
HAL Id: hal-00823733
https://hal.science/hal-00823733v1

Preprint submitted on 17 May 2013 (v1), last revised 8 Oct 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From dimension free concentration to Poincaré
inequality

Nathael Gozlan, Cyril Roberto, Paul-Marie Samson

To cite this version:
Nathael Gozlan, Cyril Roberto, Paul-Marie Samson. From dimension free concentration to Poincaré
inequality. 2013. �hal-00823733v1�

https://hal.science/hal-00823733v1
https://hal.archives-ouvertes.fr


FROM DIMENSION FREE CONCENTRATION TO POINCARÉ

INEQUALITY

N. GOZLAN, C. ROBERTO, P-M. SAMSON

Abstract. We prove that a probability measure on an abstract metric space satisfies
a non trivial dimension free concentration inequality for the ℓ2 metric if and only if it
satisfies the Poincaré inequality.

1. Introduction

In all the paper (X , d) is a polish metric space and P(X ) is the set of Borel probability
measures on X . On the product space X n, we consider the following ℓp product distance
dp defined by

dp(x, y) =

[
n∑

i=1

dp(xi, yi)

]1/p

, x, y ∈ X n.

If A is a Borel subset of X n, we define its enlargement Ar,p (simply denoted by Ar when
n = 1), r ≥ 0 as follows

Ar,p = {x ∈ X n; dp(x, A) ≤ r}.

In all what follows, α : R+ → R
+ will always be a non increasing function. One will say

that µ ∈ P(X ) satisfies the dimension free concentration property with the concentration
profile α and with respect to the ℓp product structure if

(1.1) µn(Ar,p) ≥ 1 − α(r), ∀r ≥ 0,

for all A ⊂ X n, with µn(A) ≥ 1/2. In this case, we will write that µ satisfies the dimension
free concentration inequality CI∞

p (α). If µ satisfies (1.1) only for n = 1, we will write that
µ satisfies CI(α).

The general problem considered in this paper is to give a characterization of the class
of probability measures satisfying CI∞

p (α). The main result of the paper shows that the
class of probability measures satisfying CI∞

2 (α), for some non trivial α, always contains
the class of probability measures satisfying the Poincaré inequality. Moreover, these two
classes coincide when α is exponential: α(r) = be−ar, for some a, b > 0.

Before stating this result, let us recall the definition of the Poincaré inequality: one says
that µ ∈ P(X ) satisfies the Poincaré inequality with the constant λ ∈ R

+ ∪ {+∞}, if

(1.2) λVarµ(f) ≤
∫

|∇−f |2 dµ,

for all Lipschitz function f : X → R, where by definition

|∇−f |(x) = lim sup
y→x

[f(y) − f(x)]−
d(y, x)

,
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when x is not isolated in X (we set |∇f |(x) = 0, when x is isolated in X ). We take the
convention ∞ × 0 = 0, so that λ = +∞ if and only if µ is a Dirac measure.

1.1. Main result. The main result of this paper is the following theorem. In what
follows, Φ will denote the tail distribution function of the standard Gaussian measure

γ(dx) = (2π)−1/2e−x2/2 dx on R defined by

Φ(x) =
1√
2π

∫ +∞

x
e−u2/2 du, x ∈ R.

Theorem 1.3. If µ satisfies the dimension free concentration property CI∞
2 (α), then µ

satisfies Poincaré inequality (1.2) with the constant λ defined by

√
λ = sup

{
Φ

−1
(α(r))

r
; r > 0 s.t α(r) ≤ 1/2

}
.

Moreover, if α is convex decreasing and such that α(0) = 1/2, then λ = (2πα′
+(0)2), where

α′
+(0) ∈ [−∞, 0) is the right derivative of α at 0.

Conversely, it is well known since the work by Gromov and Milman [16] (see also [1], [6],
[26] for related results) that a probability measure µ verifying Poincaré inequality satisfies
a dimension free concentration property with a profile of the form α(r) = be−ar, for some
a, b > 0. This is recalled in the following theorem (we refer to the appendix for a proof).

Theorem 1.4. Suppose that µ satisfies Poincaré inequality (1.2) with a constant λ > 0,
then it satisfies the dimension free concentration property with the profile

α(r) = b exp(−a
√

λr), r ≥ 0,

where a, b are universal constants.

Theorem 1.3 and Theorem 1.4 thus give a full description of the set of probability
distributions verifying a dimension free concentration property with a concentration profile
α such that {r : α(r) < 1/2} 6= ∅ : this set coincides with the set of probability measures
verifying the Poincaré inequality. An immediate corollary of Theorem 1.3 and Theorem
1.4 (see Corollary 4.1) is that any type of dimension free concentration inequality can
always be improved into a dimension free concentration inequality with an exponential
profile (up to universal constants). This was already noticed by Talagrand in [28]. See
Section 4.3 for a further discussion.

Remark 1.5. Let us make some comments on the constant λ appearing in Theorem 1.3.

(1) Note that λ > 0 if and only if there is some ro > 0 such that α(ro) < 1/2. In
particular, Theorem 1.3 applies even in the case of a “minimal” profile α = βao,ro

,
defined as follows

(1.6) βao,ro
(r) = 1/2, if r < ao and βao,ro

(r) = ao, if r ≥ ro,

where ao ∈ [0, 1/2), ro > 0. If a probability measure satisfies CI∞
2 (βao,ro

), then it
satisfies Poincaré with the constant

√
λao,ro

:=
Φ

−1
(ao)

ro

(2) Note that any non increasing function α : R
+ → R

+, with α(0) = 1/2 can be
written as an infimum of minimal profiles:

α = inf
r>0

βα(r),r.
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The constant λ given in Theorem 1.3 is thus the supremum of the constants λα(r),r

r > 0 defined above. This shows that the information contained in the concentra-
tion profile α is treated pointwise, and that the global behavior of α is not taken
into account.

(3) It is well known that the standard Gaussian measure γ satisfies the dimension free
concentration property with the profile α = Φ (this follows from the isoperimetric
theorem in Gauss space due to Sudakov-Cirelson [27] and Borell [7], see e.g [18]).
So applying the preceding result, we conclude that γ satisfies Poincaré inequality
with the constant λ = 1, which is well known to be optimal.

(4) If the concentration profile α(r) goes to zero too fast when r → ∞, then λ = +∞
and µ is a Dirac measure. This happens for instance when α(r) = be−ark

, r ≥ 0
with k > 2 and a, b > 0.

Theorem 1.3 is in the same spirit as a previous result of the first author [10], where
the Gaussian dimension free concentration level was characterized by a transport-entropy
inequality. To state this result, let us recall that the Kantorovich-Rubinstein distance Wp,
p ≥ 1, between ν, µ ∈ P(X ) is defined by

W p
p (ν, µ) = inf E[dp(X, Y )],

where the infimum runs over the set of couples of random variable (X, Y ) such that
Law(X) = µ, Law(Y ) = ν. A probability measure satisfies the p-Talagrand transport-
entropy inequality, for some C > 0 if

(1.7) W p
p (ν, µ) ≤ CH(ν|µ), ∀ν ∈ P(X ),

where the relative entropy functional is defined by H(ν|µ) =
∫

log dν
dµ dν if ν is absolutely

continuous with respect to µ, and H(ν|µ) = +∞ otherwise. Inequalities of this type were
introduced by Marton and Talagrand in the nineties [20, 30]. We refer to the survey [11]
for more informations on this topic.

Theorem 1.8. [10] A probability measure µ satisfies the p-Talagrand transport inequality
(1.7) for some p ≥ 2 and C > 0 if and only if it satisfies the dimension free concentration
inequality CI∞

p (α), with a concentration profile of the form

α(r) = exp

(
− 1

C
[r − ro]p+

)
, r ≥ 0,

for some ro ≥ 0.

As we will see, the proofs of Theorem 1.3 and 1.8 are very different. Both makes use
of probability limit theorems, but not at the same scale: Theorem 1.8 used Sanov’s large
deviations theorem, whereas Theorem 1.3 is an application of the central limit theorem.
Moreover, contrary to what happens in Theorem 1.3 (see item (2) of Remark 1.5), the
global behavior of the concentration profile is used in Theorem 1.8.

In view of Theorems 1.3 and 1.8, it is natural to formulate the following general question:

(Q) Which functional inequality is equivalent to CI∞
p (α) for a concentration profile of

the form

α(r) = exp(−a[r − ro]k+), r ≥ 0,

where a > 0, ro ≥ 0 and k > 0 ?

Remark 1.9. It is easy to see, using the central limit theorem, that for p ∈ [1, 2) the only
probability measures verifying CI∞

p (α), for some α such that α(ro) < 1/2 for at least one
ro > 0, are Dirac masses. Thus the question (Q) is interesting only for p ≥ 2.

To summarize, Theorem 1.8 shows that the answer to (Q) is the p-Talagrand inequality
for k = p and p ≥ 2. Theorem 1.3 shows that the answer is the Poincaré inequality for
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p = 2 and for k ∈ (0, 1]. Moreover the point (4) of Remark 1.5 above shows that for p = 2,
the question is interesting only for k ∈ [1; 2]. The question for k ∈ (1; 2) is still open.

Some partial results are known for p = ∞. In [5], Bobkov and Houdré characterized the
set of probability measures on R satisfying CI∞

∞(βao,ro
), with ao ∈ [0, 1/2), where βao,ro

is the minimal concentration profile defined by (1.6). They showed that a probability
measure µ belongs to this class if and only if the map Uµ defined by

Uµ(x) = F −1
µ

(
1

1 + e−x

)
, x ∈ R,

where Fµ(x) = µ((−∞, x]) and F −1
µ (p) = inf{x ∈ R; Fµ(x) ≥ p}, p ∈ (0, 1), satisfies the

following inequality on the interval where it is defined:

|Uµ(x) − Uµ(y)| ≤ a + b|x − y|,
for some a, b ≥ 0.

1.2. Alternative formulation in terms of observable diameters. It is possible to
give an alternative formulation of Theorem 1.3 and Theorem 1.4 using the notion of
observable diameter introduced by Gromov ([15, Chapter 3.1/2]). Recall that if (X , d, µ)
is a metric space equipped with a probability measure and t ∈ [0, 1], the partial diameter of
(X , d) is defined as the infimum of the diameters of subsets A ⊂ X such that µ(A) ≥ 1− t.
It is denoted by Part Diam(X , d, µ, t). If f : X → R is some 1-Lipschitz function, let us
denote by µf ∈ P(R) the push forward of µ under f . The observable diameter of (X , d, µ)
is defined as follows

Obs Diam(X , d, µ, t) = sup
f 1−Lip

Part Diam(R, | · |, µf , t) ∈ R
+ ∪ {+∞}

We define accordingly the observable diameters of (X n, d2, µn) for all n ∈ N
∗.

The observable diameters are related to concentration profiles by the following lemma
(see e.g [9, Lemma 2.22]).

Lemma 1.10. If µ satisfies CI(α), then

Obs Diam(X , d, µ, 2α(r)) ≤ 2r,

for all r ≥ 0 such that α(r) ≤ 1/2.
Conversely, for all t ∈ [0, 1/2], for all A ⊂ X , with µ(A) ≥ 1/2, it holds

µ(Ar(t)) ≥ 1 − t

with r(t) = Obs Diam(X , d, µ, t).

The following corollary gives an interpretation of Poincaré inequality in terms of the
boundedness of the observable diameters of the sequence of metric probability spaces
(X n, d2, µn)n∈N∗ .

Corollary 1.11. A probability measure µ on (X , d) satisfies the Poincaré inequality (1.2)
with the optimal constant λ if and only if for some t ∈ (0, 1/2)

r∞(t) := sup
n∈N∗

Obs Diam(X n, d2, µn, t) < ∞.

Moreover,

Φ
−1

(t) ≤ r∞(t)
√

λ ≤ a log

(
b

t

)
, ∀t ∈ (0, 1/2)

where a > 0 and b ≥ 1 are some universal constants.
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1.3. Tools. The main tool in the proof of Theorem 1.3 is a new alternative formulation of
concentration of measure in terms of deviation inequalities for inf-convolution operators
that was first obtained in [12]. Recall that for all t > 0, the infimum convolution operator
f 7→ Qtf is defined for all f : X n → R ∪ {+∞} bounded from below as follows

(1.12) Qtf(x) = inf
y∈X n

{
f(y) +

1

t
d2

2(x, y)

}
, x ∈ X n

(we should write Q
(n)
t , but we will omit the dimension n in the notation).

We recall below a result from [12] giving a new way to express concentration of measure.

Proposition 1.13. Let µ ∈ P(X ); µ satisfies CI∞
2 (α) if and only if for all n ∈ N

∗

and for all measurable function f : X n → R ∪ {+∞} bounded from below and such that
µn(f = +∞) < 1/2, it holds

(1.14) µn(Qtf > m(f) + r) ≤ α(
√

tr), ∀r, t > 0,

where m(f) is any number such that µn(f ≤ m(f)) ≥ 1/2.

The second main tool is the well known fact that the function u : (t, x) 7→ Qtf(x) is, in
some weak sense, solution of Hamilton-Jacobi equation

∂u

∂t
= −1

4
|∇xu|2.

This result is very classical on R
k (see e.g [8]) ; extensions to metric spaces were proposed

in [19], [3], [2] or [13]. This will be discussed in the next section.
The third tool is the celebrated Berry-Esseen Inequality.

Theorem 1.15 (Berry-Esseen). Let (Xi)i∈N∗ be an i.i.d. sequence of real random variables
such that E[Xi] = 0, E[X2

i ] = σ2 and E[|Xi|3] = ρ < ∞. There exists a universal constant
κ > 0 such that, for all n ∈ N

∗,

sup
x∈R

∣∣∣∣P
(

X1 + · · · + Xn√
nσ

> x

)
− Φ(x)

∣∣∣∣ ≤ κ
ρ

σ3
√

n
,

where Φ(x) = 1√
2π

∫+∞
x e−u2/2 du, x ∈ R.

The paper is organized as follows. Section 2 puts Theorem 1.3 in perspective. We
compare it to a result by E. Milman on Poincaré inequalities in non-negative curvature. We
show in particular that an immediate consequence of Theorem 1.3 as well as E. Milman’s
result is a reduction of the KLS conjecture for isotropic log-concave probability measures.
In Section 3, we recall some properties of the infimum convolutions operators that will be
used in the proofs. Section 4 contains the proof of Theorem 1.3.

Acknowledgements. The first author would like to thank Emanuel Milman for com-
menting the main result of this paper and for mentioning to him that the method of
proof used by Talagrand in [28] to prove Corollary 4.1 could be extended to cover general
situations.

2. Comparison with other results

2.1. Dimension free concentration v.s non negative curvature. Theorem 1.3 is
reminiscent of the following recent result by E. Milman showing that under non-negative
curvature the Poincaré constant of a probability measure can be expressed through very
weak concentration properties of the measure [22, 23].

We recall that the Minkowski content of a set A ⊂ X is defined as follows

µ+(A) = lim inf
r→0

µ(Ar) − µ(A)

r
.
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Theorem 2.1 (Milman [23]). Let µ(dx) = e−V (x) dx be an absolutely continuous proba-
bility measure on a smooth complete separable Riemannian manifold M equipped with its
geodesic distance d. Suppose that V : M → R is a function of class C2 such that

Ric + Hess V ≥ 0,

and that µ satisfies the following concentration of measure inequality

µ(Ar) ≥ 1 − α(r), ∀r ≥ 0,

for a function α : [0, ∞) → [0, 1/2] such that α(ro) < 1/2, for some ro > 0, then µ satisfies
Cheeger’s inequality

µ+(A) ≥ D min(µ(A); 1 − µ(A)), ∀A ⊂ M,

with

D = sup

{
Ψ(α(r))

r
; r > 0 s.t α(r) < 1/2

}
,

where Ψ : [0, 1/2) is some universal function.

We recall that Cheeger’s inequality with the constant D implies Poincaré inequality
(1.2) with the constant λ = D2/4. In our result the non-negative curvature assumption of
Milman’s result is replaced by the assumption that the concentration is dimension free.

Remark 2.2. If M has non-negative Ricci curvature and µ(dx) = 1
|K|1K(x) dx is the

normalized restriction of the Riemmanian volume to a geodesically convex set K, then E.
Milman obtains in [24] that

D = sup

{
1 − 2α(r)

r
; r > 0

}
.

This bound is optimal (see [24]).

2.2. A remark on the KLS conjecture. In this section, Rk is always equipped with
its standard Euclidean norm | · |.

Let us recall the celebrated conjecture by Kannan, Lovász and Simonovits [17]. Recall
that a probability measure µ on R

k is isotropic if
∫

x µ(dx) = 0 and
∫

xixj µ(dx) = δij

for all 1 ≤ i, j ≤ n. It is log-concave if it has a density of the form e−V , where V : Rk →
R ∪ {+∞} is a convex function.

Conjecture 2.3 (Kannan-Lovász-Simonovits [17]). There is a universal constant D > 0
such that for all k ∈ N

∗, any log-concave and isotropic probability measure µ on R
k satisfies

the following Cheeger inequality

µ+(A) ≥ D min(µ(A); 1 − µ(A)), ∀A ⊂ R
k.

Equivalently, there is a universal constant λ > 0 such that for all k ∈ N
∗, any log-concave

and isotropic probability measure µ on R
k satisfies the following Poincaré inequality

λVarµ(f) ≤
∫

|∇f |2 dµ,

for all f : Rk → R Lipschitz.

According to E. Milman’s Theorem 2.1, the above conjecture can be reduced to a
statement about universal concentration inequalities for log-concave isotropic probabilities.

Corollary 2.4. The KLS conjecture is equivalent to the following statement. There exists
ro > 0, ao ∈ [0, 1/2) such that for any m ∈ N

∗, any log-concave and isotropic probability ν
on R

m satisfies

(2.5) ν(A + roB2) ≥ 1 − ao, ∀A ⊂ R
m s.t. ν(A) ≥ 1/2,

where B2 is the Euclidean unit ball of Rm.
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This corollary follows immediately from Theorem 2.1. Below, we propose an alternative
proof based on our main result Theorem 1.3.

Proof of Corollary 2.4. According to Theorem 1.4, it is clear that the KLS conjecture
implies uniform exponential concentration estimates for isotropic log-concave probability
measures.

Conversely, let µ be isotropic and log-concave on R
k. For all n ∈ N

∗, the probability

µn is still isotropic and log-concave on
(
R

k
)n

. So applying (2.5) to ν = µn on
(
R

k
)n

,

for all n ∈ N
∗, we conclude that µ satisfies CI∞

2 (βao,ro
), where the concentration profile

βao,ro
is defined by (1.6). According to Theorem 1.3, we conclude that µ satisfies Poincaré

inequality with the constant λ =
(
Φ

−1
(ao)/ro

)2
. Since this holds for any isotropic log-

concave probability measure in any dimension, this ends the proof. �

2.3. Euclidean v.s Talagrand type enlargements. Theorem 1.3 improves a preceding
result by the first author [10] where a stronger form of exponential dimension free con-
centration, introduced by Talagrand [28, 29], was shown to be equivalent to a transport-
entropy inequality in turn equivalent to Poincaré inequality.

In what follows, if A ⊂ X n, for some n ∈ N
∗, we will consider the following family of

enlargements of A:

Ãa,r =

{
x ∈ X n; ∃y ∈ A s.t

n∑

i=1

θ(ad(xi, yi)) ≤ r

}
, ∀a > 0, ∀r ≥ 0

where θ(t) = t2, if t ∈ [0, 1] and θ(t) = 2t − 1, if t ≥ 1.

Definition 2.6. A probability µ on X satisfies the Talagrand exponential type dimension
free concentration inequality with constants a, b ≥ 0 if for all n ∈ N

∗, for all A ⊂ X n with
µn(A) ≥ 1/2, it holds

(2.7) µn(Ãa,r) ≥ 1 − be−r, ∀r ≥ 0.

Since t 7→ θ(
√

t) is concave and vanishes at 0, it is thus sub-additive and we have the
following inequality

n∑

i=1

θ(ad(xi, yi)) ≥ θ




√√√√
n∑

i=1

a2d2(xi, yi)


 = θ(ad2(x, y)), ∀x, y ∈ X n.

Therefore,

Ãa,θ(ar) ⊂ Ar,2,

and so if µ satisfies the Talagrand concentration inequality (2.7), then it obviously verify

the dimension free concentration inequality with the profile α(u) = be−θ(au) ≤ ebe−2au,
u ≥ 0.

The following theorem summarizes the known links between Talagrand exponential type
dimension free concentration and Poincaré inequality.

Theorem 2.8. Let µ be a probability measure on X . The following statements are equiv-
alent

(1) The probability µ satisfies Poincaré inequality (1.2) with a constant λ > 0.
(2) The probability µ satisfies the following dimension free concentration inequality:

for all n ∈ N
∗, for all A ⊂ X n such that µn(A) ≥ 1/2,

µn
(
Ãa,r

)
≥ 1 − be−r, ∀r ≥ 0,

for some constants a, b > 0.
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(3) The probability measure µ satisfies the following transport-entropy inequality

inf
π∈Π(µ,ν)

∫∫
θ(Cd(x, y)) π(dxdy) ≤ H(ν|µ), ∀ν ∈ P(X ),

for some constant C > 0, where Π(µ, ν) is the set of couplings π between µ and ν
and the relative entropy is defined as follows H(ν|µ) =

∫
log dν

dµ dν, when ν ≪ µ

and +∞ otherwise.

Moreover the constants above are related as follows :
(1) ⇒ (2) with a = κ

√
λ and b = 1, for some universal constant κ.

(2) ⇒ (3) with C = a.
(3) ⇒ (1) with λ = 2C2.

Let us make some comments about the different implications in Theorem 2.9. The
implication (1) ⇒ (2) is due to Bobkov and Ledoux [6], the implication (2) ⇒ (3) is due to
the first author [10, Theorem 5.1], and the implication (3) ⇒ (1) is due to Maurey [21] or
Otto-Villani [25]. The equivalence between (1) and (3) was first proved by Bobkov, Gentil
and Ledoux in [4].

Remark 2.9. It is worth noting that the implication (2) ⇒ (3) follows from Theorem
1.8 for p = 2 by a change of metric argument. Namely, suppose that µ satisfies the
concentration property (2) of Theorem , for some a > 0, and define d̃(x, y) =

√
θ(ad(x, y))

for all x, y ∈ X . It is not difficult to check that the function θ1/2 is subadditive, and
therefore d̃ defines a new distance on X . The ℓ2 extension of d̃ to the product X n is

d̃2(x, y) =

[
n∑

i=1

θ(ad(xi, yi))

]1/2

, x, y ∈ X n,

and it holds
Ãa,r = {x ∈ X n; d̃2(x, A) ≤ √

r}, ∀A ⊂ X n.

Therefore, statement (2) can be restated by saying that µ satisfies CI∞
2 (α) (with respect to

the distance d̃) with the Gaussian concentration profile α(r) = be−r2

. Applying Theorem
1.8, we conclude that µ satisfies the 2-Talagrand transport entropy inequality with the
constant 1 with respect to the distance d̃, which is exactly (3) with C = a.

An immediate consequence of Theorem 1.3 and of Bobkov-Ledoux Theorem (1) ⇒ (2)
above is the following result showing the equivalence between the two forms of dimension
free exponential concentration.

Theorem 2.10. Let µ be a probability measure on X . The following are equivalent.

(1) The probability measure µ satisfies the Talagrand exponential type dimension free
concentration inequality (2.7) with constants a and b.

(2) The probability measure µ satisfies CI∞
2 (α) with a profile α(u) = b′e−a′u, u ≥ 0.

In these conditions, the constants are related as follows: (1) ⇒ (2) with a′ = 2a and
b′ = eb, and (2) ⇒ (1) with a = a′/

√
log(2b′) and b = 1.

We do not know if there is a direct proof of the implication (2) ⇒ (1).

Proof. We have already proved that (1) implies (2). Let us prove the converse. Ac-
cording to Theorem 1.3 we conclude from (2) that µ satisfies Poincaré inequality with a

constant C ≤
(

u

Φ
−1

(α(u))

)2

, for all u such that α(u) < 1/2. A classical inequality gives

Φ(t) ≤ 1
2e−t2/2, t ≥ 0. Therefore, Φ

−1
(t) ≥ 2

√
− log(2t), for all t ∈ (0, 1/2) and so tak-

ing u = 2 log(2b′)/a′ yields to C ≤ log(2b′)
a′2 . According to the implication (1) ⇒ (2) in

Theorem 2.9 we conclude that µ satisfies Talagrand concentration inequality (2.7) with
a = κa′/

√
log(2b′). �
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3. Some properties of inf-convolution operators

In this section, we recall properties of inf-convolution operators related to Hamilton-
Jacobi equations and to concentration of measure.

3.1. Link with Hamilton-Jacobi equations. We recall that (X , d) is a metric space.
The following proposition collects some basic observations about the operators Qt, t > 0.

Proposition 3.1. Let f : X → R be a bounded Lipschitz function. For all x ∈ X ,
Qtf(x) → f(x), when t → 0+ and for all ν ∈ P(X ),

(3.2) lim sup
t→0+

1

t

∫
f(x) − Qtf(x) ν(dx) ≤ 1

4

∫
|∇−f(x)|2 ν(dx).

Before giving the proof of Proposition 3.1, let us complete the picture by recalling the
following theorem of [2] and [14] (improving preceding results of [19] and [3]). This result
will not be used in the sequel.

Theorem 3.3. If f is a bounded function on a polish metric space X , then (t, x) 7→ Qtf(x)
satisfies the following Hamilton-Jacobi (in)equation

(3.4)
d

dt+
Qtf(x) ≤ −1

4
|∇Qtf |2(x), ∀t > 0, ∀x ∈ X

where d/dt+ stands for the right derivative, and |∇g|(x) = lim supy→x
|f(y)−f(x)|

d(y,x) . More-

over, if the space X is geodesic (i.e for all x, y ∈ X there exists at least one curve (zt)t∈[0,1]

such that z0 = x, z1 = y and d(zs, zt) = |t − s|d(x, y)) then (3.4) holds with equality.

Proof of Proposition 3.1. Let M = sup |f |; since Qtf ≤ f one has in particular, Qtf ≤ M .
Therefore

Qtf(x) = inf
y∈B(x,

√
2Mt)

{
f(y) +

1

t
d2(x, y)

}
.

So, it holds

0 ≤ f(x) − Qtf(x)

t
= sup

y∈B(x,
√

2Mt)

{
f(x) − f(y)

t
− d2(x, y)

t2

}

≤ sup
y∈B(x,

√
2Mt)

{
[f(x) − f(y)]+

d(x, y)

d(x, y)

t
− d2(x, y)

t2

}

≤ 1

4
sup

y∈B(x,
√

2Mt)

[f(x) − f(y)]2+
d2(x, y)

.

We conclude from this that 0 ≤ (f − Qtf)/t ≤ L2/4, where L is the Lipschitz constant of
f . This implies in particular that Qtf → f when t → 0. Taking the lim sup when t → 0+

gives

(3.5) lim sup
t→0+

f(x) − Qtf(x)

t
≤ 1

4
|∇−f(x)|2.

Inequality (3.2) follows from (3.5) using Fatou’s Lemma in its lim sup version. The applica-
tion of Fatou’s Lemma is justified by the fact that the family of functions {(f −Qtf)/t}t>0

is uniformly bounded. �

Remark 3.6. The proof of (3.5) can also be found in [31, Theorem 22.46] (see also [14,
Proposition A.3], [19], [3], [2]).
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3.2. Link with concentration of measure. For the reader’s convenience, let us restate
Proposition 1.13.

Proposition 3.7. Let µ ∈ P(X ); µ satisfies the dimension free concentration property
with the concentration profile α if and only if for all n ∈ N

∗ and for all measurable function
f : X n → R ∪ {+∞} bounded from below and such that µn(f = +∞) < 1/2, it holds

(3.8) µn(Qtf > m(f) + r) ≤ α(
√

tr), ∀r, t > 0,

where m(f) is any number such that µn(f ≤ m(f)) ≥ 1/2.

Proof. We recall the short proof of Proposition 1.13 for the sake of completeness. Suppose
that µ satisfies the dimension free concentration property with the profile α, and define
A = {f ≤ m(f)}. By definition of m(f), µn(A) ≥ 1/2 and so µn(X n \ Au) ≤ α(u), for all
u ≥ 0. Observe that

Qtf(x) ≤ m(f) +
1

t
d2

2(x, A), ∀x ∈ X n.

So {Qtf > m(f) + r} ⊂ {d2( · , A) >
√

tr} = Ac√
tr,2

, which proves (3.8).

Let us prove the converse. Take a Borel set A ⊂ X n such that µn(A) ≥ 1/2 and consider
the function fA equals to 0 on A and +∞ on Ac. For this function, QtfA = (1/t)d2

2(x, A)
and one can choose m(f) = 0. Applying (3.8) gives the result. �

4. Poincaré inequality and concentration of measure

This section contains the proof of our main result Theorem 1.3.

4.1. From dimension free concentration to Poincaré inequality.

Proof of Theorem 1.3. Let h : X → R be a bounded Lipschitz function such that
∫

h dµ =
0. For all n ∈ N

∗, define fn : X n → R
+ by

fn(x) = h(x1) + · · · + h(xn), ∀x = (x1, . . . , xn) ∈ X n.

Applying (3.8) to fn with t = 1/
√

n and r =
√

nu, for some u > 0, we easily arrive at

µn

(
1√
nσn

n∑

i=1

[
Q1/

√
nh(xi) − µ(Q1/

√
nh)

]
>

1

σn
√

n
m(fn) +

√
n

σn
µ
(
h − Q1/

√
nh
)

+
u

σn

)

≤ α(
√

u),

where σ2
n = Varµ(Q1/

√
nh) and m(fn) is a median of fn under µn, that is to say any

number m ∈ R such that µn(f ≥ m) ≥ 1/2 and µn(fn ≤ m) ≥ 1/2. According to the

Berry-Esseen Theorem 1.15, we conclude that Φ(x) = 1√
2π

∫+∞
x e−u2/2 du, x ∈ R satisfies

the inequality

Φ

(
1

σn
√

n
m (fn) +

√
n

σn
µ
(
h − Q1/

√
nh
)

+
u

σn

)
≤ α(

√
u) + κ

ρn

σ3
n

√
n

,

where κ is some universal constant and ρn =
∫

(Q1/
√

nh − µ(Q1/
√

nh))3 dµ. According to

Point (1) of Proposition 3.1, σn →
√

Varµ(h), when n goes to ∞ and according to Point

(2) of Proposition 3.1,

lim sup
n→+∞

√
nµ
(
h − Q1/

√
nh
)

≤ 1

4

∫
|∇−h|2 dµ.

Moreover letting σ =
√

Varµ(h) and mn = m(fn)/(
√

nσ), it follows from the Berry-Esseen

inequality that

1

2
− δn ≤ µn

(
fn√
nσ

≥ mn

)
− δn ≤ Φ(mn) ≤ µn

(
fn√
nσ

> mn

)
+ δn ≤ 1/2 + δn,
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where δn → 0 when n → ∞. So Φ(mn) → 1/2 which implies that mn → 0, and also that
m(fn)/(

√
nσn) → 0. Since Φ is decreasing and continuous and ρn is bounded, we get

Φ




∫ |∇−h|2 dµ

4
√

Varµ(h)
+

u√
Varµ(h)



 ≤ α(
√

u),

for all u ≥ 0. Let u ≥ 0 be such that α(
√

u) < 1/2, then letting k(u) = Φ
−1

(α(
√

u)) > 0,
we easily get from the inequality above the following

k(u)
√

Varµ(h) ≤ u +
1

4

∫
|∇−h|2 dµ.

Replacing h by λh, λ > 0, we arrive at

k(u)
√

Varµ(h) ≤ inf
λ>0

{
u

λ
+

λ

4

∫
|∇−h|2 dµ

}
=

√

u

∫
|∇−h|2 dµ,

which completes the proof. �

4.2. Poincaré inequality and boundedness of observable diameters of product

probability spaces. In this section we prove Corollary 1.11.

Proof of Corollary 1.11. First assume that µ satisfies Poincaré inequality (1.2) with the
optimal constant λ. Then according to Theorem 1.4, µ satisfies CI∞

2 (α) with the con-

centration profile α(r) = be−
√

λr, where a, b are universal constants (b ≥ 1/2). According
to the first part of Lemma 1.10 (applied to the metric probability space (X n, d2, µn)), it

follows that for all n ∈ N
∗, Obs Diam(X n, d2, µn, t) ≤ 2 log(4b/t)

a
√

λ
, for all t ≤ 1 and thus

r∞(t)
√

λ ≤ a′ log(b′/t), ∀t ≤ 1

for some universal constant a′, b′.
Conversely, assume that 0 < r∞(to) < ∞ for some to ∈ (0, 1/2). According to the second

part of Lemma 1.10, µ satisfies CI∞
2 (βto,r∞(to)), where the minimal profiles β are defined

in (1.6). According to Theorem 1.3, we conclude that µ satisfies Poincaré inequality with
an optimal constant λ > 0 such that

√
λr∞(to) ≥ Φ

−1
(to).

According to the first step, we conclude that r∞(t) < ∞ for all t ≤ 1, and so the inequality
above is true for all t ∈ (0, 1/2). �

4.3. Self improvement of dimension free concentration inequalities. The follow-
ing result shows that a non-trivial dimension free concentration inequality can always be
upgraded into an inequality with an exponential decay. This observation goes back to
Talagrand [28, Proposition 5.1].

Corollary 4.1. If µ satisfies CI∞
2 (α) with a profile α such that α(ro) < 1/2 for some

ro, then it satisfies CI∞
2 with an exponential concentration. More explicitly, it satisfies

the dimension free concentration property with the profile α̃(r) = be−a
√

λr, where a, b are
universal constants and

√
λ = sup

{
Φ

−1
(α(r))

r
; r > 0 s.t α(r) < 1/2

}
.

This result is an immediate corollary of Theorem 1.3 and Theorem 1.4.
In [28] this result was stated and proved only for probability measures on R. We thank

E. Milman for mentioning to us that the argument was in fact more general. For the sake
of completeness, we recall below the argument of Talagrand. It yields to the following
extension of Corollary 4.1 (with slightly less accurate constants in the case p = 2).
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Proposition 4.2. Suppose that a probability µ on X satisfies CI∞
p (βao,ro

) for some p ≥
1, ro > 0, ao ∈ [0, 1/2). Then, for any γ ∈ (− log(1−ao)/ log(2), 1), there exists c ∈ [1/2, 1)
depending only on γ and ao such that for all n ∈ N

∗,

µn(Ar,p) ≥ 1 − 1 − c

γ
γr/ro , ∀r ≥ 0, ∀A ⊂ X n s.t. µn(A) ≥ c.

Proof. Take A ⊂ X then (An)ro,p ⊂ (Aro
)n . Therefore, if µ(A) ≥ (1/2)1/n, it holds

µ(Aro
) ≥ (1−ao)1/n. Let A ⊂ X be such that µ(A) ≥ 1/2 and let nA be the greatest integer

n ∈ N
∗ such that µ(A) ≥ (1/2)1/n. By definition of nA, log(2)

log(1/µ(A)) − 1 < nA ≤ log(2)
log(1/µ(A)) .

According to what precedes,

µ(Ac
ro

) ≤ 1 − (1 − ao)1/nA ≤ 1 − exp

(
log(1 − ao) log(1/µ(A))

log(2) − log(1/µ(A))

)
.

The function ϕ(u) = exp
(

log(1−ao) log(1/u)
log(2)−log(1/u)

)
satisfies

ϕ(u) = 1 − log(1 − ao)

log(2)
(u − 1) + o(u − 1),

when u → 1. So 1−ϕ(µ(A))
1−µ(A) → − log(1−ao)

log(2) ∈ (0, 1), when µ(A) → 1. Therefore, if γ is any

number in the interval (− log(1−ao)
log(2) , 1), there exists c > 1/2 (depending only on γ) such

that for all A ⊂ X with µ(A) ≥ c it holds

µ(Ac
ro

) ≤ γµ(Ac).

Iterating yields
µ(Ac

kro
) ≤ γkµ(Ac), ∀k ∈ N

∗.

It follows easily that for all u ≥ 0,

µ(Ac
u) ≤ ((1 − c)/γ)γu/ro .

Applying the argument above to the product measure µp, p ∈ N
∗, gives the conclusion. �

Appendix: From Poincaré inequality to exponential concentration

In this section, we give a proof of Theorem 1.4. The conclusion of Theorem 1.4 is
very classical in say a Euclidean framework, but to deal with the general metric space
framework requires some additional technical ingredients.

Proposition 4.3. There are universal constants a, b > 0 such that if µ satisfies Poincaré
inequality (1.2) with the constant λ > 0, then for all n ∈ N

∗, it holds

µn
(

f >

∫
f dµn + r

)
≤ b exp(−a

√
λr), ∀r ≥ 0

for all bounded function f : X n → R such that

(4.4)
n∑

i=1

|∇−
i f |2(x) ≤ 1, ∀x ∈ X n,

where

|∇−
i f |(x) = lim sup

y→xi

[f(x1, . . . , xi−1, y, xi+1, . . . , xn) − f(x)]−
d(y, xi)

Proof. It is well known that the Poincaré inequality tensorizes well (see [18]): if µ satisfies
(1.2), then for all n ∈ N

∗, the product probability µn satisfies

(4.5) λVarµ(g) ≤
∫ n∑

i=1

|∇−
i g|2(x) µn(dx),

for all function g : X n → R that is locally Lispchitz in each coordinate.
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Let f : X n → R be bounded and such that (4.4) holds, and define Z(s) = log
∫

esf dµn,
for all s ≥ 0. Applying (4.5) to g = esf and using (4.4) yields easily to

λ

[∫
e2sf dµn −

(∫
esf dµn

)2
]

≤ s2
∫

e2sf dµn,

and thus
log(1 − s2/λ) + Z(2s) ≤ 2Z(s), ∀0 ≤ s ≤

√
λ.

According to Hölder inequality, the function Z is convex. Therefore,

Z(2s) ≥ Z(s) + Z ′(s)s.

As a result,

log(1 − s2/λ) + Z ′(s)s ≤ Z(s), ∀0 ≤ s ≤
√

λ,

and so
d

ds

(
Z(s)

s

)
≤ − log(1 − s2/λ)

s2
, ∀0 < s ≤

√
λ.

Since Z(s)/s → ∫
f dµn when s → 0, we conclude that

∫
es(f−

∫
f dµn)dµn ≤ exp

(
s√
λ

∫ s/
√

λ

0

− log(1 − v2)

v2
dv

)
, ∀s ≤

√
λ.

Taking s =
√

λ/2, we easily get

µn
(

f −
∫

f dµn > r

)
≤ be−

√
λ

2
r, ∀r ≥ 0,

with b = 1
2

∫ 1/2
0

− log(1−v2)
v2 dv.

�

Lemma 4.6. Let f : X n → R be a 1-Lipschitz function for the distance d2. For all
compact subset K of X n, and ε > 0, the function fK,ε defined by

fK,ε(x) = sup
z∈K

{
f(z) −

√
ε2 + d2

2(x, z)

}
, ∀x ∈ X n,

is bounded and satisfies the condition
∑n

i=1 |∇−
i fK,ε|2 ≤ 1 and the following inequality

f(x) − ε − 2d2(x, K) ≤ fK,ε(x) ≤ f(x), ∀x ∈ X n.

Proof of Lemma 4.6. The inequality is left to the reader. Let us show that fK,ε satisfies

the condition
∑n

i=1 |∇−
i fK,ε|2 ≤ 1. Fix x ∈ X n, and for all y ∈ X and i ∈ {1, 2, . . . , n},

set x̄iy = (x1, . . . , xi−1, y, xi+1, . . . , xn). Since K is compact, there exists a ∈ K, such

that fK,ε(x) = f(a) −
√

ε2 + d2
2(x, a). It also holds fK,ε(x̄

iy) ≥ f(a) −
√

ε2 + d2
2(x̄iy, a).

Therefore,

fK,ε(x̄
iy) − fK,ε(x) ≥

√
ε2 + d2

2(x, a) −
√

ε2 + d2
2(x̄iy, a)

≥ −d(y, xi)
d(y, ai) + d(xi, ai)√

ε2 + d2
2(x̄iy, a) +

√
ε2 + d2

2(x, a)

Since the function u 7→ [u]− is non increasing, one concludes that |∇−
i fK,ε|(x) ≤ d(xi,ai)√

ε2+d2
2
(x,a)

and so
∑n

i=1 |∇−
i fK,ε|2(x) ≤ 1. �

Corollary 4.7. There are universal constants a, b > 0 such that if µ satisfies Poincaré
inequality (1.2) with the constant λ > 0, then for all n ∈ N

∗, it holds

µn
(

f >

∫
f dµn + r

)
≤ b exp(−a

√
λr), ∀r ≥ 0

for all bounded function f : X n → R which is 1-Lipschitz with respect to the distance d2.
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Proof. Take a 1-Lipschitz function f for the distance d2 on X n, ε > 0 and K a compact
of X n. Proposition 4.3 applied to the function fK,ε of Lemma 4.6 implies that µn(fK,ε >
∫

fK,ε dµn + r) ≤ be−a
√

λr, for all r ≥ 0. Using the inequality given by Lemma 4.6, one
gets

µn
(

f − ε − 2d2( · , K) >

∫
f dµn + r

)
≤ be−a

√
λr, ∀r ≥ 0,

and so

µn
(

{f >

∫
f dµn + r + ε} ∩ K

)
≤ be−a

√
λr, ∀r ≥ 0.

Since the space X n is polish, the probability µn is tight. So there is a nondecreasing
sequence of compact sets Kp such that µn(Kc

p) → 0, when p → ∞. Applying the inequality
above, with Kp and a sequence εp tending to 0, one gets using the monotone convergence
theorem

µn
(

f >

∫
f dµn + r

)
≤ be−a

√
λr, ∀r ≥ 0.

�

Proof of Theorem 1.4. Having established in Corollary 4.7 (dimension free) deviations in-
equality for bounded 1-Lipschitz functions with respect to their mean, Theorem 1.4 now
follows at once from [18, Proposition 1.7]. �
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[6] S. G. Bobkov and M. Ledoux. Poincaré’s inequalities and Talagrand’s concentration phenomenon for
the exponential distribution. Probab. Theory Related Fields, 107(3):383–400, 1997.

[7] C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30(2):207–216, 1975.
[8] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI, second edition, 2010.
[9] K. Funano and T. Shioya. Concentration, Ricci curvature and laplacian. To appear in Geom. Funct.

Anal., 2013.
[10] N. Gozlan. A characterization of dimension free concentration in terms of transport inequalities. Ann.

Probab., 37(6):2480–2498, 2009.
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sures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 41:14–24, 165, 1974. Problems
in the theory of probability distributions, II.

[28] M. Talagrand. A new isoperimetric inequality and the concentration of measure phenomenon. In
Geometric aspects of functional analysis (1989–90), volume 1469 of Lecture Notes in Math., pages
94–124. Springer, Berlin, 1991.

[29] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Publications
Mathématiques de l’I.H.E.S., 81:73–203, 1995.

[30] M. Talagrand. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal.,
6(3):587–600, 1996.

[31] C. Villani. Optimal transport: Old and New, volume 338 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009.
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