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ABSTRACT 
With today’s public data sets containing billions of data items, 

more and more companies are looking to integrate external data 

with their traditional enterprise data to improve business 

intelligence analysis. These distributed data sources however 

exhibit heterogeneous data formats and terminologies and may 

contain noisy data. In this paper, we present RUBIX, a novel 

framework that enables business users to semi-automatically 

perform data integration on potentially noisy tabular data. This 

framework offers an extension to Google Refine with novel 

schema matching algorithms leveraging Freebase rich types. First 

experiments show that using Linked Data to map cell values with 

instances and column headers with types improves significantly 

the quality of the matching results and therefore should lead to 

more informed decisions. 

Categories and Subject Descriptors 

H.3.5 [Information Storage and Retrieval]: Content Analysis 

and Indexing, Information Search and Retrieval, On-line 

Information Services.  

General Terms 

Algorithms, Measurement, Experimentation 

Keywords 

Business Intelligence, Data Integration, Semantic Web, Data 

Mashup, Instance Matching, Linked Data, 

1. INTRODUCTION 
Companies have traditionally performed business analysis based 

on transactional data stored in legacy relational databases. The 

enterprise data available for decision makers was typically 

relationship management or enterprise resource planning data [2]. 

However social media feeds, weblogs, sensor data, or data 

published by governments or international organizations are 

nowadays becoming increasingly available [3].  

The quality and amount of structured knowledge available make it 

now feasible for companies to mine this huge amount of public 

data and integrate it in their next-generation enterprise 

information management systems. Analyzing this new type of 

data within the context of existing enterprise data should bring 

them new or more accurate business insights and allow better 

recognition of sales and market opportunities [4]. 

These new distributed sources, however, raise tremendous 

challenges. They have inherently different file formats, access 

protocols or query languages. They possess their own data model 

with different ways of representing and storing the data. Data 

across these sources may be noisy (e.g. duplicate or inconsistent), 

uncertain or be semantically similar yet different [5]. Integration 

and provision of a unified view for these heterogeneous and 

complex data structures therefore require powerful tools to map 

and organize the data.  

In this paper, we present RUBIX, a framework that enables 

business users to semi-automatically combine potentially noisy 

data residing in heterogeneous silos. Semantically related data is 

identified and appropriate mappings are suggested to users. On 

user acceptance, data is aggregated and can be visualized directly 

or exported to Business Intelligence reporting tools. RUBIX is 

composed of a set of extensions to Google Refine server and a 

plug-in to its user interface [6]. Google Refine was selected for its 

extensibility as well as good cleansing and transformation 

capabilities [7].  

 

We first map cell values with instances and column headers with 

types from popular data sets from the Linked Open Data Cloud. 

To perform the matching, we use the Auto Mapping Core (also 

called AMC [8]) that combines the results of various similarity 

algorithms. The novelty of our approach resides in our 

exploitation of Linked Data to improve the schema matching 

process. We developed specific algorithms on rich types from 

vector algebra and statistics. The AMC generates a list of high-

quality mappings from these algorithms allowing better data 

integration. 

 

First experiments show that Linked Data increases significantly 

the number of mappings suggested to the user. Schemas can also 

be discovered if column headers are not defined and can be 

improved when they are not named or typed correctly. Finally, 

data reconciliation can be performed regardless of data source 

languages or ambiguity. All these enhancements allow business 

users to get more valuable and higher-quality data and 

consequently to take more informed decisions.  

 

The rest of the paper is organized as follows. Section 2 presents 

some related work. Section 3 describes the framework that we 

have designed for business users to combine data from 

heterogeneous sources. Section 4 validates our approach and 

shows the value of the framework through experiments. Finally, 

Section 5 concludes the paper and discusses future work. 
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2. RELATED WORK 
While schema matching has always been an active research area 

in data integration, new challenges are faced today by the 

increasing size, number and complexity of data sources and their 

distribution over the network. Data sets are not always correctly 

typed or labeled and that hinders the matching process. 

In the past, some work has tried to improve existing data schemas 

[9] but literature mainly covers automatic or semi-automatic 

labeling of anonymous data sets through Web extraction. 

Examples include [10] that automatically labels news articles with 

a tree structure analysis or [11] that defines heuristics based on 

distance and alignment of a data value and its label. These 

approaches are however restricting label candidates to Web 

content from which the data was extracted. [12] goes a step 

further by launching speculative queries to standard Web search 

engines to enlarge the set of potential candidate labels. More 

recently, [1] applies machine learning techniques to respectively 

annotate table rows as entities, columns as their types and pairs of 

columns as relationships, referring to the YAGO ontology. The 

work presented aims however at leveraging such annotations to 

assist semantic search queries construction and not at improving 

schema matching.  

With the emergence of the Semantic Web, new work in the area 

has tried to exploit Linked Data repositories. The authors of [13] 

present techniques to automatically infer a semantic model on 

tabular data by getting top candidates from Wikitology [14] and 

classifying them with the Google page ranking algorithm. Since 

the authors’ goal is to export the resulting table data as Linked 

Data and not to improve schema matching, some columns can be 

labeled incorrectly, and acronyms and languages are not well 

handled [13]. In the Helix project [15], a tagging mechanism is 

used to add semantic information on tabular data. A sample of 

instances values for each column is taken and a set of tags with 

scores are gathered from online sources such as Freebase [16]. 

Tags are then correlated to infer annotations for the column. The 

mechanism is quite similar to ours but the resulting tags for the 

column are independent of the existing column name and 

sampling might not always provide a representative population of 

the instance values. 

3. PROPOSITION 
Google Refine (formerly Freebase Gridworks) is a tool designed 

to quickly and efficiently process, clean and eventually enrich 

large amounts of data with existing knowledge bases such as 

Freebase. The tool has however some limitations: it was initially 

designed for data cleansing on only one data set at a time, with no 

possibility to compose columns from different data sets. 

Moreover, Google Refine has some strict assumptions over the 

input of spreadsheets which makes it difficult to identify primitive 

and complex data types. 

 

The AMC is a novel framework that supports the construction and 

execution of new matching components or algorithms. AMC 

contains several matching components that can be plugged and 

used, like string matchers (Levenshtein, JaroWinkler … etc.), data 

types matchers and path matchers. It also provides a set of 

combination and selection algorithms to produce optimized results 

(weighted average, average, sigmoid … etc.).   

 

In this section, we describe in detail our framework allowing data 

mashup from several sources. We first present our framework 

architecture, then the activity flow and finally our approach to 

schema matching. 

 

3.1 Framework Architecture 
Google Refine makes use of a modular web application 

framework similar to OSGi called Butterfly [17]. The server-side 

written in Java maintains states of the data (undo/redo history, 

long-running processes, etc.) while the client-side implemented in 

Javascript maintains states of the user interface (facets and their 

selections, view pagination, etc.). Communication between the 

client and server is done through REST web services. 

As depicted in Figure 1, our framework leverages Google Refine 

and defines three new Butterfly modules to extend the server’s 

functionality (namely Match, Merge and Aggregate modules) and 

one JavaScript extension to capture user interaction with these 

new data matching capabilities.  

3.2 Activity Flow 
This section presents the sequence of activities and 

interdependencies between these activities when using our 

framework. Figure 2 gives an outline of these activities. 

 

The data sets to match can be contained in files (e.g. csv, Excel 

spreadsheets, etc.) or defined in Google Refine projects (step 1). 

The inputs for the match module are the source and target files 

and/or projects that contain the data sets. These projects are 

imported into the internal data structure (called schema) of the 

AMC [18] (step 2). The AMC then uses a set of built-in 

algorithms to calculate similarities between the source and target 

schemas on an element basis, i.e. column names in the case of 

spreadsheets or relational databases. The output is a set of 

similarities, each containing a triple consisting of source schema 

element, target element, and similarity between the two. 

Figure 2. Activity Flow 

 

 

Figure 1. Framework Architecture 
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These results are presented to the user in tabular form (step 3) 

such that s/he can check, correct, and potentially complete the 

mappings (step 4). 

Once the user has completed the matching of columns, the merge 

information is sent back to Google Refine, which calls the merge 

module. This module creates a new project, which contains a 

union of the two projects where the matched columns of the target 

project are appended to the corresponding source columns (step 

5). The user can then select the columns that s/he wants to merge 

and visualize by dragging and dropping the required columns onto 

the fields that represent the x and y axes (step 6).  

 

Once the selection has been performed, the aggregation module 

merges the filtered columns and the result can then be visualized 

(step 7). As aggregation operations can quickly become complex, 

our default aggregation module can be replaced by more advanced 

analytics on tabular data. The integration of such a tool is part of 

future work. 

3.3 Schema Matching  
Schema matching is typically used in business to business 

integration, metamodel matching, as well as Extract, Transform, 

Load (ETL) processes. For non-IT specialists the typical way of 

comparing financial data from two different years or quarters, for 

example, would be to copy and paste the data from one Excel 

spreadsheet into another one, thus creating reduncancies and 

potentially introducing copy-and-paste errors. By using schema 

matching techniques it is possible to support this process semi-

automatically, i.e. to determine which columns are similar and 

propose them to the user for integration. This integration can then 

be done with appropriate business intelligence tools to provide 

visualisations. 

One of the problems in performing the integration is the quality of 

data. The columns may contain data that is noisy or incorrect. 

There may also be no column headers to provide suitable 

information for matching. A number of approaches exploit the 

similarities of headers or similarities of types of column data. We 

propose a new approach that exploits semantic rich typing 

provided by popular datasets from the Linked Data cloud.  

3.3.1 Data Reconciliation 
Reconciliation enables entity resolution, i.e. matching cells with 

corresponding typed entities in case of tabular data. Google 

Refine already supports reconciliation with Freebase but requires 

confirmation from the user. For medium to large data sets, this 

can be very time-consuming. To reconcile data, we therefore first 

identify the columns that are candidates for reconciliation by 

skipping the columns containing numerical values or dates. We 

then use the Freebase search API to query for each cell of the 

source and target columns the list of typed entities candidates. 

Results are cached in order to be retrieved by our similarity 

algorithms.   

3.3.2 Matching Unnamed and Untyped Columns 
The AMC has the ability to combine the results of different 

matching algorithms. Its default built-in matching algorithms 

work on column headers and produce an overall similarity score 

between the compared schema elements. It has been proven that 

combining different algorithms greatly increases the quality of 

matching results [8] [19]. However, when headers are missing or 

ambiguous, the AMC can only exploit domain intersection and 

inclusion algorithms based on column data. We have therefore 

implemented three new similarity algorithms that leverage the rich 

types retrieved from Linked Data in order to enhance the 

matching results of unnamed or untyped columns. They are 

presented below. 

3.3.2.1 Cosine Similarity  
The first algorithm that we implemented is based on vector 

algebra. Let   be the vector of ranked candidate types returned by 

Freebase for each cell value of a column. Then: 

   ∑  

 

   

   ⃗⃗  

where    is the score of the entry and   ⃗⃗  is the type returned by 

Freebase. The vector notation is chosen to indicate that each 

distinct answer determines one dimension in the space of results.  

Each cell value has now a weighted result set that can be used for 

aggregation to produce a result vector for the whole column. The 

column result   is then given by: 
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We compare the result vector of candidate types from the source 

column with the result vector of candidate types from the target 

column. Let   be the result vector for the target column, then the 

similarity   between the columns pair can be calculated using the 

absolute value of the cosine similarity function:  

  
|     |

‖ ‖  ‖ ‖
 

3.3.2.2 Pearson Product-Moment Correlation 

Coefficient (PPMCC) 
The second algorithm that we implemented is PPMCC, a 

statistical measure of the linear independence between two 

variables       [20]. In our method, x is an array that represents 

the total scores for the source column rich types, y is an array that 

represents the mapped values between the source and the target 

columns. The values present in x but not in y are represented by 

zeros. We have: 

             [{       } {       } {       }  {       }] 

             [{       } {       } {       }  {       }] 

Where            are different rich type values retrieved from 

Freebase,                  are the sum of scores for each 

corresponding r occurrence in the source column, and 

                 are the sum of scores for each corresponding r 

occurrence in the target column.  

The input for PPMC consists of two arrays that represent the 

values from the source and target columns, where the source 

column is the column with the largest set of rich types found. For 

example: 
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Then the sample correlation coefficient (r) is calculated using: 
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Based on a sample paired data       , the sample PPMCC is: 
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Where (
     ̅

  
)    ̅and    are the standard score, sample mean and 

sample standard deviation, respectively. 

3.3.2.3 Spearman’s Rank Correlation Coefficient 
The last algorithm that we implemented to match unnamed and 

untyped columns is Spearman’s rank correlation coefficient [21]. 

It applies a rank transformation on the input data and computes 

PPMCC afterwards on the ranked data. In our experiments we 

used Natural Ranking with default strategies for handling ties and 

NaN values. The ranking algorithm is however configurable and 

can be enhanced by using more sophisticated measures.  

3.3.3 Column Labeling 
We showed in the previous section how to match unnamed and 

untyped columns. Column labeling is however beneficial as the 

results of our previous algorithms can be combined with 

traditional header matching techniques to improve the quality of 

matching. 

Rich types retrieved from Freebase are independent from each 

other. We need to find a method that will determine normalized 

score for each type in the set by balancing the proportion of high 

scores with the lower ones. We used Wilson score interval for a 

Bernoulli parameter that is presented in the following equation: 
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Here  ̂ is the average score for each rich type, n is the total 

number of scores and    ⁄  is the score level; in our case it is 1.96 

to reflect a score level of 0.95. 

 

3.3.4 Handling Non-String Values 
So far, we have covered several methods to identify the similarity 

between “String” values, but how about other numeral values such 

as dates, money, distance, etc.? For this purpose, we have 

implemented some basic type identifier that can recognize dates, 

money, numerical values, numerals used as identifiers. This will 

help us in better match corresponding entries. Adjusting AMC’s 

combination algorithms can be of great importance at this stage. 

For example, assigning weights to different matchers and 

tweaking the configuration can yield more accurate results. 

4. EXPERIMENTS 
We present in this section results from experiments we conducted 

using the different methods described above. To appreciate the 

value of our approach, we have used a real life scenario that 

exposes common problems faced by the management in SAP. The 

data we have used come from two different SAP systems: the 

Event tracker and the Travel Expense Manager.  

The Event Tracker provides an overview of events (Conferences, 

Internal events, etc.) that SAP Research employees contribute to 

or host. The entries in this system contain as much information as 

necessary to give an overview of the activity like the activity type 

and title, travel destination, travel costs divided into several sub 

categories (conference fees, accommodation, transportation and 

others), and duration related information (departure, return dates). 

Entries in the Event Tracker are generally entered in batches as 

employees fill in their planned events that they wish to attend or 

contribute to at the beginning of each year. Afterwards, managers 

can either accept or reject these planned events according to their 

allocated budget. 

On the other hand, the Travel Expense Manager contains the 

actual expenses data for the successfully accepted events. This 

system is used by employees to enter their actual trip details in 

order to claim their expenses. It contains more detailed 

information and aggregated views of the events, such as the total 

cost, duration calculated in days, currency exchange rates and lots 

of internal system tags and identifiers.  

Matching reports from these two systems is of great benefit to 

managers to organize and monitor their allocated budget. They 

mainly want to: 

1. Find the number of the actual (accepted) travels 

compared with the total number of entered events. 

2. Calculate the deviation between the estimated and 

actual cost of each event. 

However, matching from these two sources can face several 

difficulties that can be classified in two categories: column 

headers and cells. Global labels (or column headers as we are 

dealing with spreadsheet files) can have the following problems: 

 Missing labels: importing files into Google Refine with 

empty headers will result in assigning that column a 

dummy name by concatenating the word “column” with 

a number starting from 0.  

 Dummy labels or semantically unrelated names: this is a 

common problem especially from the data coming from 

the Travel Expense Manager. This can be applied to 

columns that are labeled according to the corresponding 

database table (i.e. lbl_dst to denote destination label). 

Moreover, column labels do not often convey the 

semantic type of the underlying data. 

The second category of difficulties is at cell (single entry) level:  

 Detecting different date formats: we have found out that 

dates field coming from the two systems have different 

formats. Moreover, the built-in type detection in Google 

Refine converts detected date into another third format. 

 Entries from different people can be made in different 

languages. 

 Entries in the two systems can be incomplete, an entry 

can be shortened automatically by the system. For 

example, selecting a country in the Travel Expense 

Manager will result in filling out that country code in 

the exported report (i.e. France = FR). 

 Inaccurate entries: this is one of the most common 

problems. Users enter sometimes several values in some 

fields that correspond to the same entity. For example, 

in the destination column, users can enter the country, 

the airport at the destination, the city or even the exact 

location of the event (i.e. office location). 

The data used in our evaluation consists of around 60 columns 

and more than 1000 rows. Our source data set will be the data 

coming from Event Tracker, and our target data set will be the 

data from the Travel Expense Manager. 

By manually examining the two data sets, we have found out that 

most of the column headers in the source table exist and 

adequately present the data. However, we have noticed few 

missing labels in the target table and few ambiguous column 

headers. We have detected several entries in several languages: 



the main language is English but we have also identified French, 

German. Destination field had entries in several formats: we have 

noticed airport names, airports by their IATA code, country codes, 

and cities. 

Running AMC with its default matchers returns the matching 

results shown in Table 1. 

 

Source Column Target Column Similarity Score 

Trip Begins On Begins On 0.8333334 

Trip Ends On Ends On 0.8 

Total Cost Total 0.7333335 

Reason for Trip Reason for Trip 1 

Receipt Amount Amount 0.7142875 

Trip Destination Trip 0.72727275 

Paid by Company Pd by Comp 0.6904762 

Currency Curr. 0.55 

Currency Crcy 0.5 

Sequential no. Pers.No. 0.5555556 

Total Miles/Km. M/Km 0.55 

Period Number Period 0.5729166 

 

Table 1. Similarity Scores Using the AMC Default Matching 

Algorithms 

The AMC has produced a total of 12 mappings, 10 of those were 

valid matches (validated manually). 

The AMC has perfectly matched the two columns labeled 

“Reason for Trip” using name and data type similarity 

calculations (the type here was identified as a String). Moreover, 

it has computed several similarities for columns based on the pre-

implemented String matchers that were applied on the column 

headers and the primitive data types of the cells (Integer, Double, 

Float, etc.). However, there is no alignment found between the 

other columns since their headers are not related to each other, 

although the actual cell values can be similar. AMC’s default 

configuration has a threshold of 50%, so any similarity score 

below that will not be shown. 

The Cosine Similarity algorithm combined with the AMC default 

matchers produces the results shown in Table 2. 

Source Column Target Column Similarity  

Trip Begins On Begins On 0.8584657 

Trip Ends On Ends On 0.84179896 

Total Cost Total 0.799537 

Reason for Trip Reason for Trip 0.79654884 

Receipt Amount Amount 0.7910053 

Trip Number Trip 0.76388884 

Paid by Company Pd by Comp 0.76322746 

Currency Curr. 0.72125995 

Currency Crcy 0.72125995 

Sequential no. Pers.No. 0.6973545 

Total Miles/Km M/Km 0.69287604 

tr_dst  0.6667874 

Name of employee Last/First Name 0.5860022 

or applicant 

Period Number Period 0.5729166 

 

Table 2. Similarity Scores Using the AMC Default Matching 

Algorithms + Cosine Similarity Method  

We notice that we have an increased number of mappings 14 (+2), 

13 of them are valid matches. The similarity score for several 

matches has also improved. For example, the “tr_dst” column is 

now aligned to the blank header. This shows that our approach 

allows performing schema matching on columns with no headers.  

For simplicity reason we have used the default combination 

algorithm for AMC which is an average of the applied algorithms 

(AMC’s native and Cosine). We should also note that we have 

configured AMC’s matchers to identify a 

“SIMILARTY_UNKOWN” value for columns that could not be 

matched successfully, which will allow other matchers to perform 

better. For example, our semantic matchers will skip columns that 

do not convey semantic meaning thus not affecting the score of 

other matchers. Moreover, the relatively high similarity score of 

“tr_dst” column is explained by the fact that the native AMC 

matching algorithm has skipped that column as it does not have a 

valid header, and the results are solely those of the Cosine 

matcher. Likewise, the Cosine matcher skips checking the “Cost” 

columns as they contain numeric values, and the implemented 

numerical matchers with the AMC’s native matcher results are 

taken into account. 

To further enhance these results, we plug in our numeral matcher 

in order to identify semantically related numeral values like date 

or money or IDs. The results with the combination of the numeral 

matcher are shown in table 3. 

Source Column Target Column Similarity  

Trip Begins On Begins On 0.89384925 

Trip Ends On Ends On 0.8813492 

Total Cost Total 0.799537 

Reason for Trip Reason for Trip 0.9592593 

Receipt Amount Amount 0.84325397 

Trip Number Trip 0.76388884 

Paid by Company Pd by Comp 0.76322746 

Currency Curr. 0.6708754 

Currency Crcy 0.6708754 

Sequential no. Pers.No. 0.6973545 

Total Miles/Km M/Km 0.69287604 

Name of employee or 

applicant Last/First Name 0.5860022 

Period Number Period 0.5729166 

Delta   0.5448413 

Travel Expense Type   0.53974116 

 

Table 3. Similarity Scores Using the AMC Default Matching 

Algorithms + Cosine Similarity Method + Numeral matcher 

Plugging the numeral matcher has increased the number of 

matches found from the previous run to 15 (+1). However, the 

number of valid matches is 12 with an efficiency of 80% 



compared to 93% before plugging the numeral matcher. We 

notice that the column “tr_dst” is not matched anymore. 

Nevertheless, we have noticed a 1.7% enhancement in the 

similarity scores computed for the matched columns. Looking at 

the overall results, plugging in the Cosine matcher without and 

with the numeral matcher has increased the quality of the matches 

by 7% and 9% respectively. 

The (PPMCC) Similarity algorithm combined with the AMC 

default matchers produces the results shown in Table 4. 

Source Column Target Column Similarity  

Trip Begins On Begins On 0.8584879 

Trip Ends On Ends On 0.84186417 

Total Cost Total 0.8038907 

Reason for Trip Reason for Trip 0.87595946 

Receipt Amount Amount 0.7912254 

Trip Number Trip 0.76388884 

Paid by Company Pd by Comp 0.74321896 

Currency Curr. 0.6708754 

Currency Crcy 0.6708754 

Sequential no. Pers.No. 0.6973545 

Total Miles/Km M/Km 0.69287604 

Name of employee 

or applicant 

Last/First Name 0.5860022 

Period Number Period 0.5729166 

tr_dst  0.6734204 

 

Table 4. Similarity Scores Using the AMC Default Matching 

Algorithms+  PPMCC Similarity Method 

We notice again an increase in the number of matches compared 

to the AMC’s default configuration as now we have 14 (+2) 

matches, 13 of them are valid. In addition to that, we notice a 

general increase in the similarity scores to those produced by the 

default AMC’s algorithms.  

Table 5 shows the results of the matching process after combining 

the Numeral matcher with PPMCC. 

Source Column Target Column Similarity  

Trip Begins On Begins On 0.8940713 

Trip Ends On Ends On 0.8816574 

Total Cost Total 0.85332745 

Reason for Trip Reason for Trip 0.9592593 

Receipt Amount Amount 0.8438872 

Trip Number Trip 0.82379955 

Paid by Company Pd by Comp 0.82316905 

Currency Curr. 0.73459923 

Currency Crcy 0.73459923 

Sequential no. Pers.No. 0.7746934 

Total Miles/Km M/Km 0.7693292 

Name of employee or Last/First Name 0.59110224 

applicant 

Delta   0.5448413 

Travel Expense Type   0.53974116 

Period Number Period 0.5729166 

 

Table 5. Similarity Scores Using the AMC Default Matching 

Algorithms + PPMCC Similarity Method + Numeral matcher 

Plugging the numeral matcher has again increased the number of 

matches by one but again has a lower percentage of valid matches. 

Moreover, we noticed a significant increase in the similarity 

scores as the results with the numeral matchers increased the 

efficiency of the results by 6%. Looking at the overall results, 

plugging in the PPMCC matcher without and with the Numeral 

matcher has increased the quality of the matches by 12% and 6% 

respectively. 

The Spearman Similarity algorithm combined with the AMC 

default matchers produces the results shown in Table 6. 

Source Column Target Column Similarity  

Trip Begins On Begins On 0.8584657 

Trip Ends On Ends On 0.84179896 

Total Cost Total 0.799537 

Reason for Trip Reason for Trip 0.80542034 

Receipt Amount Amount 0.7910053 

Trip Number Trip 0.76388884 

Paid by Company Pd by Comp 0.76322746 

Currency Curr. 0.7247269 

Currency Crcy 0.7247269 

Sequential no. Pers.No. 0.6973545 

Total Miles/Km M/Km 0.69287604 

Name of employee 

or applicant 

Last/First Name 0.5860022 

Period Number Period 0.5729166 

 

Table 6. Similarity Scores Using the AMC Default Matching 

Algorithms+ Spearman Similarity Method 

We notice again an increase in the number of matches compared 

to the AMC’s default configuration as now we have 13 (+1) 

matches, 12 of them are valid. In addition to that we notice a 

general increase in the similarity scores to those produced by the 

default AMC’s algorithms. However, we notice that by plugging 

the Spearman method, the number of matches has decreased 

compared to the previous trials. After several experiments we 

have found that this method does not work well with noisy data 

sets. For instance, the similarity results returned by Cosine, 

Pearson’s and Spearman’s matchers for the {tr_dst, empty 

header} pair is much higher: 66%, 67% and 43% respectively.  

Table 7 shows the results of the matching process after combining 

the Numeral matcher with Spearman. 

Source Column Target Column Similarity  

Trip Begins On Begins On 0.85636675 

Trip Ends On Ends On 0.84389883 



Total Cost Total 0.79969454 

Reason for Trip Reason for Trip 0.810609 

Receipt Amount Amount 0.8059588 

Trip Number Trip 0.76425445 

Paid by Company Pd by Comp 0.76340765 

Currency Curr. 0.72627753 

Currency Crcy 0.72627753 

Sequential no. Pers.No. 0.69819367 

Total Miles/Km M/Km 0.69372773 

Name of employee or 

applicant Last/First Name 0.58712536 

Period Number Period 0.5883792 

 

Table 7. Similarity Scores Using the AMC Default Matching 

Algorithms + Spearman Similarity Method + Numeral 

matcher 

Plugging in the Numeral matcher has slightly increased the 

similarity scores by an average of 0.03%. In general, plugging in 

the Spearman matcher without and with the Numeral matcher has 

increased the quality of the matches by around 8%. 

To properly measure the impact of each algorithm, we have tested 

the three algorithms (Cosine, PPMCC and Spearman) alone by de-

activating the AMC’s default matchers on the above data set. The 

results are shown in Figures 3 and 4. We have noticed that 

generally, the Cosine and PPMCC matchers perform well, 

resulting in more matching and better similarity score. However, 

Spearman performed less efficiently in finding more matches due 

to its inefficiency on noisy data sets. 

 

 

 

 

To better evaluate the three algorithms, we have tested them on 

four different data sets extracted from the Travel Expense 

Manager and Event Tracker systems. We ensured that the 

different experiments will cover all the cases needed to properly 

evaluate the matcher dealing with all the problems mentioned 

earlier. The results of our findings are shown in Figure 5.  

 

 

We have found that generally the Cosine method is the best 

performing algorithm compared to the other two especially when 

dealing with noisy data sets. This was noticed particularly in our 

fourth experiment as the Cosine algorithm performed around 20% 

better than the other two methods. After investigating the dataset, 

we have found that several columns contained noisy and unrelated 

data. For example, in a “City” column, we had values such as 

“reference book” or “NOT_KNOWN”.  

To gain better similarity results we decided to combine several 

matching algorithms together. By doing so, we would benefit 

from the power of the AMC’s string matchers that will work on 

column headers and our numeral and semantic matchers.  

Table 8 shows the result of combining all the algorithms 

mentioned above. 

Source Column Target Column Similarity  

Trip Begins On Begins On 0.92923284 

Trip Ends On Ends On 0.92089945 

Receipt Amount Amount 0.8955026 

Total Cost Total 0.799537 

Currency2 Curr. 0.7823203 

Currency Crcy 0.77499205 

Trip Country/Group Ctr2 0.767311 

Trip Number Trip 0.76425445 

Paid by Company Pd by Comp 0.76322746 

tr_dst   0.73916584 

Name of employee or 

applicant Last/First Name 0.5747218 

 

Table 8. Similarity Scores Using the Combination of all the 

algorithms 
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Figure 5. Performance score of the three 

algorithms on four different data sets 

 

 

Figure 4. The number of matches found by each 

algorithm 

 

 

Figure 3. Performance score of the three 

algorithms 

 

 



The combination of the above mentioned algorithms have 

enhanced generally the similarity scores for the group. Moreover, 

we notice that the column “Trip Country/Group” was matched 

with “Ctr2”. This match was not computed singularly by any of 

the previous algorithms. The total number of matches found was 

lower to those on the previous runs (11 matches). However, all 

these matches are valid with 100% efficiency with an average of 

11% enhanced similarities. 

We have found that combining matching algorithms resulted in 

increased valid matches and higher similarity scores. Several 

tuning methods can be applied in order to enhance the similarity 

score as well. Trying other combination algorithms instead of the 

naïve average will be an essential part of our future work. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we presented RUBIX, a framework enabling 

mashup of potentially noisy enterprise and external data. The 

implementation is based on Google Refine and uses Freebase to 

annotate data with rich types. As a result, the matching process of 

heterogeneous data sources is improved. Our preliminary 

evaluation shows that for datasets where mappings were relevant 

yet not proposed, RUBIX provides higher quality matching 

results. Additionally, the number of matches discovered is 

increased when Linked Data is used in most datasets. We plan in 

future work to evaluate RUBIX on larger datasets using rigorous 

statistical analysis [22]. We also consider integrating additional 

linked open data sources of semantic types such as DBpedia [23] 

or YAGO [24] and evaluate our matching results against instance-

based ontology alignment benchmarks such as [25] or [26]. 

Another future work will be to generalize our approach on data 

schemas to data classification. The same way the AMC helps 

identifying the best matches for two datasets, we plan to use it for 

identifying the best statistical classifiers for a sole dataset, based 

on normalized scores. 
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