Computing class polynomials for abelian surfaces - Archive ouverte HAL
Article Dans Une Revue Experimental Mathematics Année : 2014

Computing class polynomials for abelian surfaces

Résumé

We describe a quasi-linear algorithm for computing Igusa class polynomials of Jacobians of genus 2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations in quartic CM fields and their Galois closures, we pursue an approach due to Dupont for evaluating ϑ- constants in quasi-linear time using Newton iterations on the Borchardt mean. We report on experiments with our implementation and present an example with class number 20016.
Fichier principal
Vignette du fichier
cm2.pdf (344.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00823745 , version 1 (17-05-2013)
hal-00823745 , version 2 (09-12-2013)

Identifiants

Citer

Andreas Enge, Emmanuel Thomé. Computing class polynomials for abelian surfaces. Experimental Mathematics, 2014, 23 (2), pp.129-145. ⟨10.1080/10586458.2013.878675⟩. ⟨hal-00823745v2⟩
988 Consultations
346 Téléchargements

Altmetric

Partager

More