
HAL Id: hal-00823583
https://hal.science/hal-00823583v1

Submitted on 20 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RUBIX, A Framework for Improving Data Integration
with Linked Data

Ahmad Assaf, Aline Senart, Eldad Louw, Corentin Follenfant, David
Trastour, Raphaël Troncy

To cite this version:
Ahmad Assaf, Aline Senart, Eldad Louw, Corentin Follenfant, David Trastour, et al.. RUBIX, A
Framework for Improving Data Integration with Linked Data. WOD ’12 Proceedings of the First
International Workshop on Open Data, May 2012, France. pp.13-21, �10.1145/2422604.2422607�.
�hal-00823583�

https://hal.science/hal-00823583v1
https://hal.archives-ouvertes.fr

RUBIX: A Framework for Improving Data
Integration with Linked Data

Ahmad Assaf†, Eldad Louw†, Aline Senart†, Corentin Follenfant†,
Raphaël Troncy‡ and David Trastour†

†
SAP Research, SAP Labs France SAS

805 avenue du Dr. Maurice Donat, BP 1216
 06254 Mougins Cedex, France

firstname.lastname@sap.com

‡
EURECOM

2229 route des crètes, 06560 Sophia Antipolis, France

raphael.troncy@eurecom.fr

ABSTRACT
With today’s public data sets containing billions of data items,

more and more companies are looking to integrate external data

with their traditional enterprise data to improve business

intelligence analysis. These distributed data sources however

exhibit heterogeneous data formats and terminologies and may

contain noisy data. In this paper, we present RUBIX, a novel

framework that enables business users to semi-automatically

perform data integration on potentially noisy tabular data. This

framework offers an extension to Google Refine with novel

schema matching algorithms leveraging Freebase rich types. First

experiments show that using Linked Data to map cell values with

instances and column headers with types improves significantly

the quality of the matching results and therefore should lead to

more informed decisions.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Content Analysis

and Indexing, Information Search and Retrieval, On-line

Information Services.

General Terms

Algorithms, Measurement, Experimentation

Keywords

Business Intelligence, Data Integration, Semantic Web, Data

Mashup, Instance Matching, Linked Data,

1. INTRODUCTION
Companies have traditionally performed business analysis based

on transactional data stored in legacy relational databases. The

enterprise data available for decision makers was typically

relationship management or enterprise resource planning data [2].

However social media feeds, weblogs, sensor data, or data

published by governments or international organizations are

nowadays becoming increasingly available [3].

The quality and amount of structured knowledge available make it

now feasible for companies to mine this huge amount of public

data and integrate it in their next-generation enterprise

information management systems. Analyzing this new type of

data within the context of existing enterprise data should bring

them new or more accurate business insights and allow better

recognition of sales and market opportunities [4].

These new distributed sources, however, raise tremendous

challenges. They have inherently different file formats, access

protocols or query languages. They possess their own data model

with different ways of representing and storing the data. Data

across these sources may be noisy (e.g. duplicate or inconsistent),

uncertain or be semantically similar yet different [5]. Integration

and provision of a unified view for these heterogeneous and

complex data structures therefore require powerful tools to map

and organize the data.

In this paper, we present RUBIX, a framework that enables

business users to semi-automatically combine potentially noisy

data residing in heterogeneous silos. Semantically related data is

identified and appropriate mappings are suggested to users. On

user acceptance, data is aggregated and can be visualized directly

or exported to Business Intelligence reporting tools. RUBIX is

composed of a set of extensions to Google Refine server and a

plug-in to its user interface [6]. Google Refine was selected for its

extensibility as well as good cleansing and transformation

capabilities [7].

We first map cell values with instances and column headers with

types from popular data sets from the Linked Open Data Cloud.

To perform the matching, we use the Auto Mapping Core (also

called AMC [8]) that combines the results of various similarity

algorithms. The novelty of our approach resides in our

exploitation of Linked Data to improve the schema matching

process. We developed specific algorithms on rich types from

vector algebra and statistics. The AMC generates a list of high-

quality mappings from these algorithms allowing better data

integration.

First experiments show that Linked Data increases significantly

the number of mappings suggested to the user. Schemas can also

be discovered if column headers are not defined and can be

improved when they are not named or typed correctly. Finally,

data reconciliation can be performed regardless of data source

languages or ambiguity. All these enhancements allow business

users to get more valuable and higher-quality data and

consequently to take more informed decisions.

The rest of the paper is organized as follows. Section 2 presents

some related work. Section 3 describes the framework that we

have designed for business users to combine data from

heterogeneous sources. Section 4 validates our approach and

shows the value of the framework through experiments. Finally,

Section 5 concludes the paper and discusses future work.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WOD '12, May 25 2012, Nantes, France

Copyright 2012 ACM 978-1-4503-1404-6/12/05…$15.00

2. RELATED WORK
While schema matching has always been an active research area

in data integration, new challenges are faced today by the

increasing size, number and complexity of data sources and their

distribution over the network. Data sets are not always correctly

typed or labeled and that hinders the matching process.

In the past, some work has tried to improve existing data schemas

[9] but literature mainly covers automatic or semi-automatic

labeling of anonymous data sets through Web extraction.

Examples include [10] that automatically labels news articles with

a tree structure analysis or [11] that defines heuristics based on

distance and alignment of a data value and its label. These

approaches are however restricting label candidates to Web

content from which the data was extracted. [12] goes a step

further by launching speculative queries to standard Web search

engines to enlarge the set of potential candidate labels. More

recently, [1] applies machine learning techniques to respectively

annotate table rows as entities, columns as their types and pairs of

columns as relationships, referring to the YAGO ontology. The

work presented aims however at leveraging such annotations to

assist semantic search queries construction and not at improving

schema matching.

With the emergence of the Semantic Web, new work in the area

has tried to exploit Linked Data repositories. The authors of [13]

present techniques to automatically infer a semantic model on

tabular data by getting top candidates from Wikitology [14] and

classifying them with the Google page ranking algorithm. Since

the authors’ goal is to export the resulting table data as Linked

Data and not to improve schema matching, some columns can be

labeled incorrectly, and acronyms and languages are not well

handled [13]. In the Helix project [15], a tagging mechanism is

used to add semantic information on tabular data. A sample of

instances values for each column is taken and a set of tags with

scores are gathered from online sources such as Freebase [16].

Tags are then correlated to infer annotations for the column. The

mechanism is quite similar to ours but the resulting tags for the

column are independent of the existing column name and

sampling might not always provide a representative population of

the instance values.

3. PROPOSITION
Google Refine (formerly Freebase Gridworks) is a tool designed

to quickly and efficiently process, clean and eventually enrich

large amounts of data with existing knowledge bases such as

Freebase. The tool has however some limitations: it was initially

designed for data cleansing on only one data set at a time, with no

possibility to compose columns from different data sets.

Moreover, Google Refine has some strict assumptions over the

input of spreadsheets which makes it difficult to identify primitive

and complex data types.

The AMC is a novel framework that supports the construction and

execution of new matching components or algorithms. AMC

contains several matching components that can be plugged and

used, like string matchers (Levenshtein, JaroWinkler … etc.), data

types matchers and path matchers. It also provides a set of

combination and selection algorithms to produce optimized results

(weighted average, average, sigmoid … etc.).

In this section, we describe in detail our framework allowing data

mashup from several sources. We first present our framework

architecture, then the activity flow and finally our approach to

schema matching.

3.1 Framework Architecture
Google Refine makes use of a modular web application

framework similar to OSGi called Butterfly [17]. The server-side

written in Java maintains states of the data (undo/redo history,

long-running processes, etc.) while the client-side implemented in

Javascript maintains states of the user interface (facets and their

selections, view pagination, etc.). Communication between the

client and server is done through REST web services.

As depicted in Figure 1, our framework leverages Google Refine

and defines three new Butterfly modules to extend the server’s

functionality (namely Match, Merge and Aggregate modules) and

one JavaScript extension to capture user interaction with these

new data matching capabilities.

3.2 Activity Flow
This section presents the sequence of activities and

interdependencies between these activities when using our

framework. Figure 2 gives an outline of these activities.

The data sets to match can be contained in files (e.g. csv, Excel

spreadsheets, etc.) or defined in Google Refine projects (step 1).

The inputs for the match module are the source and target files

and/or projects that contain the data sets. These projects are

imported into the internal data structure (called schema) of the

AMC [18] (step 2). The AMC then uses a set of built-in

algorithms to calculate similarities between the source and target

schemas on an element basis, i.e. column names in the case of

spreadsheets or relational databases. The output is a set of

similarities, each containing a triple consisting of source schema

element, target element, and similarity between the two.

Figure 2. Activity Flow

Figure 1. Framework Architecture

.

These results are presented to the user in tabular form (step 3)

such that s/he can check, correct, and potentially complete the

mappings (step 4).

Once the user has completed the matching of columns, the merge

information is sent back to Google Refine, which calls the merge

module. This module creates a new project, which contains a

union of the two projects where the matched columns of the target

project are appended to the corresponding source columns (step

5). The user can then select the columns that s/he wants to merge

and visualize by dragging and dropping the required columns onto

the fields that represent the x and y axes (step 6).

Once the selection has been performed, the aggregation module

merges the filtered columns and the result can then be visualized

(step 7). As aggregation operations can quickly become complex,

our default aggregation module can be replaced by more advanced

analytics on tabular data. The integration of such a tool is part of

future work.

3.3 Schema Matching
Schema matching is typically used in business to business

integration, metamodel matching, as well as Extract, Transform,

Load (ETL) processes. For non-IT specialists the typical way of

comparing financial data from two different years or quarters, for

example, would be to copy and paste the data from one Excel

spreadsheet into another one, thus creating reduncancies and

potentially introducing copy-and-paste errors. By using schema

matching techniques it is possible to support this process semi-

automatically, i.e. to determine which columns are similar and

propose them to the user for integration. This integration can then

be done with appropriate business intelligence tools to provide

visualisations.

One of the problems in performing the integration is the quality of

data. The columns may contain data that is noisy or incorrect.

There may also be no column headers to provide suitable

information for matching. A number of approaches exploit the

similarities of headers or similarities of types of column data. We

propose a new approach that exploits semantic rich typing

provided by popular datasets from the Linked Data cloud.

3.3.1 Data Reconciliation
Reconciliation enables entity resolution, i.e. matching cells with

corresponding typed entities in case of tabular data. Google

Refine already supports reconciliation with Freebase but requires

confirmation from the user. For medium to large data sets, this

can be very time-consuming. To reconcile data, we therefore first

identify the columns that are candidates for reconciliation by

skipping the columns containing numerical values or dates. We

then use the Freebase search API to query for each cell of the

source and target columns the list of typed entities candidates.

Results are cached in order to be retrieved by our similarity

algorithms.

3.3.2 Matching Unnamed and Untyped Columns
The AMC has the ability to combine the results of different

matching algorithms. Its default built-in matching algorithms

work on column headers and produce an overall similarity score

between the compared schema elements. It has been proven that

combining different algorithms greatly increases the quality of

matching results [8] [19]. However, when headers are missing or

ambiguous, the AMC can only exploit domain intersection and

inclusion algorithms based on column data. We have therefore

implemented three new similarity algorithms that leverage the rich

types retrieved from Linked Data in order to enhance the

matching results of unnamed or untyped columns. They are

presented below.

3.3.2.1 Cosine Similarity
The first algorithm that we implemented is based on vector

algebra. Let be the vector of ranked candidate types returned by

Freebase for each cell value of a column. Then:

 ∑

 ⃗⃗

where is the score of the entry and ⃗⃗ is the type returned by

Freebase. The vector notation is chosen to indicate that each

distinct answer determines one dimension in the space of results.

Each cell value has now a weighted result set that can be used for

aggregation to produce a result vector for the whole column. The

column result is then given by:

 ∑

We compare the result vector of candidate types from the source

column with the result vector of candidate types from the target

column. Let be the result vector for the target column, then the

similarity between the columns pair can be calculated using the

absolute value of the cosine similarity function:

| |

‖ ‖ ‖ ‖

3.3.2.2 Pearson Product-Moment Correlation

Coefficient (PPMCC)
The second algorithm that we implemented is PPMCC, a

statistical measure of the linear independence between two

variables [20]. In our method, x is an array that represents

the total scores for the source column rich types, y is an array that

represents the mapped values between the source and the target

columns. The values present in x but not in y are represented by

zeros. We have:

 [{ } { } { } { }]

 [{ } { } { } { }]

Where are different rich type values retrieved from

Freebase, are the sum of scores for each

corresponding r occurrence in the source column, and

 are the sum of scores for each corresponding r

occurrence in the target column.

The input for PPMC consists of two arrays that represent the

values from the source and target columns, where the source

column is the column with the largest set of rich types found. For

example:

 []

 []

Then the sample correlation coefficient (r) is calculated using:

∑ ̅ ̅

√∑ ̅
 √∑ ̅

Based on a sample paired data , the sample PPMCC is:

∑(

 ̅

)

(
 ̅

)

Where (
 ̅

) ̅and are the standard score, sample mean and

sample standard deviation, respectively.

3.3.2.3 Spearman’s Rank Correlation Coefficient
The last algorithm that we implemented to match unnamed and

untyped columns is Spearman’s rank correlation coefficient [21].

It applies a rank transformation on the input data and computes

PPMCC afterwards on the ranked data. In our experiments we

used Natural Ranking with default strategies for handling ties and

NaN values. The ranking algorithm is however configurable and

can be enhanced by using more sophisticated measures.

3.3.3 Column Labeling
We showed in the previous section how to match unnamed and

untyped columns. Column labeling is however beneficial as the

results of our previous algorithms can be combined with

traditional header matching techniques to improve the quality of

matching.

Rich types retrieved from Freebase are independent from each

other. We need to find a method that will determine normalized

score for each type in the set by balancing the proportion of high

scores with the lower ones. We used Wilson score interval for a

Bernoulli parameter that is presented in the following equation:

(

 ̂

 ⁄

 ⁄ √

[

 ̂ ̂
 ⁄

⁄

]

 ⁄

)

(⁄
 ⁄)⁄

Here ̂ is the average score for each rich type, n is the total

number of scores and ⁄ is the score level; in our case it is 1.96

to reflect a score level of 0.95.

3.3.4 Handling Non-String Values
So far, we have covered several methods to identify the similarity

between “String” values, but how about other numeral values such

as dates, money, distance, etc.? For this purpose, we have

implemented some basic type identifier that can recognize dates,

money, numerical values, numerals used as identifiers. This will

help us in better match corresponding entries. Adjusting AMC’s

combination algorithms can be of great importance at this stage.

For example, assigning weights to different matchers and

tweaking the configuration can yield more accurate results.

4. EXPERIMENTS
We present in this section results from experiments we conducted

using the different methods described above. To appreciate the

value of our approach, we have used a real life scenario that

exposes common problems faced by the management in SAP. The

data we have used come from two different SAP systems: the

Event tracker and the Travel Expense Manager.

The Event Tracker provides an overview of events (Conferences,

Internal events, etc.) that SAP Research employees contribute to

or host. The entries in this system contain as much information as

necessary to give an overview of the activity like the activity type

and title, travel destination, travel costs divided into several sub

categories (conference fees, accommodation, transportation and

others), and duration related information (departure, return dates).

Entries in the Event Tracker are generally entered in batches as

employees fill in their planned events that they wish to attend or

contribute to at the beginning of each year. Afterwards, managers

can either accept or reject these planned events according to their

allocated budget.

On the other hand, the Travel Expense Manager contains the

actual expenses data for the successfully accepted events. This

system is used by employees to enter their actual trip details in

order to claim their expenses. It contains more detailed

information and aggregated views of the events, such as the total

cost, duration calculated in days, currency exchange rates and lots

of internal system tags and identifiers.

Matching reports from these two systems is of great benefit to

managers to organize and monitor their allocated budget. They

mainly want to:

1. Find the number of the actual (accepted) travels

compared with the total number of entered events.

2. Calculate the deviation between the estimated and

actual cost of each event.

However, matching from these two sources can face several

difficulties that can be classified in two categories: column

headers and cells. Global labels (or column headers as we are

dealing with spreadsheet files) can have the following problems:

 Missing labels: importing files into Google Refine with

empty headers will result in assigning that column a

dummy name by concatenating the word “column” with

a number starting from 0.

 Dummy labels or semantically unrelated names: this is a

common problem especially from the data coming from

the Travel Expense Manager. This can be applied to

columns that are labeled according to the corresponding

database table (i.e. lbl_dst to denote destination label).

Moreover, column labels do not often convey the

semantic type of the underlying data.

The second category of difficulties is at cell (single entry) level:

 Detecting different date formats: we have found out that

dates field coming from the two systems have different

formats. Moreover, the built-in type detection in Google

Refine converts detected date into another third format.

 Entries from different people can be made in different

languages.

 Entries in the two systems can be incomplete, an entry

can be shortened automatically by the system. For

example, selecting a country in the Travel Expense

Manager will result in filling out that country code in

the exported report (i.e. France = FR).

 Inaccurate entries: this is one of the most common

problems. Users enter sometimes several values in some

fields that correspond to the same entity. For example,

in the destination column, users can enter the country,

the airport at the destination, the city or even the exact

location of the event (i.e. office location).

The data used in our evaluation consists of around 60 columns

and more than 1000 rows. Our source data set will be the data

coming from Event Tracker, and our target data set will be the

data from the Travel Expense Manager.

By manually examining the two data sets, we have found out that

most of the column headers in the source table exist and

adequately present the data. However, we have noticed few

missing labels in the target table and few ambiguous column

headers. We have detected several entries in several languages:

the main language is English but we have also identified French,

German. Destination field had entries in several formats: we have

noticed airport names, airports by their IATA code, country codes,

and cities.

Running AMC with its default matchers returns the matching

results shown in Table 1.

Source Column Target Column Similarity Score

Trip Begins On Begins On 0.8333334

Trip Ends On Ends On 0.8

Total Cost Total 0.7333335

Reason for Trip Reason for Trip 1

Receipt Amount Amount 0.7142875

Trip Destination Trip 0.72727275

Paid by Company Pd by Comp 0.6904762

Currency Curr. 0.55

Currency Crcy 0.5

Sequential no. Pers.No. 0.5555556

Total Miles/Km. M/Km 0.55

Period Number Period 0.5729166

Table 1. Similarity Scores Using the AMC Default Matching

Algorithms

The AMC has produced a total of 12 mappings, 10 of those were

valid matches (validated manually).

The AMC has perfectly matched the two columns labeled

“Reason for Trip” using name and data type similarity

calculations (the type here was identified as a String). Moreover,

it has computed several similarities for columns based on the pre-

implemented String matchers that were applied on the column

headers and the primitive data types of the cells (Integer, Double,

Float, etc.). However, there is no alignment found between the

other columns since their headers are not related to each other,

although the actual cell values can be similar. AMC’s default

configuration has a threshold of 50%, so any similarity score

below that will not be shown.

The Cosine Similarity algorithm combined with the AMC default

matchers produces the results shown in Table 2.

Source Column Target Column Similarity

Trip Begins On Begins On 0.8584657

Trip Ends On Ends On 0.84179896

Total Cost Total 0.799537

Reason for Trip Reason for Trip 0.79654884

Receipt Amount Amount 0.7910053

Trip Number Trip 0.76388884

Paid by Company Pd by Comp 0.76322746

Currency Curr. 0.72125995

Currency Crcy 0.72125995

Sequential no. Pers.No. 0.6973545

Total Miles/Km M/Km 0.69287604

tr_dst 0.6667874

Name of employee Last/First Name 0.5860022

or applicant

Period Number Period 0.5729166

Table 2. Similarity Scores Using the AMC Default Matching

Algorithms + Cosine Similarity Method

We notice that we have an increased number of mappings 14 (+2),

13 of them are valid matches. The similarity score for several

matches has also improved. For example, the “tr_dst” column is

now aligned to the blank header. This shows that our approach

allows performing schema matching on columns with no headers.

For simplicity reason we have used the default combination

algorithm for AMC which is an average of the applied algorithms

(AMC’s native and Cosine). We should also note that we have

configured AMC’s matchers to identify a

“SIMILARTY_UNKOWN” value for columns that could not be

matched successfully, which will allow other matchers to perform

better. For example, our semantic matchers will skip columns that

do not convey semantic meaning thus not affecting the score of

other matchers. Moreover, the relatively high similarity score of

“tr_dst” column is explained by the fact that the native AMC

matching algorithm has skipped that column as it does not have a

valid header, and the results are solely those of the Cosine

matcher. Likewise, the Cosine matcher skips checking the “Cost”

columns as they contain numeric values, and the implemented

numerical matchers with the AMC’s native matcher results are

taken into account.

To further enhance these results, we plug in our numeral matcher

in order to identify semantically related numeral values like date

or money or IDs. The results with the combination of the numeral

matcher are shown in table 3.

Source Column Target Column Similarity

Trip Begins On Begins On 0.89384925

Trip Ends On Ends On 0.8813492

Total Cost Total 0.799537

Reason for Trip Reason for Trip 0.9592593

Receipt Amount Amount 0.84325397

Trip Number Trip 0.76388884

Paid by Company Pd by Comp 0.76322746

Currency Curr. 0.6708754

Currency Crcy 0.6708754

Sequential no. Pers.No. 0.6973545

Total Miles/Km M/Km 0.69287604

Name of employee or

applicant Last/First Name 0.5860022

Period Number Period 0.5729166

Delta 0.5448413

Travel Expense Type 0.53974116

Table 3. Similarity Scores Using the AMC Default Matching

Algorithms + Cosine Similarity Method + Numeral matcher

Plugging the numeral matcher has increased the number of

matches found from the previous run to 15 (+1). However, the

number of valid matches is 12 with an efficiency of 80%

compared to 93% before plugging the numeral matcher. We

notice that the column “tr_dst” is not matched anymore.

Nevertheless, we have noticed a 1.7% enhancement in the

similarity scores computed for the matched columns. Looking at

the overall results, plugging in the Cosine matcher without and

with the numeral matcher has increased the quality of the matches

by 7% and 9% respectively.

The (PPMCC) Similarity algorithm combined with the AMC

default matchers produces the results shown in Table 4.

Source Column Target Column Similarity

Trip Begins On Begins On 0.8584879

Trip Ends On Ends On 0.84186417

Total Cost Total 0.8038907

Reason for Trip Reason for Trip 0.87595946

Receipt Amount Amount 0.7912254

Trip Number Trip 0.76388884

Paid by Company Pd by Comp 0.74321896

Currency Curr. 0.6708754

Currency Crcy 0.6708754

Sequential no. Pers.No. 0.6973545

Total Miles/Km M/Km 0.69287604

Name of employee

or applicant

Last/First Name 0.5860022

Period Number Period 0.5729166

tr_dst 0.6734204

Table 4. Similarity Scores Using the AMC Default Matching

Algorithms+ PPMCC Similarity Method

We notice again an increase in the number of matches compared

to the AMC’s default configuration as now we have 14 (+2)

matches, 13 of them are valid. In addition to that, we notice a

general increase in the similarity scores to those produced by the

default AMC’s algorithms.

Table 5 shows the results of the matching process after combining

the Numeral matcher with PPMCC.

Source Column Target Column Similarity

Trip Begins On Begins On 0.8940713

Trip Ends On Ends On 0.8816574

Total Cost Total 0.85332745

Reason for Trip Reason for Trip 0.9592593

Receipt Amount Amount 0.8438872

Trip Number Trip 0.82379955

Paid by Company Pd by Comp 0.82316905

Currency Curr. 0.73459923

Currency Crcy 0.73459923

Sequential no. Pers.No. 0.7746934

Total Miles/Km M/Km 0.7693292

Name of employee or Last/First Name 0.59110224

applicant

Delta 0.5448413

Travel Expense Type 0.53974116

Period Number Period 0.5729166

Table 5. Similarity Scores Using the AMC Default Matching

Algorithms + PPMCC Similarity Method + Numeral matcher

Plugging the numeral matcher has again increased the number of

matches by one but again has a lower percentage of valid matches.

Moreover, we noticed a significant increase in the similarity

scores as the results with the numeral matchers increased the

efficiency of the results by 6%. Looking at the overall results,

plugging in the PPMCC matcher without and with the Numeral

matcher has increased the quality of the matches by 12% and 6%

respectively.

The Spearman Similarity algorithm combined with the AMC

default matchers produces the results shown in Table 6.

Source Column Target Column Similarity

Trip Begins On Begins On 0.8584657

Trip Ends On Ends On 0.84179896

Total Cost Total 0.799537

Reason for Trip Reason for Trip 0.80542034

Receipt Amount Amount 0.7910053

Trip Number Trip 0.76388884

Paid by Company Pd by Comp 0.76322746

Currency Curr. 0.7247269

Currency Crcy 0.7247269

Sequential no. Pers.No. 0.6973545

Total Miles/Km M/Km 0.69287604

Name of employee

or applicant

Last/First Name 0.5860022

Period Number Period 0.5729166

Table 6. Similarity Scores Using the AMC Default Matching

Algorithms+ Spearman Similarity Method

We notice again an increase in the number of matches compared

to the AMC’s default configuration as now we have 13 (+1)

matches, 12 of them are valid. In addition to that we notice a

general increase in the similarity scores to those produced by the

default AMC’s algorithms. However, we notice that by plugging

the Spearman method, the number of matches has decreased

compared to the previous trials. After several experiments we

have found that this method does not work well with noisy data

sets. For instance, the similarity results returned by Cosine,

Pearson’s and Spearman’s matchers for the {tr_dst, empty

header} pair is much higher: 66%, 67% and 43% respectively.

Table 7 shows the results of the matching process after combining

the Numeral matcher with Spearman.

Source Column Target Column Similarity

Trip Begins On Begins On 0.85636675

Trip Ends On Ends On 0.84389883

Total Cost Total 0.79969454

Reason for Trip Reason for Trip 0.810609

Receipt Amount Amount 0.8059588

Trip Number Trip 0.76425445

Paid by Company Pd by Comp 0.76340765

Currency Curr. 0.72627753

Currency Crcy 0.72627753

Sequential no. Pers.No. 0.69819367

Total Miles/Km M/Km 0.69372773

Name of employee or

applicant Last/First Name 0.58712536

Period Number Period 0.5883792

Table 7. Similarity Scores Using the AMC Default Matching

Algorithms + Spearman Similarity Method + Numeral

matcher

Plugging in the Numeral matcher has slightly increased the

similarity scores by an average of 0.03%. In general, plugging in

the Spearman matcher without and with the Numeral matcher has

increased the quality of the matches by around 8%.

To properly measure the impact of each algorithm, we have tested

the three algorithms (Cosine, PPMCC and Spearman) alone by de-

activating the AMC’s default matchers on the above data set. The

results are shown in Figures 3 and 4. We have noticed that

generally, the Cosine and PPMCC matchers perform well,

resulting in more matching and better similarity score. However,

Spearman performed less efficiently in finding more matches due

to its inefficiency on noisy data sets.

To better evaluate the three algorithms, we have tested them on

four different data sets extracted from the Travel Expense

Manager and Event Tracker systems. We ensured that the

different experiments will cover all the cases needed to properly

evaluate the matcher dealing with all the problems mentioned

earlier. The results of our findings are shown in Figure 5.

We have found that generally the Cosine method is the best

performing algorithm compared to the other two especially when

dealing with noisy data sets. This was noticed particularly in our

fourth experiment as the Cosine algorithm performed around 20%

better than the other two methods. After investigating the dataset,

we have found that several columns contained noisy and unrelated

data. For example, in a “City” column, we had values such as

“reference book” or “NOT_KNOWN”.

To gain better similarity results we decided to combine several

matching algorithms together. By doing so, we would benefit

from the power of the AMC’s string matchers that will work on

column headers and our numeral and semantic matchers.

Table 8 shows the result of combining all the algorithms

mentioned above.

Source Column Target Column Similarity

Trip Begins On Begins On 0.92923284

Trip Ends On Ends On 0.92089945

Receipt Amount Amount 0.8955026

Total Cost Total 0.799537

Currency2 Curr. 0.7823203

Currency Crcy 0.77499205

Trip Country/Group Ctr2 0.767311

Trip Number Trip 0.76425445

Paid by Company Pd by Comp 0.76322746

tr_dst 0.73916584

Name of employee or

applicant Last/First Name 0.5747218

Table 8. Similarity Scores Using the Combination of all the

algorithms

0.7
0.72
0.74
0.76
0.78

0.8
0.82

With Numeral

Without
Numeral

11
12
13
14
15

Number Of
Matches

Number Of
Valid Matches

0

0.2

0.4

0.6

0.8

1

1.2

Cosin

PPMCC

Spearman

Figure 5. Performance score of the three

algorithms on four different data sets

Figure 4. The number of matches found by each

algorithm

Figure 3. Performance score of the three

algorithms

The combination of the above mentioned algorithms have

enhanced generally the similarity scores for the group. Moreover,

we notice that the column “Trip Country/Group” was matched

with “Ctr2”. This match was not computed singularly by any of

the previous algorithms. The total number of matches found was

lower to those on the previous runs (11 matches). However, all

these matches are valid with 100% efficiency with an average of

11% enhanced similarities.

We have found that combining matching algorithms resulted in

increased valid matches and higher similarity scores. Several

tuning methods can be applied in order to enhance the similarity

score as well. Trying other combination algorithms instead of the

naïve average will be an essential part of our future work.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented RUBIX, a framework enabling

mashup of potentially noisy enterprise and external data. The

implementation is based on Google Refine and uses Freebase to

annotate data with rich types. As a result, the matching process of

heterogeneous data sources is improved. Our preliminary

evaluation shows that for datasets where mappings were relevant

yet not proposed, RUBIX provides higher quality matching

results. Additionally, the number of matches discovered is

increased when Linked Data is used in most datasets. We plan in

future work to evaluate RUBIX on larger datasets using rigorous

statistical analysis [22]. We also consider integrating additional

linked open data sources of semantic types such as DBpedia [23]

or YAGO [24] and evaluate our matching results against instance-

based ontology alignment benchmarks such as [25] or [26].

Another future work will be to generalize our approach on data

schemas to data classification. The same way the AMC helps

identifying the best matches for two datasets, we plan to use it for

identifying the best statistical classifiers for a sole dataset, based

on normalized scores.

6. REFERENCES
[1] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti,

"Annotating and Searching Web Tables Using Entities,

Types and Relationships," Proceedings of the VLDB

Endowment, vol. III, no. 1, pp. 1338-1347, September 2010.

[2] Michael James Hernandez, Database design for mere

mortals: a hands-on guide to relational database design.:

Addison-Wesley, 2003.

[3] Danah Boyd and Kate Crawford, "Six Provocations for Big

Data," Computer and Information Science, vol. 123, no. 1,

2011.

[4] Steve LaValle, Eric Lesser, Rebecca Shockley, Michael S.

Hopkins, and Nina Kruschwitz, "Big Data, Analytics and the

Path from Insights to Value," MIT Sloan Management

Review, vol. 52, no. 2, 2011.

[5] C. Kavitha, G. Sudha Sadasivam, and Sangeetha N. Shenoy,

"Ontology Based Semantic Integration of Heterogeneous

Databases," European Journal of Scientific Research, vol.

64, no. 1, pp. 115-122, 2011.

[6] Google Code. Google Refine. [Online].

http://code.google.com/p/google-refine/

[7] Christian Bizer, Tom Heath, and Tim Berners-Lee, "Linked

Data - The Story So Far," International Journal on Semantic

Web and Information Systems, vol. 5, no. 3, pp. 1-22, 2009.

[8] Eric Peukert, Julian Eberius, and Rahm Erhard, "A Self-

Configuring Schema Matching System," in 28th IEEE

International Conference on Data Engineering, 2012.

[9] Renee J. Miller and Periklis Andritsos, "On Schema

Discovery," IEEE Data Engineering Bulletin, vol. 26, no. 3,

pp. 40-45, 2003.

[10] Davy de Castro Reis, Paulo B. Golgher, Altigran S. da Silva,

and Alberto H. F. Laender, "Automatic Web News

Extraction Using Tree Edit Distance," in 13th International

Conference on World Wide Web, 2004.

[11] Jiying Wang and Fred Lochovsky, "Data Extraction and

Label Assignment for Web Databases," in 12th International

Conference on World Wide Web, 2003.

[12] Altigran S. da Silva, Denilson Barbosa, M. B. Joao

Cavalcanti, and A. S. Marco Sevalho, "Labeling Data

Extracted from the Web," in International Conference on the

Move to Meaningful Internet Systems, 2007.

[13] Tim Finin, Zareen Syed, Varish Mulwad, and Anupam Joshi,

"Exploiting a Web of Semantic Data for Interpreting Tables,"

in Web Science Conference, 2010.

[14] Tim Finin, Zareen Syed, James Mayfield, Paul McNamee,

and Christine Piatko, "Using Wikitology for Cross-

Document Entity Coreference Resolution," in AAAI Spring

Symposium on Learning by Reading and Learning to Read,

2009.

[15] Oktie Hassanzadeh et al., "Helix: Online Enterprise Data

Analytics," in 20th International World Wide Web

Conference - Demo Track, 2011.

[16] Metaweb Technologies. Freebase. [Online].

http://www.freebase.com/

[17] Google Code. Smilie Butterfly. [Online].

http://code.google.com/p/simile-butterfly/

[18] Eric Peukert, Julian Eberius, and Erhard Rahm, "AMC - A

Framework for Modelling and Comparing Matching Systems

as Matching Processes," in International Conference on Data

Engineering - Demo Track, 2011.

[19] Umberto Straccia and Raphael Troncy, "oMAP: Combining

Classifiers for Aligning Automatically OWL Ontologies," in

6th International Conference on Web Information Systems

Engineering, 2005, pp. 133-147.

[20] Charles J. Kowalski, "On the Effects of Non-Normality on

the Distribution of the Sample Product-Moment Correlation

Coefficient," Journal of the Royal Statistical Society, vol. 21,

no. 1, pp. 1-12, 1972.

[21] Sarah Boslaugh and Paul Andrew Watters, Statistics in a

Nutshell.: O'Reilly Media, 2008.

[22] Tom Fawcett, "An Introduction to ROC Analysis," Journal

of Pattern Recognition Letters, vol. 27, no. 8, 2006.

[23] Soren Auer et al., "DBpedia: A Nucleus for a Web of Open

Data," in 6th International and 2nd Asian Semantic Web

Conference , 2007.

[24] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum,

"Yago: a Core of Semantic Knowledge," in 16th

http://code.google.com/p/google-refine/
http://www.freebase.com/
http://code.google.com/p/simile-butterfly/

International Conference on World Wide Web, 2007.

[25] (2012) Instance Matching at OAEI. [Online].

http://www.instancematching.org/oaei/

[26] Alfio Ferrara. ISLab Instance Matching Benchmark.

[Online]. http://islab.dico.unimi.it/iimb/

http://www.instancematching.org/oaei/
http://islab.dico.unimi.it/iimb/

