,
effector and contact models rely on setting constraints, we will
get a measure of the mechanical compliance between them
based on the FEM model. However, a direction in matrix J
and a law between δ and λ must be defined for each constraint.

The constraint for the terminal effector is very simple: it
consists on setting three constraint directions (along x, y and
z) on a given point, mapped on the mesh. As there is no
actuation on the terminal effector, the constraint law is very
simple: λ = 0.

Actuator model takes into account its physical character-
istics. For instance, if the actuator is a cable, the direction
d of the constraint is equal to the direction in which the
cable pulls. In such case, the actuation is unilateral (λ ≥ 0)
and the actuator stroke can also be included by imposing
(δ ∈ [δmin δmax]). If the actuation is between two points, the
direction and its opposite are respectively mapped on the mesh
using matrix J. It would be also possible to emulate a pneu-
matic actuation by selecting the triangles of the deformable
cavity that should inflate with pressure. If the pressure is
supposed to be uniform in the cavity, each triangle contributes
to a single line of J by weighting its direction by its area and
by adding the results on the column of the concerned nodes.

Finally, the contact response follows the Signorini’s law
0 ≤ δ ⊥ λ ≥ 0, where δ is the vector that gathers the distances
at each pair of contacting points (see [10] for integrating
Signorini’s law with FEM). Directions of contact are given
by a proximity query algorithm between meshes.

IV. CONTROL ALGORITHM BASED ON REDUCED FEM
COMPLIANCE

In this section, we develop the successive steps of the
control algorithm based on the models described below. First,
it should be noted that a kind of direct geometric model can
be obtained by solving the FEM model while imposing the
actuator positions pa in the constraint law δ = pa. However,
the control algorithm aims at computing the inverse. (i.e.
moving the end-effector at the right place by assigning a
command on the actuators). The beginning of this section
shows that this goal is somehow reached with the compliance
matrix condensed in the constraint space W presented above.
Then, by building an iterative resolution algorithm upon this
matrix, a solution of the inverse kinematic relation between
the terminal effector position to the actuators can be found.
This leads to the position control algorithm of the robot and



then, the integration of contact constraints. Some numerical
aspect as well as the implementation are finally discussed.

A. Coupled Kinematic Equations

Using the compliance operator W, we can get a measure
of the mechanical coupling between effector and actuator, and
also between actuators.

For instance, we can get the displacement ∆δi created on
the end-effector (on a direction stored on the line i of matrix
J) by a unitary force λj applied by the actuator which is stored
at the line j of matrix J. We get: δi = wijλj . We can also link
λj to the position of the actuator using the local compliance
δj = wjjλj , in order to get a simple kinematic link between
∆δi and δj : ∆δi =

wij

wjj
δj

However, an other actuator k may also influence the dis-
placement of the actuator j. (and vice-versa). This mechanical
coupling can also be measured using the reduced compliance
operator ∆δj = wjkλk =

wjk

wkk
δk (see figure 2).

Fig. 2. Actuation (λj , δj) along direction j can be controlled to impose
a displacement δi on the end effector. However, an other actuator (λk, δk)
along direction k may create an unwanted displacement δj (in red) of the
actuator j. This illustrates the coupling between kinematic equations.

This coupling between actuators prevents from obtaining
kinematic equations through an usual jacobian matrix. More-
over, soft robots are often highly redundant, which would be
problematic, anyway, for jacobian inversion.

B. Position control

Instead of using (inverted) kinematic equations, we build
the position control of the soft robot on the compliance W
operator. Let’s consider that ∆δi provides the shift between
the position of the end effector and a desired position along
direction i: ∆δi = δi−δdesiredi . The position control algorithm
founds a position on the actuators that deforms the structure
so that ∆δi = 0.

In this work, a Gauss-Seidel (GS) iterative solver is used
to find a solution among the possible solution (if a solution
exists). During each iteration it, the algorithm updates one by
one the contribution λj of each actuator j, while freezing the
contribution λk of the other actuators.

δj −wjjλ(it)j =

j−1∑
k=0

wjkλ
(it)
k +

N∑
k=j+1

wjkλ
(it−1)
k + δfreej (4)

As we use a GS algorithm, when doing a local update on
actuator j, the frozen contribution of the actuators [0→ j−1]
comes from the current iteration it whereas the contribution

of actuators [j+1 → N ] (where N is the total number of
actuators), comes from the previous iteration it−1. The local
update of actuator j provides a new contribution λ(it)j and the
effector position δi, along direction i, is easily updated:

δi += wij(λ
(it)
j − λ(it−1)j ) = wij∆λj (5)

Thus, during the update of j, we can measure how the actuator
can (or not) reduce the value of ∆δi. When performing this
update in 3 dimensions, direction i is alternatively replaced
by x, y and z. Imposing a variation of λj will create a 3D
motion of the end effector: δx

δy
δz


︸ ︷︷ ︸

δ∗

+=

 wxj
wyj
wzj


︸ ︷︷ ︸

w∗j

∆λj (6)

The control should try to reduce the shift between actual
and desired positions, measured by ∆δ∗. But the actuator j
can only move the effector along the direction given by w∗j

‖w∗j‖ .
Consequently, we search for a value of ∆λj so that:

(w∗j∆λj) · (
w∗j
‖w∗j‖

) = −∆δ∗ · (
w∗j
‖w∗j‖

) (7)

This value can be obtained by using:

∆λj = − (wxj∆δx + wyj∆δy + wzj∆δz) /‖w∗j‖2 (8)

Given the new value of ∆λj , one can update λ
(it)
j and the

position δj of the actuator j using the GS equation (4).

C. Control in a constrained deformable environment

The internal constraints of the soft robot (capacity and
stroke of the actuators, self-collision), and the external contact
constraints imposed by the nearby objects are added in the GS
algorithm presented above.

If the actuation is unilateral, λ(it)j ≥ 0. If λ(it)j < 0 after
solving equation (8) during the local update of actuator j, we
simply impose λ(it)j = 0 before leaving the local update and
processing the following actuator j + 1. In the same way, we
can impose a maximal actuator force λ(it)j ≤ fmax.

For imposing that the computed displacement of the actua-
tors stays inside the stroke, a displacement correction δcj can
be applied locally. In such case, we modify the value of λj ,
so that λj+= δcj/wjj .

Auto-collision and contact constraint with the environment
can be quite easily integrated in this control method. Indeed,
the GS algorithm is inspired by contact constraint resolution
between deformable objects [10]. For each contact (internal
or external), an additional unilateral constraint is added in the
system. Both actuator constraints and unilateral contact con-
straints are solved in the same process. At each iteration, the
GS algorithm first updates the contribution of the actuators (as
described above) and then, it updates the contact constraints.
The local update is performed by imposing the Signorini’s
law: On a contact j, we first compute δ(it)j using equation (4).
Then we compute, ∆λj = −δ(it)j /wjj and iff λ(it)j < 0, we
impose a unilateral contribution: λ(it)j = 0.



D. Discussion

There is no assumption about the way the actuators are
placed on the deformable structure. Consequently, the method
presented above is valid for both serial and parallel actuations.

Numerical experiments seem to show that if a solution
exists, the GS algorithm is converging to this solution. A
formal proof of convergence is not yet established in this work
as it can be observed that when redundant actuation is used,
the solution is not unique. In such case, the presented method
tends to find a solution which involves more importantly the
actuators that are numbered first in the GS algorithm. Some-
times, the algorithm oscillates between two valid solutions.
To remove this problem, we use a successive over-relaxation
technique: from one iteration to an other, the value ∆λj is
weighted by ω (0 < ω < 1) in order to impose a limited
variation of δj and to facilitate the convergence.

The contact constraints are set using a collision detection
based on proximity queries. Contact response can be obtained
with both rigid and deformable nearby objects. If deformable,
the object must be modeled and simulated with FEM and a
new compliance is combined with the compliance of the robot
in equation (3).

V. RESULTS

The algorithms were implemented in C++ in the SOFA
framework. We have re-used the implementation of the FEM
model and the Lagrange multipliers system. Our control algo-
rithm was implemented as a new way of solving the constraints
(ConstraintSolver in SOFA) on a deformable model.

In the following, two examples are presented to illustrate the
capability of the control method and especially the compatibil-
ity with both parallel and serial structures. The first example is
a numerical experiment on a deformable beam with redundant
serial actuation and contact constraints. The second example is
the interactive control of a 3D soft robot made of silicone with
an analysis of the precision. We also provide the computation
performance of the method which is the key of our approach.

A. 3D ”staircase” Beam in a constrained environment

For this first example, the design of the structure is a
bit naive but is chosen to, numerically, evaluate the method
with serial redundant actuation and with contact constraints.
A beam of square cross-section is deformed by 8 actuators
distributed alternately on each side of the deformable robot
(see figure 3(a)). A solution is found at each step so that the
end effector follows the trajectory (orange sphere in figure
3(b)). Then a deformable rod is placed on the trajectory of the
robot and the contact response is included in the resolution
process. The computation of the actuation is adapted to the
new situation, while still finding a solution that follows the
provided trajectory.(see figure 3(c)). Other experiments were
performed with a collision on a stiffer obstacle. It was verified
that if the contact prevents the robot to reach the target, the
algorithm remains stable.

Fig. 3. (a) A beam is deformed by 8 bilateral actuators (like pistons) placed
on recessed parts of the structure (pink lines). The end effector is placed on
the top of the mesh and follows the trajectory (orange sphere). (b) In the free
environment, the algorithm finds a first solution. (c) The robot is contacting
a deformable rod. The control is adapted to find an other solution that is
coherent with contact response and the stiffness of the obstacle.

B. Validation on a 3D silicone made robot, actuated with
cables

A second example has been chosen to validate the approach
presented in the paper. A real 3D deformable robot, made of
soft silicone, which design is inspired by parallel robots (see
figure 4), is controlled by simulation approach presented in
the paper. The robot naturally deforms and sinks under the
action of gravity, but 4 unilateral actuators (servo-motors that
are connected to the structure of the robot with cables) are
placed on each leg to prevent and pilot the deformation.

In the simulation, the effector position is placed on the upper
part of the robot and its trajectory is imposed at each step
using a new desired position. The trajectory can be recorded
and replay but the user can also interactively impose it as the
high refresh rate of the simulation makes possible the real-time
control of the servo-motors.

As illustrated in figure 4 we measure the position of the end
effector, in the real world, using a motion capture system3.
We measure the discrepancy between the desired positions
and the obtained positions on static positions distributed in
a workspace of 40mm × 40mm × 20mm around the rest-
position of the robot. On a sample of 36 positions, we obtain
a mean error of 1.4 mm with a standard deviation is 0.6
mm and the maximum error is 2.9 mm. We emphasize that
these results are obtained using an open-loop: the control of
the robot only relies on the model based on FEM that is
computed in the interactive simulation. This experiment shows
that the FEM approach presented in this paper can be quite
accurate. Even better results would certainly be obtained using
the information of the motion capture for correcting the robot

3We use the OptiTrack R© system, commercialized by NatrualPoint com-
pany. The system has a precision of 0.1mm for measuring the 3D displace-
ments of a target point.



position in real-time, in the simulation (in a closed-loop).

Fig. 4. Top: Pictures of the 3D soft robot. Bottom: (left) Registered images of
the FEM model and the 3D Soft robot and (right) experimental validation of
the approach. The real position of the end effector is measured using motion
capture and compared to the desired position.

C. Performance

One critical aspect of the method is the computation time
of the FE models in the simulation and the computation of the
matrix W that requires an inversion of a quite large but sparse
matrix system. To obtain good performances, we rely on the
LDLT factorization of the matrix computed using CSPARSE
Library4 and on the method presented in [14]. The table 5
provides an indication of the computation time on the different
simulations presented in this paper (a more detailed analysis
of the performance is provided in [14]).

Fig. 5. Computation time observed for the simulations presented in the paper

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new approach for the control of a
soft robot. Thanks to a real-time FEM simulation of the robot
and the use of lagrange multipliers, we compute a reduced
compliance matrix between end-effector and actuators. A
dedicated constraint-based solver algorithm uses this matrix
to find a solution to the command. The method is applied to
several experiments (numerical and real).

It is a first step in this direction, many future work possi-
bilities are open. First, we could analyze the stability of the

4http://www.cise.ufl.edu/research/sparse/CSparse/

control and try to close the loop using the motion capture. We
also need to assess the quality of the solution found by the
Gauss-Seidel algorithm when several solutions are possible.
Then, the approach can be extended to force control and other
type of actuation. Finally some questions remains open like the
controllability of the soft objects in contact with the robot.
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