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ABSTRACT ability to treat the full acquired data. The positivity ctnagnt

This paper deals with the reconstruction of relaxation timds implicitly handled through the use of a maximum entropy
distributions in Nuclear Magnetic Resonance (NMR) specPenalization criterion. The main purpose of the presenepap
troscopy. This large scale and ill-posed inverse problem i& to propose a more general method, based on the use of
solved by the iterative minimization of a regularized objjez. @0 original primal-dual interior point optimization metho
function allowing to encode some prior assumptions on th@llowing to solve this large-scale inverse problem for any
sought distribution. The numerical optimization of theteri  convex and differentiable regularized objective function

rion is performed using a primal-dual interior point aldom The rest of this paper is organized as follows: The
allowing to handle the non-negativity constraint. The perf 12 andTi-T; acquisition models are presented in Section
mances of the proposed approach are illustrated through tife Then, Section 3 presents our reconstruction method and

processing of real data from a two-dimensional NMR experi@ Strategy to reduce its computational cost in the cas of
ment. T, reconstruction. Section 4 illustrates the efficiency of the

, . proposed scheme through synthetic and real data examples.
Index Terms— T1-T2 relaxation times, Laplace trans- gina|ly, some conclusions are drawn in Section 5.

form inversion, interior-point, primal-dual, precondiing.

2. ACQUISITION MODEL
1. INTRODUCTION

) ) 2.1. One-dimensional NMR acquisition
Nuclear magnetic resonance (NMR) spectroscopy is a mea-

surement technique allowing to determine the molecula€lassical NMR experiments analyze the spin relaxation pro-
structure and dynamics of a material. The NMR experimengess independently, either in terms of longitudinal or gran
consists in analyzing the relaxation process which correverse relaxation, leading to one dimensional (1D) measure-
sponds to the re-establishment of the nuclear spin into itentsz;(71) or z2(72). These 1D NMR data are related
equilibrium state, after the application of a short magneti to continuous distributions, (71) ands»(73), also calledr’;
pulse parameterized with a predefined flip angle This  andT; spectra, according to 1D Fredholm integrals of the first
process is decomposed into longitudinal and transversal dyind [6]
namics, characterized by distributions of longitudinal,
and/or transversal); relaxation times [1].

The reconstruction of a relaxation time distributidhi (  wherek; and k., are kernels modeling the longitudinal and
T, or T1-T5) corresponds to a numerical inversion of atransverse relaxations
Laplace transform, which is known to be an ill-posed in- k TR

SN 1(m,T1) =1-ne ;

verse problem [2]. Moreover, such a distribution should ko(7o,Ty) = e~ m2/To 2)
satisfy the non-negativity constraint. In the context of RM 2102 72 ’
two inversion strategies arise in the literature, each efrth with ~ related to the flip angle according4o= 1 — cos ®.
based on a specific criterion formulation and optimization After samplingr; (resp. T;) at m; (resp. N;) discrete
algorithm. The method from [3] adopts the algorithm of [4] values, (1) reads; = K;s;,i = 1,2, wherey;, € R™, K; €
to minimize a Tikhonov-like criterion over the positive or- R™*Y: ands; € R, 1D NMR reconstruction amounts to
thant. The size of the problem is artificially reduced by mearthe estimation of a positive spectringiveny; = x; + e;,
of a pre-processing compression step on the data. In [5], weith e; a noise term assumed white Gaussian;fer1 (i.e.,
proposed a truncated Newton optimization scheme with th&} reconstruction) of = 2 (i.e., T reconstruction).

xi(ﬂ-) = ff kl(Tl,Tl)SZ(TZ)dTZ, 7 = 1,2, (1)



2.2. Two-dimensional NMR acquisition At each iterationk of the primal-dual algorithm, an approxi-
mate solutior(sy11, Ax+1) Of (6) is calculated from one step
"t a Newton algorithm coupled with a linesearch strategy [8,

Chap.11], according to:

Joint measurements with respect to the two relaxation paral
eters allow to build the two-dimensional (205) T}, T>) dis-
tribution [7], from which the one dimensional distributen
can be deduced by (T;) = [ S(T1, T»)dT )z, i=1,2.

The measured NMR datd (7, 72) are then related to the
T1-T; spectrums(Ty, Ty), according to a 2D Fredholm inte- o perturbation parametgy, ; is then updated in order to

gral of the first kind ensure the algorithm convergence.

(841, Miet1) = (8 + adi, A + agdy). (7

X(Tl,TQ) = jf kl(Tl,Tl)S(Tl,TQ)kQ(TQ,TQ)dTldTQ. (3)

Note that 1D acquisitions can be deduced fraitr;, ) ac- Primal-dual directions

cording to the asymptotic relations: The directiongd;,, d;) are obtained by solving,

z1(m1) = X(m, 72 = 0), 22(12) = X (11 — +00,72). (4
1(11) = X(711, 72 = 0), 22(12) = X (11 = +00,72). (4) VIF(s) It } {di} B { Ao - VF(sy)
Experimental data consist of a series of discrete noisy kmmp AxI Diag(sy)| |dp| — n — Apsi
Y € R™>*m2 modeled byY = K;SK} + E with S €
RN+*N> and E a noise term assumed white GaussiBnT,  whereV F(-) andV2F(-) are, respectively, the gradient and
NMR reconstruction aims at estimatisygiveny'. the Hessian of criteriof’(-), given in (5), and is the identity
matrix of RY. Rather than solving directly this system, we
3. PROPOSED RECONSTRUCTION APPROACH firstly perform the variable substitution [9],

] ®)

K, and K, are rank-deficient and very badly conditioned d}) = Diag(sg) ! [y, — Axsk — Apds], 9)
matrices [4]. Therefore, directinversion is numericaihsta-

ble in both 1D and 2D cases and regularized solutions mustnd then calculate the primal directiakj from the reduced
be sought instead. In this paper, we propose a reconstnuctisystem

method based on a constrained and penalized least-squares H.d; = —gu, (10)
approach. The relaxation time distribution estimate israefi
as the solution of whereH ), = V2 F(s;,)+Diag(si) 1Ay andgy = VF(s)—
) Diag(si) 1y
: _ - _ 2
in (Fo) = 1K -yl +606) ). ©)

Computation cost reduction in the 2D case
wheres = Si, Y = Yi, K =K, N .= N;,7 =1 P

or 2, for the 1D model, and := vect[S], y := vect[Y], In the 2D reconstruction problem, matrik is of size

K := K; ® Ky, N := N1 Ny, for the 2D model. The opera- 1,m, x N, N,. Typical values aren; = 50, my = 5000,

tor vect[-] corresponds to lexicographically reordering matrix N; x N, = 300 x 300, so K and Hy, are huge matrices

elements into a vector and denotes the Kronecker product. whose explicit handling is almost impossible. Conseqyent

The penalization tern®(-), whose weight is controlled by the we propose here to overcome this difficulty by performing an

positive parametef, is assumed differentiable and convex. In approximate resolution of (10) using a preconditioned con-

order to handle the non-negativity constraint, an intgg@int  jugate gradient (PCG). The preconditioning strategy makes

algorithm based on a primal-dual approach is adopted for thgse of the singular value decompositish= UXV*. Given

resolution of (5). V and X, truncated versions o¥ and X, we define the
preconditioning matrixP;, such that

3.1. Primal-dual interior point optimization A, , )

The primal-dual approach consists in jointly estimatingnd Py = VEV +/fDiag (dlag(v R(S)))JrDlag(sk) As.

the corresponding Lagrange multipliexshrough the resolu- 14 pcG iterations are stopped when ([10])

tion of a sequence of optimization problems obtained from

perturbed versions of the Karush-Kuhn-Tucker (KKT) opti- llgi + Hrdl| < 177 gull, (11)

mality conditions:

VF(s)~A=0, As=p,, (s,A)>0, (6) Furthermore, the computation costs for_calculatiﬁgsk),
VF(s;) and the products oP, and H;, with a vector, are
whereA = Diag(A) andu,, = ur1, k € N, is a sequence of reduced by exploiting the factored form of the 2D observa-
perturbation parameters convergin@twhenk tendstotoc.  tion model (more details can be found in [5, Sec.lll.E]).



Linesearch 4. EXPERIMENTAL RESULTS

The stepsize value;, is chosen so as to ensure the converyye present in this section an illustration of the proposed ap
gence of the algorithm and the fulfillment of the inequatitie ) -5ach through the processing of two datasets. The first one
of the pertubed KKT system (6). A common strategy is 10js hased on simulated data whereas the second dataset is ob-

require a sufficient decrease in a primal-dual merit fumctio 5ined from real 2D NMR measurements on an apple sample.
F,.(s, X) along both primal and dual directions. Here, we re-

tain the merit function from [9]: 41 Svnthetic dataset
.1. Synthetic datase

Fu(s,A) = F(s) - Mzlen(/\nS%) 1 Abs, (12) The synthetic _distribut.iorSO(Tl,Tg) is a mixture of two
Gaussian density functions located é1.5s, 0.5s), (2s,1.5s) }
with standard deviationg(0.05s, 0.05s), (0.3s,0.2s)} and
Moreover, in order to handle efficiently the vertical asymp-mixing probabilities 0.2 and 0.8, respectively. The firshde
totes inf,,, (o) = Fp, (s + adj, A + ady), the majorize-  sity is independent while the second presents a correlation
minimize (MM) linesearch strategy from [11], withi itera-  angle of45° betweenl’; and75 variables. The 2D data are

n=1

tions,J > 1, is employed to compute the stepsize. obtained according to the 2D observation model from Sec. 2,
with m; = 50, mo = 5000 and® = 90°. A white Gaussian
Perturbation parameter update noise is added to get a signal to noise ratio (SNR) equ2l to

dB. We emphasize that these settings correspond to a iealist

The barrier parameter; is controlled by two conditions [12]: ;i ation. The simulated data are presented in Fig. 1.

. The 2D spectrum is reconstructed by solving (5) using the
IVE(sk) = Aklloo <1 pr (13) 2D model withN; = Ny = 300. The regularization term is
[Aksk — pilli /N <0, chosen as(s) = ||s||3 and its weight is set t@ = 100.

Both 1D spectra result from the resolution of (5), using the
wherer® andn* are positive parameters. As soon as (13) is1D model, the 1D data being deduced from the 2D ones using
fulfilled, 1 is updated using thg-criticity rule which en-  (4). The same regularization strategy as in 2D is employed,
sures the convergence of the primal-dual algorithm [13]:  with 8 = 10~3. The reconstruction algorithm is implemented

fri1 = 0(ALsp) /N, 0 € (0,1). (14)

5 T1-T2 distribution T1-T2 measurements

Z 2.2

The iterative scheme (7) is run until the fulfillment of thé-fo
lowing condition [8, Chap.11]

15
fik < pnin OF (IVF(sk) = Akl + [[Arsel]) < mo. (15)
The main steps of the resulting method are summarized i 05 @
Algorithm 1, and the following settings are made: 0 05 1 Tl'fs] 2 25
2
T 0 [ po | pwin | 0° [ 0* [ P9 | mo |
—8 —3 —8 . . .. .
10/05] 1 |10 100] 1.9] 10 10 | Fig. 1. Simulatedr’;-T5 distribution and measurements
T1 and T2 distributions
- Est. T1-T2 distribution _ Est. (=) vs Ref. (=-)
Initialize A\g > 0 andsy > 0 3 3
While ((15) is not satisfiedjlo 25 :

While ((13) is not satisfiedjlo 5 2 b
Calculated; by solving the system (10) =15 ‘ T.[s] '
Deduced; from (9) | 3 !

Searchy, by MM strategy osf & i JL
doneupdate(SkH’ Ak+1) according to (7) % 05 1 Tl.tfs] 2 25 3 04 1’T E ]\ >t
s
Definep;,.; according to (14). 2 2
done _ ) o )
Fig. 2. Estimated!’-T,, 17 and T3 distributions using the

proposed approach. The relative reconstruction errorsere
Algorithm 1: Primal-dual interior point algorithm. spectively0.52, 0.231 and0.16.



on Matlab 2007b and the calculations are performed using @eonjugate gradient and by the design of an efficient precon-
MacbookPro having an Intel Core 2 Duo 2.4 GHz processoditioner exploiting the factorized form of the forward made
and 4 GB of RAM (667 MHz). A positive uniform distri- Future work will be directed at analyzing the effect of dif-
bution is employed as an initial guess. Abautiterations ferent regularization strategies on the reconstructiafope
of Algorithm 1 are required to reconstruct the 1D distribu-mances.

tions, for a computation time of abouitsecond. For the 2D
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