
HAL Id: hal-00823764
https://hal.science/hal-00823764

Submitted on 17 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unified processing of constraints for interactive
simulation

Christophe Guébert, Christian Duriez, Laurent Grisoni

To cite this version:
Christophe Guébert, Christian Duriez, Laurent Grisoni. Unified processing of constraints for interac-
tive simulation. Workshop in Virtual Reality Interactions and Physical Simulation VRIPHYS’ 2008,
Nov 2008, Grenoble, France. �hal-00823764�

https://hal.science/hal-00823764
https://hal.archives-ouvertes.fr

Workshop in Virtual Reality Interactions and Physical Simulation VRIPHYS (2008)

F. Faure, M. Teschner (Editors)

Unified Processing of Constraints for Interactive Simulation

Christophe Guébert, Christian Duriez, Laurent Grisoni

LIFL, INRIA Lille-Nord Europe, IRCICA/CNRS, University of Lille 1, France

Abstract

This paper introduces a generic way of dealing with a set of different constraints (bilateral, unilateral, dry fric-

tion) in the context of interactive simulation. We show that all the mentioned constraints can be handled within a

unified framework: we define the notion of generalized constraints, which can be derived into most classical con-

straints types. The solving method is based on an implicit treatment of constraints that provides good stability for

interactive applications using deformable models and rigid bodies. Each constraint law is expressed in constraint

subspace, making constraint evaluation much easier. A global solution is calculated using an iterative process

that takes into account the mechanical coupling between the constraints. Various examples, from basic to more

complex, show the practical advantage of using generalized constraints, as a way of creating heterogeneously

constrained systems, as well as the scalability of the proposed method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

Keywords: physically-based animation, constraints, collision, rigid bodies, deformable models, interactive appli-

cations, modified Gauss-Seidel

1. Introduction

Using physical laws in computer graphics simulations is

more and more common; it enables the inclusion within the

scenes of objects that would otherwise be difficult to han-

dle (e.g. realistically moving liquids, deformable objects),

and also provides much more freedom than classical, ex-

plicit, animation techniques. In the specific case of inter-

active applications, physical-based simulation can take into

account user interaction, without specific, script-based, ani-

mation laws. User interaction is classically integrated within

virtual scenes using some specialized object, which move-

ment is constrained by the user, using some specific devices.

This object, as well as all the others, can interact with the

rest of the scene through numerical simulation of physical

laws. In the case of an haptic device being used, forces that

are applied to the user’s virtual object are classically used

as a basis for force feedback. Each object can potentially

collide with other objects, in this case accurate contact treat-

ment is classically needed, or being enclosed in a more com-

plex structure, in which case the animation of the whole has

to combine each object behavior with the additional con-

straints. In most practical cases, virtual scenes need numer-

ous constraints definition and numerical handling.

In Virtual Reality applications, one has to face prac-

tical simulation cases where constraints are dynamically

changing, and can be of very different types. Most con-

straints are non-holonomic, i.e. involve time-derivate of de-

grees of freedom. A constraint is holonomic if the corre-

sponding equation only involves 0-th order derivatives of

the degrees of freedom: it must be expressible as a func-

tion f (x1,x2, ...,xN , t) = 0, depending only on the coordi-

nates x j and time t, not on the velocities. Combining the

two types of constraints within the same simulation usu-

ally implies the use of explicit time integration [WGW90],

which is known to provide poor stability. This lack of flex-

ibility makes heterogeneous constraint combination hard to

reach within the context of interactive simulation, and Vir-

tual Reality. Such issues aside, one can also point out the

fact that little has been done on constraining deformable ob-

jects, whereas much more has been done on constraints for

rigid objects; see Section 2 for relevant work on deformable

and rigid bodies.

In this article we propose a method for combining and

c© The Eurographics Association 2008.

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

processing both holonomic (e.g. fixed point, sliding point)

and non-holonomic constraints (e.g. contact, dry friction),

compatible with implicit integration schemes. We show that

the proposed method can handle both rigid and deformable

objects in the context of interactive simulation.

This article is organized as follows: Section 2 provides

references on related works. Section 3 proposes a unified

definition of classical constraint, in particular of bilateral,

unilateral, and friction constraints. Section 4 defines the

space in which numerical evaluation is reduced for each con-

straint: all together, constraints are coupled using the numer-

ical method introduced in Section 5. Finally, examples and

performance measures are provided in Section 6, showing

that the proposed method can be used for achieving interac-

tive simulations.

2. Previous Works

Constraint process has already been well studied in the field

of interactive simulations and computer graphics. Several so-

lutions already exist that we describe in the following.

First, numerous works have reused and optimized the La-

grange multipliers method. It is a tool for finding the extrema

of the function of movement in a mechanical system subject

to one or more constraints. The method we use consists in

adding a new equation in the matrix system formed by the

mechanics. When the matrix system is solved, the constraint

is automatically respected and the so-called Lagrange mul-

tiplier provides the reaction force on the constraint. How-

ever, the method requires the use of specific solvers be-

cause of the presence of null terms in the diagonal of the

obtained matrix. Moreover, the choice of the place of the

constraint equation in the matrix system can be sometimes

tricky to keep good properties (band matrix, sparse matrix)

for an efficient solving process [LF04]. In [Bar96], Lagrange

multipliers are used to express constraints in articulated fig-

ures. By sorting the constraints into n primary and k aux-

iliary constraints, sparse matrices are obtained, which can

be solved in O(n) + O(nk). This method is fast and exact,

but the systems simulated need to have a linear structure,

with few branching. The system is inefficient for constraints

between deformable bodies, as k > n. [LF04] presents a

constraints management with Lagrange multipliers for het-

erogeneous simulation of both rigid and deformable bod-

ies. They decompose the system into 3 equations: free mo-

tion, constraints resolution in the constraints space, and a

correction motion. The matrices are efficiently updated be-

tween time steps. The method could be extended to uni-

lateral method using status algorithm [DLC07] which adds

or removes the constraint equations during an iterative pro-

cess to obtain only positive reaction force on the Lagrange

multiplier. However, it increases the computations and this

method is usually not suitable for nonhonolomic constraints

like friction.

Holonomic constraints reduce the number of degrees of

freedom of the system; a second method consists in trans-

forming the coordinate system, in order to work with fewer

variables. In Lagrangian mechanics, the use of generalized

coordinates allows to eliminates the coordinates that are not

independent because linked by a constraint expression. This

method is often used for efficient simulation of articulated

bodies [Fea99].

A third method consists in projecting the constraints dur-

ing an iterative process, like a conjugate gradient method.

A very simple way, with bilateral constraints, is to enforce

the velocity of the constrained points at each iteration step

[WGW90]. This projection method has been extended to

unilateral constraints with a gradient descent method using

an active set strategy (Rosen method) [RA02]

Another solution based on QP allows for mixing bilat-

eral and unilateral solvers. Redon [RKC02] uses the Gauss’

least constraints principle for the simulation of rigid-bodies.

Constraints are solved very efficiently by a QP solver. How-

ever, with deformable bodies, the extension of such a method

would provide huge QP problems and the resolution would

be demanding. Moreover, Gauss’ principle does not extend

to friction constraints.

In [Mur97], it is shown that the QP formulation can be

equivalent to a linear complementarity problem (LCP) for-

mulation. Contact constraints can be easily described and

solved as a LCP. This formulation was introduced in the

computer graphics community by Baraff [Bar89] who pro-

pose an algorithm for the computation of frictionless con-

tact forces between solid objects. It is based on the Dantzig

algorithm, related to pivoting methods for solving LCP’s.

Ruspini et al. [RK00] describe the collisions in the contact

space, express the contact equations and the impulse force

in this space. They use an inverse contact space inertia ma-

trix to describe the dynamic relationship between the contact

points. They identify in their equation a term of free motion,

representing the contact space acceleration that would occur

if no contact existed. Contact forces are solved through the

resolution of a LCP problem.

The LCP formulation, based on unilateral constraints has

been extended to contact with dry friction between rigid ob-

jects [APS99]. The Coulomb’s friction cone is approximated

by a pyramidal cone in order to maintain a LCP formulation.

However, it strongly increases the size of the LCP and makes

the method no more suitable for real-time applications.

Moreau [MJ96] introduced some specific solver to deal

with the non-linear complementarity problem of dry fric-

tion between rigid objects. This approach is based on the

exact friction cone model and on a specific iterative solver

(Gauss-Seidel type). The use of this approach in the context

of interactive simulation of deformable bodies has been pro-

posed in [DDKA06]. These last approaches are efficient but

are limited to friction contact constraints. This paper aims at

presenting a more flexible method which allows using and

c© The Eurographics Association 2008.

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

combining different types of constraints on both rigid and

deformable objects.

3. Generalized constraints

In this section we describe the unified formalism we use in

order to handle, within a single simulation framework, the

constraints we are interested in. All these constraints share

a common set of basic parameters: the constraint dimension

(which we will, somewhat abusively, call dimension in the

remainder of this article: it is equal to the number of degrees

of freedom involved by the constraint), direction(s) and vio-

lation. The main difference between them is the underlying

law that rules the constraint. We detail here each constraint

type, and show that all of them can be fully defined using

dimension, direction and violation specification.

3.1. Bilateral constraints

Bilateral constraints are often used to simulate fixed points

or articulations. They can be expressed by projecting the

constraint on some predefined directions (using reduced co-

ordinates technique): for each dimension, movement is con-

strained along a specific direction. Depending on the number

of dimensions of the constraint, different applications can be

created: the point constrained on a plane corresponds to a

constraint of dimension 1, the sliding constraint which en-

ables a point to move along a line or a spline is represented

using a constraint of dimension 2, the fixed point in space

or to another object is a constraint of dimension 3. Dimen-

sion can be higher, although less classical: e.g. constraints

involving position and rotation can raise dimension up to 6.

Figure 1: Bilateral constraints may use multiple directions

depending on the application. For a 2D fixed point, any com-

bination of 2 orthogonal vectors is valid.

To define a bilateral constraint, we first have to define its

dimension ; if not all degrees of freedom are constrained, the

direction of each dimension needs to be given (see Figure 1).

In addition to that, for each dimension the violation δ of the

constraint is computed. It is associated to a vector on the

constraint direction, oriented so that, considered as a force,

it tends to make the constraint being fulfilled. Classically, δ

is the distance between the two objects before the resolution

of the system, and should ideally be equal to zero after this

time-step resolution.

3.2. Unilateral constraints

Unilateral constraints could appear, at first sight, simpler,

since it involves only one dimension (see Figure 2), but the

law that drives the unilateral constraint is non-smooth. They

are classically used for collision response, as this behavior

means that the interpenetration of two objects will be cor-

rected by the constraint resolution, but will not make them

stick together back again when they separate during resolu-

tion. It perfectly models frictionless contacts.

Figure 2: Unilateral constraints define one direction n per-

pendicular to the contact surface.

A strong difference with bilateral constraint is the follow-

ing fact: for unilateral constraints, the sign of the violation

on the direction is of major importance to the resolution

scheme. Indeed, It dictates if the constraint is actually ac-

tive or not. Solving a simple contact constraint when the vi-

olation is negative is equivalent to a bilateral constraint res-

olution. For a positive violation, the two objects are not in

contact anymore, and the force computed during resolution

has to be zero.

3.3. Dry and Dynamic Friction constraints

Dry friction constraint is usually combined with a bilateral

or a unilateral constraint: it provides the dissipative behavior

along the tangential direction(s). One may want to include

friction when sliding a point along a line, or for modeling

friction contact between objects. Adding friction requires the

value of the force along the normal direction, i.e. the direc-

tion(s) of the bilateral or unilateral constraint associated with

the friction constraint (see Figure 3).

Figure 3: Friction constraints use the normal n as for con-

tacts constraints, and additional directions t tangential to

the contact surface.

c© The Eurographics Association 2008.

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

To model dry friction, we propose to use Coulomb’s fric-

tion law (see Figure 4) which states that if the tangential re-

sponse forces f~T are less than the normal force f~n scaled by a

friction coefficient µ, objects stick together as tangential dis-

placement δ~T is null. Otherwise, objects slip (δ~T 6=~0) , and

the response forces are scaled back to a dissipative behavior

f~T = −µ || f~n||~T (dynamic friction). As we use an integrated

Coulomb model, we are working in displacement, not speed.

Figure 4: Coulomb’s friction law. The reaction force is

strictly inside the cone when objects stick together, and on

the cone’s border when they slip.

4. Constraints space

We have seen that all constraints can be defined by a direc-

tion along which a force will be applied in order to respect

the constraint. Parameters used on constraint laws:

• violation measure (bilateral)

• interpenetration measure (unilateral)

• tangential displacement, normal force (friction)

are defined along the constraint directions. Thus it is much

more easier to solve the constraints if we have a direct access

to these parameters during the resolution process.

Moreover, expressing the behavior of the constrained ob-

jects along the constraints directions should enable us to take

into account the coupling between the constraints.

In [RK00], Ruspini et al. introduce the contact space as

the local solution space in which unilateral constraints have

to be computed, through the set of parameters that locally

describes the relative motion of the bodies during contact

and collision. For a pair of bodies interpenetrating, a colli-

sion detection algorithm identifies a set of potential contact

points, and provides for each of them the contact normal n,

perpendicular to the contact geometry. Using the direction n,

we can express the relative distance δ f ree between the two

contact points.

By generalizing this idea to other constraints and their pa-

rameters, we introduce the notion of constraint space. In this

space, it is possible to express constraints with a finite life

span (e.g. collision response constraints, see section 3.2).

Writing constraint laws in this space is often easier than it

would be in the motion space, and opens the door to more

complex constraints.

The constraints space parameters are often not indepen-

dent, and we need to express the dynamic relationship be-

tween them. A mapping function linking the positions in the

motion space to the constraints space is often non-linear. In

the general case, the problem is reduced to a linear problem

using a Jacobian H evaluated at time t around the constraint

position. This matrix is used to construct the operator w, that

expresses the mechanical coupling in the constraint space:

w = HCH
T

In that expression, matrix C is the compliance matrix, com-

puted as:

C =

[

M

h2
+

B

h
+K

]

−1

Its properties are presented in more details in [SDCG08].

M, B and K are respectively the matrices of mass, damp-

ing and rigidity. Depending of the nature of the object, this

matrix can be obtained easily (rigid objects), with a specific

band-matrix solver (wire-like deformable object) or with a

precomputation step like in [SDCG08] (3D linear or corota-

tional deformable objects).

For real-time simulation of constrained deformable bod-

ies, the number of degrees of freedom is usually much larger

than the amount of constraints applied to them. In that con-

text, solving the problem in the constraints space presents

the benefit of significantly reducing the size of the system

to compute. However, in the case of pure rigid body dynam-

ics, which is out of the scope of this article targeted on con-

straining both rigid and deformable objects, and if many con-

straints are applied, a solving strategy in the motion space

could be more relevant, as each body typically has no more

than 6 DOF.

A local strategy consists in first solving the motion of

the bodies without applying the constraints (free motion

phase), then solving constraints in the constraints space δ =
w f +δ f ree, and finally computing a correction motion. Next

section describes these issues.

5. Resolution

Before coupling, a constraint only needs to compute the cor-

rection force depending on the constraint violation (and on

the normal force, for friction constraint). This description

can be applied for all the constraints, the specifics of this

relation describing their behavior. We propose a solution to

express the constraint-specific behavior independently from

the resolution algorithm.

c© The Eurographics Association 2008.

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

5.1. System resolution

There must be some preparations before constraints resolu-

tion, and the result of the computation needs to be reinjected

into the system before integration. We will present here the

different steps of our method:

We start by simulating a time-step of the system, in or-

der to see how the bodies would move if there were no con-

straints at all, hence the name of Free Motion. It is necessary

in order to compute the various parameters of the constraints

(interpenetration for contact constraints, violation of bilat-

eral constraints, etc.). Figure 5.a shows the initial configu-

ration of two rigid objects linked with a bilateral constraint,

before computation of the free motion. Bodies could have

been in contact at the previous time-step, or have moved and

there can be some potential collision we have to look for.

Here, we take for granted that a geometric collision detec-

tion process is available. We then create the constraints in

response to the collision detection output, and the other con-

straints defined by the scene, either statically known at the

scene design or dynamically created after some predefined

events. If needed, additional computation is performed in or-

der to find all the information needed by the constraints for

their resolution (in particular, the δ f ree parameter, see Fig-

ure 5.b). Once the constraints directions and parameters are

expressed, we can define the constraints space, from which

the operator w can be deduced.

Once all the prerequisites are computed, we then use the

constraints solving algorithm, taking into account the me-

chanical coupling between them. From a time-step to the

next one, it is possible to use time coherency to improve

computation: by storing constraints results, one can use them

as the initial parameters at the next time-step.

From the forces computed as the constraints contribution

to the system, we define corrective motions for the points

where constraints where applied. Finally, system is inte-

grated. We use an implicit Euler solver, as we already com-

puted the rigidity matrices of the bodies for the mechanical

coupling of constraints. Figure 5.c shows the result of the

constraints resolution for a simple scene.

(a) free motion (b) violation (c) resolution

Figure 5: Different steps of a bilateral constraint resolution.

The dashed outline represent the initial position of the ob-

ject.

5.2. Constraint-specific treatment

Constraint resolution without coupling consist in computing

the response force f in relation to the parameters of the con-

straint. The violation of the constraints is noted δ f ree before

resolution, and δa during the resolution as it can change mul-

tiple times if we use iterative methods. Here are examples of

this resolution for some of the constraints we want to simu-

late:

• Bilateral constraints. Resolving a bilateral constraint con-

sist in adding a force proportional to the violation, and of

opposite direction.

f = −δa/w

• Unilateral constraints. If the violation is negative, the

force is proportional to it, else the force is set to zero.

if δa < 0 then
f = −δa/w

else
f = 0

end

• Friction. The constraint is linked to a bilateral or unilat-

eral constraint. When this constraint is solved, the friction

constraint get the resulting force, that is considered as the

"normal" force. Then, we compute the tangential forces

using Coulomb’s friction law as described in 3.3.

5.3. Modified Gauss-Seidel

For the complete simulation of a complex system, we need to

couple the constraints, as the resolution of one often change

the parameters of its neighbors constraints. This will be done

by the constraint solving algorithm, using the mechanical

coupling expressed in the space we introduced.

We use a modified Gauss-Seidel algorithm, but another

iterative constraint solver could have been tested (Jacobi, re-

laxation, etc.), as long as the resolution of a particular con-

straint can be isolated from the mechanical coupling. Our

Gauss-Seidel is very close to the modification done for con-

tacts by Moreau and Jean; we generalize it to all types of

constraints.

The Gauss-Seidel algorithm has the added benefit of be-

having well with redundant constraints like multiple contacts

between 2 objects, and converge quite fast. In Figure 6.b we

added redundant constraints; the algorithm converge in all

cases, the solution and the number of iterations before con-

vergence depend only on the order in which the constraints

were defined.

During one iteration, we compute each constraint dimen-

sion by blocking all other constraints and summing their

contribution relative to the dimension we are considering:

δa
(k)
i = δ f reei

+ ∑
j<i

wi j f
(k)
j + ∑

j>i

wi j f
(k−1)
j (1)

c© The Eurographics Association 2008.

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

Figure 6: Rigid cubes connected together with (a) 2 bilateral

constraints represented here as points; (b) 20 overly redun-

dant constraints. The speed of convergence is the same for

the two scenes.

The computation of δai uses the f
(k)
j dimensions that have

already been computed, and the f
(k−1)
j dimensions that have

yet to be updated.

After the current violation δai of a particular constraint

has been computed, we can call its specific treatment, pass-

ing as parameters this violation δai and the previous force

f
(k−1)
i , which is usually needed for the constraints with fric-

tion. The result of a constraint resolution is a new response

force f
(k)
i , replacing immediately the previous one. Note that

wi j does not have to be given each time, as it is constant for

one system resolution.

We compute the error as err = ∑i wi j(f
(k)
i − f

(k−1)
i) and

stop iterating the Gauss-Seidel when it goes below a cer-

tain tolerance, or a maximum number of iterations has been

reached.

The modified Gauss-Seidel can be synthesized as:

repeat
reset error

forall constraints dimensions do
store previous force for error computation

compute δa from Eq. (1)

call the constraint-specific treatment

save new force

compute and add error

end

until error < tolerance ;

This method can handle closed loops as shown in Fig-

ure 7, but is restricted to non-conflicting constraints, which

should not happen if the they are carefully defined.

Note that adapting other iterative algorithms to the pro-

posed method should be straightforward.

Figure 7: A scene where bodies are constrained in a closed

loop.

5.4. A note on software architecture

On the implementation side, we use the object oriented pro-

gramming paradigm which enables us to define a general

constraint used by the resolution algorithm, and derive from

it a family of constraints, each with its own behavior and

data. This has shown a few advantages over a global con-

straints resolution algorithm:

Each individual constraint can store data, its own parame-

ters. When it needs to compute the response force created by

a constraint, the resolution algorithm only supply δa and f

defined at this time of the resolution. The operator w doesn’t

change and is known at the start of the constraints resolu-

tion.

Additional parameters are stored locally by the constraint

object for its internal use. For example, contact constraints

with friction store their friction coefficient, which can be dif-

ferent for each constraint. It is then possible to simulate con-

tact between objects with various surface friction.

Usually, a Gauss-Seidel algorithm computes the resolu-

tion one line at a time, each line representing a constraint di-

mension. It is not a problem for simple contact constraints,

or for multiple dimensions bilateral constraints which can

be transformed into multiple one-dimensional constraints.

However, friction contacts or sliding points with friction

need to work with at least 3 dimensions at once, and so the

resolution algorithm is usually adapted to this need.

We propose that the decision to use one or multiple lines is

not for the resolution algorithm to make, but that each con-

straint will inform the algorithm of its need. This way, sim-

ple contact constraints will use one line at a time, whereas

c© The Eurographics Association 2008.

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

more complex constrains will have access to the additional

dimensions they require.

One aspect of the previous statement is that we can op-

timize constraints resolution for faster convergence of the

algorithm. What we mean is that for multiple dimensions

constraints like 3D fixed point constraint, we will opt for a

resolution per 3 by 3 bloc (instead of per line), even if they

can be constructed as 3 one-dimension constraints. We com-

pute for all dimensions f = wb
−1δa, with wb the 3 by 3 bloc

matrix and wb
−1 being precomputed.

This approach makes possible the simulation of nonholo-

nomic or nonlinear constraints. We are also not limited to

constraints which can be expressed as a simple mathematic

relation between responce force and displacement. Contact

constraints can be deactivated during resolution if the objects

have been separated by other constraints, friction constraints

can be sticking or slipping depending of their own parame-

ters.

This opens a whole set of possibilities, and we can imagine

constraints which completely change their behavior during

resolution.

The design of the method was thought in order to pro-

mote the creation of new types of constraints. Indeed, adding

a new constraint is often limited to describing its law of be-

havior. The constraints resolution algorithm does not need to

be changed in any way, as it manipulates only generic con-

straints. We do not restrain the constraints to abide by strict

rules, as they choose their number of dimensions, and the

data they need for their resolution.

6. Results

We integrated our method into the SOFA framework [SOF],

and used the collision detection and integration schemes it

proposes. The measures we present for the example scenes

were done on a bi-Xeon 2.66Ghz.

6.1. Sliding constraint

As a way of testing the framework, we created a new type of

constraint: the sliding constraint, whose purpose is to main-

tain an object on a curve. It is a bilateral constraint, defined

between a curve described as a set of connected segments

and a set of points which are to be constrained.

At each time step, we compute the closest point to the ob-

ject on the curve, and the tangential direction of the curve at

this point. A bilateral constraint is then created along the 2

orthogonal directions (see Figure 8), the violation of the con-

straint being the distance between the object and the curve.

The tangential direction is not constrained, so the object is

able to move along the curve during the free motion, and is

only projected back to the closest point. During the compu-

tation of the projected point, we detect if it would be outside

Figure 8: Sliding constraints define a direction toward the

closest point on the curve.

the boundaries of the current segment, and continue onto the

next segment of the curve in this direction. This is done in-

stead of searching only for the closest segment, and allows

for complex paths, loops and sharp angles.

We detect when the object is at one end of the curve, and

depending on the parameters of the scene, either a new uni-

lateral constraint is created preventing the object from falling

off the curve, or we disconnect the object from the curve and

destroy the sliding constraint of this particular point. A spe-

cialization of this sliding constraint has been created, adding

friction in the tangential direction, depending on the force

pulling the object on the curve.

6.2. Examples

The purpose of our method is to be able to represent com-

plex interactions between heterogeneous bodies, for real-

time simulations.

We first present 2 simple scenes. Figure 9.a shows the use

of bilateral constraints, more precisely 3d fixed points, and

contact. The top cube is fixed, the others are then attached to

each other, all bodies are rigid. Collision detection can create

contact constraints, as shown here between the two cubes at

the bottom.

Figure 9: (a) Rigid cubes constrained with bilateral con-

straints. (b) Collision with friction and fixed point constraint.

Figure 9.b illustrate contact constraints with friction. Two

rigid cubes are connected with a 3d fixed point constraints,

and fall freely on a inclined plane. By varying the friction

c© The Eurographics Association 2008.

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

of constraints 15

Free motion 0.6 ms

Collision detection 0.3 ms

Constraints creation 0.08 ms

Resolution 0.02 ms

Movement correction 0.05 ms

Table 1: Measures for the scene of Figure 9.a

coefficient, we can have either slipping or sticking contact.

The user can interact with the objects, and stack the cubes as

shown here.

of constraints 27

Free motion 0.2 ms

Collision detection 0.4 ms

Constraints creation 0.09 ms

Resolution 0.9 ms

Movement correction 0.04 ms

Table 2: Measures for the scene of Figure 9.b

These 2 scenes are compatible with complete haptic feed-

back, as the mechanic resolution runs at 1kHz.

We finally show a more complex simulation, using all the

constraints we introduced, and different types of bodies. Fig-

ure 10.b presents the configuration of this scene. We used

more detailed, rigid and deformable bodies, sliding on a de-

formable wire modeled with beams. This cable is fixed at its

extremities by bilateral constraints, and collision detection

dynamically create contact constraints with friction.

This simulation runs at interactive rates, approximately

20 fps. Note that the computations added by our method,

namely constraints creation and resolution and movement

correction are still relatively fast. The bottleneck in this

scene is the collision detection, which is offered by the

framework we used.

of constraints 60

Free motion 26 ms

Collision detection 41 ms

Constraints creation 3 ms

Resolution 0.5 ms

Movement correction 2 ms

Table 3: Measures for the scene of Figure 10

7. Conclusion

We have presented a generalized method for resolving dif-

ferent types of constraints for real-time simulations. We pre-

sented how we modified an existing Gauss-Seidel algorithm,

with minimal overhead. We have shown that new constraints

Figure 10: All constraints in a complex scene with de-

formable and rigid bodies.

Figure 11: The same scene with (a) 2 rigid bodies; (b) 2

deformable models (see dragons’ faces contact).

c© The Eurographics Association 2008.

Guébert et al. / Unified Processing of Constraints for Interactive Simulation

of all kinds can easily be added to the framework and that

interactive rates are achieved, even for complex interactions.

In the future, we would like to continue creating new con-

straints, for applications in medical simulations, in particu-

lar suturing tasks. The high rates at which the mechanic is

solved open perspectives in haptic feedback research.

In the method we presented, the constraints are always de-

stroyed at each time step, and the Gauss-Seidel has no initial

guess to start the resolution. We want to investigate the pos-

sibility of optimizing the constraints creation and resolution

by storing results between time steps.

8. Acknowledgements

The Authors would like to thank reviewers for useful com-

ments on the submitted work. SOFA development team also

provided useful support. This work is partially funded by

ANR project VORTISS ANR-2006-MDCA-015 and ANR

project Part@ge ANR-06-TLOG-031.

References

[APS99] ANITESCU M., POTRA F., STEWART D.: Time-

stepping for three-dimentional rigid body dynamics.

Computer Methods in Applied Mechanics and Engineer-

ing, 177 (1999), 183–197.

[Bar89] BARAFF D.: Analytical methods for dynamic

simulation of non-penetrating rigid bodies. In SIG-

GRAPH ’89: Proceedings of the 16th annual conference

on Computer graphics and interactive techniques (New

York, NY, USA, 1989), ACM, pp. 223–232.

[Bar96] BARAFF D.: Linear-time dynamics using la-

grange multipliers. In SIGGRAPH ’96: Proceedings of

the 23rd annual conference on Computer graphics and in-

teractive techniques (New York, NY, USA, 1996), ACM,

pp. 137–146.

[DDKA06] DURIEZ C., DUBOIS F., KHEDDAR A., AN-

DRIOT C.: Realistic haptic rendering of interacting de-

formable objects in virtual environments. IEEE Trans-

actions on Visualization and Computer Graphics 12, 1

(2006), 36–47.

[DLC07] DEQUIDT J., LENOIR J., COTIN S.: Interactive

contacts resolution using smooth surface representation.

In MICCAI (2) (2007), pp. 850–857.

[Fea99] FEATHERSTONE R.: A divide-and-conquer

articulated-body algorithm for parallel o(log(n)) calcula-

tion of rigid-body dynamics. The International Journal of

Robotics Research 18, 9 (1999), 876–892.

[LF04] LENOIR J., FONTENEAU S.: Mixing deformable

and rigid-body mechanics simulation. Computer Graph-

ics International, 2004. Proceedings (June 2004), 327–

334.

[MJ96] MOREAU J.-J., JEAN M.: Numerical treatment of

contact and friction : the contact dynamic method. Engi-

neering Systems Design and Analysis, vol 4 (1996), 201–

208.

[Mur97] MURTY K.: Linear complementarity, linear and

nonlinear programming. internet edition, 1997.

[RA02] RENOUF M., ALART P.: Conjugate gradient type

algorithms for frictional multi-contact problems: applica-

tions to granular materials. Computer Methods in Ap-

plied Mechanics and Engineering, 18-20 (2002), 2019–

2041 vol.194.

[RK00] RUSPINI D., KHATIB O.: A framework for multi-

contact multi-body dynamic simulation and haptic dis-

play. Intelligent Robots and Systems, 2000. (IROS 2000).

Proceedings. 2000 IEEE/RSJ International Conference

on 2 (2000), 1322–1327 vol.2.

[RKC02] REDON S., KHEDDAR A., COQUILLART S.:

Gauss’ least constraints principle and rigid body simula-

tions. Robotics and Automation, 2002. Proceedings. ICRA

’02. IEEE International Conference on (2002), 517–522

vol.1.

[SDCG08] SAUPIN G., DURIEZ C., COTIN S., GRISONI

L.: Efficient contact modeling using compliance warping.

In Computer Graphics International Conference (CGI)

Istambul, Turkey, (june 2008).

[SOF] Simulation open framework architecture. http:

//www.sofa-framework.org.

[WGW90] WITKIN A., GLEICHER M., WELCH W.: In-

teractive dynamics. SIGGRAPH Comput. Graph. 24, 2

(1990), 11–21.

c© The Eurographics Association 2008.

http://www.sofa-framework.org
http://www.sofa-framework.org

