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Abstract

In this paper, a fault diagnosis method is developed for a particular class

of nonlinear systems described by a polytopic Linear Parameter Varying

(LPV) formulation. The main contribution consists in the synthesis of an

accurate Fault Detection and Isolation (FDI) filter and also a sensor fault

magnitude estimation with a quality factor. This quality factor of the filter

underlines if the fault estimation can be used or not. Stability conditions

of the polytopic LPV filter are studied by ensuring poly-quadratic stability

with Linear Matrix Inequality (LMI) representation. The effectiveness of

this global FDI scheme through LPV modelization, filter design and stability

analysis, is illustrated on a real winding machine under multiple sensor faults.

Keywords: Polytopic LPV system, observer, fault diagnosis, sensor,

model-based, LMI, winding machine
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1. Introduction

Complex automated industrial systems are vulnerable to faults in instru-

mentation due to the fact that sensors and actuators can be deteriorated. The

unexpected sensor or actuator faults may cause unacceptable deterioration

of continuous operations and leads to dangerous situations for a human op-

erator (Isermann and Balle, 1997),(Rodrigues et al., 2007). Fault Detection

and Isolation (FDI) refers to the task of inferring the occurrence of faults

in a process (Harris et al., 1999) and finding their root causes with vari-

ous knowledge-based system strategies: quantitative models (Venkatasubra-

manian et al., 2003a) and qualitative models (Venkatasubramanian et al.,

2003b). Model-based FDI techniques are considered to guarantee safety in

industrial Process Control (Knittel et al., 2003). Several books are dedicated

to these topics such as (Gertler, 1998; Chen and Patton, 1999; Chiang et al.,

2001) or more recently (Ding, 2008).

However, FDI for nonlinear systems remains a challenge (Bokor and Sz-

abo, 2009) due to the fact that a wide operating range is considered for such

systems and a single LTI model could not be used for all considered operat-

ing points. Another way to deal with FDI for nonlinear systems is to study

LPV systems (Poussot-Vassal et al., 2008). FDI for regular LPV systems

has been considered for example in (Bokor and Balas, 2004; Zolghadri et al.,

2008; Armeni et al., 2009) and FDI for descriptor LPV systems in (Hamdi

et al., 2012).

Winding systems, web handling systems or roll-to-roll systems are non-

linear processes which consider a large operating range. Control and Fault

Diagnosis for such systems remain a challenge for both economical point of
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view and research. In the paper of (Xiao et al., 2011), the authors have

developed a Fault Diagnosis and Fault Tolerant Control strategy for a wind-

ing system. However, their theory is developed for LTI systems and they

can only consider a single operating point. In the paper of (Claveau et al.,

2008; Kuhm et al., 2012), the authors have synthesized and compared a LTI

controller versus a LPV controller. They underline that a LTI controller can

be considered for only one operating point and not for the entire operat-

ing range. In (Gassmann and Knittel, 2011), the authors have considered a

winding system which has been modeled as a LPV system, and they have

synthesized a LPV controller for a winding system but only a single LTI

observer for estimating a parameter of the system under some assumptions.

In (Benlatreche et al., 2008), the authors have developed decentralized con-

trollers, Proportional Integral controllers by state feedback. The method

consists in designing state-feedback control with the use of BMI optimiza-

tion for large-scale systems such as a winding machine.

By taking into account the modelization of a winding system into a LPV

form as in (Gassmann and Knittel, 2011), the authors in (Theilliol et al.,

2008) have developed a FDI technique so as to generate insensitive residuals

to fault by specific decoupling methods. The authors have established a sen-

sor fault diagnosis method for nonlinear system and have developed stability

conditions of an accurate Unknown Input Observer (UIO) that performs fault

detection and isolation. However, no fault estimation has been provided with

such method. In (Ponsart et al., 2010), the authors have developed a method

with an accurate filter which was able to both isolate and estimate sensor

faults. However, the stability conditions were not studied. In (Rodrigues
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et al., 2008), stability conditions of a polytopic LPV filter which allows an

efficient actuator fault detection, isolation and estimation in multi-models

framework was presented.

Using the latest consideration, this paper contributes to extend and to

develop a sensor fault detection, isolation and estimation for nonlinear system

based on discrete time LPV model. The objectives of this paper are to design

a global FDI scheme for estimating a sensor fault magnitude over a wide

operating range applied to a winding machine.

Thus, based on a polytopic LPV representation, this paper addresses

an original contribution that could allow not only to detect, isolate and

estimate multiple sensor faults but also to provide an additional indicator

of the efficiency of the filter. This indicator is defined as a quality factor:

close to zero if the filter decouples the appropriate faults or different from zero

otherwise. The stability conditions of each polytopic LPV filter are studied

through poly-quadratic stability. The polytopic LPV filter performances are

tested on a real winding process. This process is well-known in the industry

where identification model for control or FDI is still an open research field

as in (Knittel et al., 2003; Laroche and Knittel, 2005; Ponsart et al., 2010).

The paper is organized as follows: in section 2, the FDI problem for poly-

topic LPV system is stated. Section 3 defines the design of the sensor fault

diagnosis module under LPV representation. The stability study conditions

are addressed by using Linear Matrix Inequality (LMI). Section 4 illustrates

the developed method applied to a winding machine. Finally, section 5 is

devoted to conclusions.
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2. Problem Statement

Consider the following class of affine LPV discrete systems with sensor

faults: 



xk+1 = Ã(θk)xk + B̃(θk)uk

yk = Cxk + Ffk

(1)

xk ∈ R
n is the state vector, uk ∈ R

p is the control input and yk ∈ R
m

represents the measured output vector. F ∈ R
m×q represents the sensor

fault distribution matrix and fk ∈ R
q is the fault vector where q < m. The

presence of such faults may lead to performance deterioration, instability of

the system or the loss of the process.

The matrix F , which represents the sensor fault distribution matrix, is

often (but not always) defined as a matrix where each one of its column are

standard (unit) vector:

Fi = [0 . . . 1 . . . 0]T (2)

which represents the i-th sensor fault. It is a generalization of the sensor

fault representation.

Ã(·), B̃(·) are functions which depend affinely on the time-varying pa-

rameter vector θk ∈ R
l. It is also assumed that this time-varying parameter

vector θk is fault-free, bounded and lies into a hypercube (Anstett et al.,

2009), (Bruzelius, 2004) such that ∀j ∈ [1, . . . , l]:

θk ∈ Γ = {θk | θjk ≤ θ
j
k ≤ θ

j

k}, ∀k ≥ 0 (3)

The matrices Ã(θk), B̃(θk) of the LPV system (1) with the affine param-
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eter dependence (3) are represented such that:

Ã(θk) = Ã0 +
l∑

j=1

θ
j
kÃj, B̃(θk) = B̃0 +

l∑

j=1

θ
j
kB̃j ∀θk ∈ Γ (4)

Based on (4), the system (1) can be transformed into a convex interpola-

tion of the j vertices of Γ where the vertices of the polytope are defined such

that (Rodrigues et al., 2007): Sj =
[
Aj, Bj , C, F

]
, ∀j ∈ [1, . . . , N ]

where N = 2l. The polytopic coordinates are denoted ρ(θ(k)) and vary

within the convex set Λ:

Λ =
{
ρ(θk) ∈ R

N , ρ(θk) = [ρ1(θk), . . . , ρN(θk)]
T , ρj(θk) ≥ 0,

N∑

j=1

ρj(θk) = 1
}

Consequently, the polytopic LPV system under sensor faults considera-

tion is given by:





xk+1 =
N∑
j=1

ρj(θk)(Ajxk +Bjuk)

yk = Cxk + Ffk

(5)

where Aj ∈ R
n×n, Bj ∈ R

n×p, C ∈ R
m×n and F ∈ R

m×q are time invariant

matrices defined for the jth model. In (Rodrigues et al., 2008), the authors

have considered actuator faults and, in this paper, sensor faults are consid-

ered. First of all, a preliminary work consists in rewriting the system (5).

Based on (Park et al., 1994), in the presence of sensor faults, a system (5)

can be rewritten as a system affected by a pseudo-actuator fault. Assume

that the dynamic of the sensor fault is described as:

fk+1 = δfk + f̄k (6)
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where δ ∈ R
q×q defined by δ = diag(δ1, ..., δq) and f̄k is the sensor error

input. Note that δ represents the additional degree-of-freedom in estimator

design (See (Park et al., 1994)) and should be fixed between ]0, . . . , 1]. So,

according to (5) and (6), a new fault polytopic LPV system representation

is given by: 



x̄k+1 =

N∑

j=1

ρj(θk)(Āj x̄k + B̄juk + F̄ f̄k)

yk = C̄x̄k

(7)

with x̄k =


 xk

fk


 , Āj =


 Aj 0

0 δ


, B̄j =


 Bj

0


, F̄ =


 0

I


 and, C̄ =

[C F ] where 0 means the zero matrix and I the identity matrix of appropriate

dimensions.

Note: This representation of sensor fault with pseudo-actuator fault is rele-

vant to deal with Unknown Input methods developed in classical FDI frame-

work.

The main goal in Fault Detection and Isolation (FDI) is to design a filter

which is able to determine if a fault has occurred or not in the system. For

this simple question, it is well-known that synthesizing a residual, which is

the difference between the outputs of the system and the estimated outputs

from the filter, can give an answer to this question. So, to this end, the

designers can synthesize the following polytopic LPV Luenberger filter under

the classical assumption that the pairs (C̄, Āj) are observable (Chen and

Patton, 1999):
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



ˆ̄xk+1 =
N∑

j=1

ρj(θk)(Āj ˆ̄xk + B̄juk + K̄j(yk − C̄ ˆ̄xk))

ŷk = C̄ ˆ̄xk

(8)

or also with notation (·)(ρk) =
N∑

j=1

ρj(θk)(·j) such as:





ˆ̄xk+1 = Ā(ρk)ˆ̄xk + B̄(ρk)uk + K̄(ρk)(yk − C̄ ˆ̄xk))

ŷk = C̄ ˆ̄xk

(9)

According to (7) and (9), the estimation error ek = x̄k − ˆ̄xk and the

residual rk = ȳk − ˆ̄yk are given by the following relations:





ek+1 = (Ā(ρk)− K̄(ρk)C̄)ek + F̄ f̄k

rk = C̄ek

(10)

Usually, at this point, the goal consists in stabilizing the matrix (Ā(ρk)−

K̄(ρk)C̄) through a choice of the gain K̄(ρk) such that the matrix (Ā(ρk)−

K̄(ρk)C̄) is Hurwitz, i.e. its eigenvalues remain stable. So, in fault-free case

(i.e. f̄k = 0), the estimation error ek and the residual rk tend to zero. This

indicates that no fault has occurred on the system. Moreover, if a fault occurs

(f̄k 6= 0) then the estimation error ek and the residual rk, become different

from zero and indicate that a fault has occurred.

However, this LPV Luenberger filter can not be used if there is more than

one fault due to the fact that the residual rk would be corrupted by different

information through the fault vector f̄k, i.e. the filter would be sensitive

to all sensor faults: fault isolation is not possible and obviously the sensor

fault estimation either. For multiple sensor faults, a classical technic consists
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in designing a LPV Luenberger filter (Chen and Patton, 1999) for only one

sensor and to interpret the different residuals based on a bank of dedicated

filters. This method allows to detect and isolate a fault. However, there is

no possibility with such a filter to estimate the magnitude of multiple sensor

faults.

In order to provide an efficient fault detection and isolation, the synthesis of

a residual decoupled from sensor fault is provided by a polytopic LPV filter.

This one will be presented in the next section under the following required

assumptions for the existence of the polytopic LPV filter:

• The pairs (C̄, Āj) are observable, ∀i ∈ [1, . . . , N ].

• The number of measurements is greater than the number of faults i.e

q < m (for fault isolation purposes).

• The fault distribution matrix is full column rank i.e equal to q.

It is also assumed that the maximum value of fault detectability indexes is

equal to one (Keller, 1999). It should be noted that the synthesis of a single

filter for all sensor faults is not possible to achieve a fault detection, isolation

and estimation task. Consequently, as presented in the next section, a bank

of filters will also be designed.

3. Sensor Fault detection, isolation and estimation with a quality

factor

3.1. Polytopic LPV filter Design

A conventional fault detection algorithm (Chen and Patton, 1999) is able

to detect a fault by monitoring a residual, noted rk, classically defined as a

9



system-model difference output. In order to determine also the fault mag-

nitude estimation and to estimate the state space vector, the authors in

(Rodrigues et al., 2008) have proposed to design a filter such that the resid-

ual vector rk is split into two sub-vectors: one sub-vector is made sensitive

to faults and the other sub-vector is made insensitive. The goal to split the

residual into two-subvectors is directly linked with the fact that the main

objective is to detect, isolate and estimate the fault with the sensitive part

of the residual which is equivalent to synthesize the filter gain matrix K̄(ρk)

from filter (9) such as

(Ā(ρk)− K̄(ρk)C̄)F̄ = 0 (11)

in a specific way. It can be noticed that the insensitive residual sub-vector

is designed in order to provide an additional information named quality fac-

tor, considered for fault isolation as presented in paragraph (3.3). It is also

explained how such decoupling is obtained.

If the equation (11) is satisfied and if the number of faults is strictly lower

than the number of outputs for fault isolation purposes i.e. rank(C̄F̄ ) = q <

m, a solution to (11) was proposed for LTI systems by (Keller, 1999) which

parameterized the gain K̄(ρk) such that:

K̄(ρk) = KA(ρk) +KC(ρk) (12)

where :

• KA(ρk) is defined by:

KA(ρk) = ω(ρk)Π (13)
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with ω(ρk) = Ā(ρk)F̄ and Π = (C̄F̄ )+ where (·)+ denotes the pseudo-

inverse of the matrix (·) throughout the paper.

• KC(ρk) is defined by:

KC(ρk) = K(ρk)Ψ (14)

with Ψ = β(Im − (C̄F̄ )(C̄F̄ )+), β ∈ R
(m−q)×m is an arbitrary constant

matrix defined so that matrix Ψ is of full row rank and K(ρk) is a gain

to be synthesized.

Based on (13) and (14), the previous filter defined in (9) can be rewritten

as a Polytopic LPV Filter defined as follows:




ˆ̄xk+1 = (A(ρk)−K(ρk)C)ˆ̄xk + B̄(ρk)uk +KA(ρk)yk +K(ρk)Ψyk

ŷk = C̄ ˆ̄xk

(15)

with A(ρk) = Ā(ρk)(Im − F̄ΠC̄) and C = ΨC̄.

According to (7) and (15), the estimation error ek = x̄k − ˆ̄xk and the

residual rk are given by the following relations:





ek+1 = (A(ρk)−K(ρk)C)ek + F̄ f̄k

rk = C̄ek

(16)

where K(ρk) should be synthesized in order to guarantee the stability of the

polytopic LPV filter and to achieve some error convergence performances. In

fault-free case (i.e: f̄k = 0), the previous relations are rewritten such that:





ēk+1 = (A(ρk)−K(ρk)C)ēk

r̄k = C̄ēk

(17)

11



where ēk and r̄k denote respectively the estimation error and the residual

in fault-free case.

Note that the residual rk in (16) is obtained by multiplying the estimation

error ek by the matrix C̄ and can be written as follows

rk+1 = C̄ek+1 = C̄(A(ρk)−K(ρk)C)ek + C̄F̄ f̄k (18)

So, based on equation (17), it can be rewritten such as

rk = r̄k + C̄F̄ f̄k−1 (19)

Now, from equation (19), the polytopic LPV filter is able to give two dif-

ferent information by the use of a specific matrix


 Ψ

Π


 such that a projected

residual pk is defined as follows:

pk =



 Ψ

Π



 rk =



 Ψ

Π



 (r̄k + C̄F̄ f̄k−1) =



 Ψr̄k +ΨC̄F̄ f̄k−1

Πr̄k +ΠC̄F̄ f̄k−1



 (20)

Then, by considering the following properties (which involve the gain

decomposition (12)):

ΠC̄F̄ = I and ΨC̄F̄ = 0 (21)

the generation of the projected residual pk from equation (20), can be defined

as follows:

pk =


 Ψ

Π


 rk =


 Ψr̄k

Πr̄k + f̄k−1


 =


 γk

Ωk


 (22)

The residual pk is split into two sub-vectors: a vector insensitive to fault

f̄k noted γk and a vector sensitive only to fault f̄k noted Ωk. The vector
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insensitive to fault f̄k (γk ∈ R
m−q) is close to zero in fault-free case or in

faulty case when the fault f̄k occurs on the system. However, the vector γk is

different from zero meaning the presence of modeling errors or other sensor

faults which are not considered in the synthesis of the filter. Such vector

γk is an indicator to qualify the efficiency of the polytopic LPV filter. If

a fault f̄k occurs on the system, a residual evaluation technique should be

computed in order to indicate the accuracy of the projected residual vector

pk and more precisely, the accuracy of the last component Ωk = Πr̄k + f̄k−1.

With respect to the component Ωk ∈ R
q which represents the residual vector

sensitive to fault, this one can be used to a fault estimation of f̄k. With only

one sample for time delay and as mentioned in Proposition 1 in (Rodrigues

et al., 2008), an estimation f̂k of sensor fault f̄k could be carried out through

a Moore-Penrose matrix like:

f̂k = (F̄ )+F̄Ωk (23)

3.2. Polytopic LPV filter stability

The stability problem is reduced to find matrices gainsKj , ∀j ∈ [1, . . . , N ]

so that the gain interpolation K(ρk) ensures the asymptotic convergence of

the estimation error (17) in fault-free case to the origin. Another goal is

to obtain less restrictive conditions of the synthesis than the commonly use

of a single symmetric definite positive matrix. So, we will use the notion

of poly-quadratic stability if there exists a parameter-dependent quadratic

Lyapunov function as mentioned in (Anstett et al., 2009).

Proposition 1. The estimation error (17) is poly-quadratically stable if there
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exist symmetric positive definite matrices Pj, matrices Rj and G of appro-

priate dimensions ∀j ∈ [1, . . . , N ] such that:

 −Pj AT

j G− CTRT
j

GAj − RjC Pi − (G+GT )


 < 0, ∀i, j ∈ [1, . . . , N ] (24)

Then, the gain Kj is given by Kj = G−1Rj. �

Proof:

Let the Lyapunov function defined such as V (ēk, ρk) = ēTkP (ρk)ēk > 0. To

ensure stability, its difference L = V (ēk+1, ρk+1)−V (ēk, ρk) along the solution

of equation (17) should be negative definite such that:

(A(ρk)−K(ρk)C)
TP (ρk+1)(A(ρk)−K(ρk)C)− P (ρk) < 0 (25)

with A(ρk) =
N∑

j=1

ρj(θk)Aj and the Lyapunov matrix P (ρk) =
N∑

j=1

ρj(θk)Pj

over convex set Λ.

Let’s assume that (24) is true. Then, using notation Rj = GKj , multi-

plying each inequality (24) by ρj(θk) and adding all of them ∀j ∈ [1, . . . , N ]

with
N∑

j=1

ρj(θk), then (24) becomes ∀j ∈ [1, . . . , N ]:




−

N∑

j=1

ρj(θk)Pj

N∑

j=1

ρj(θk)(Aj −KjC)
TGT

G

N∑

j=1

ρj(θk)(Aj −KjC) Pi − (G+GT )




< 0, (26)

and by adding the inequalities (26) over i, (26) becomes:


 −P (ρk) (AT (ρk)−K(ρk)C)

TGT

G(A(ρk)−K(ρk)C) P+(ρk)− (G+GT )


 < 0 (27)
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under the following notations:

P (ρk) =

N∑

j=1

ρj(θk)Pj

P+(ρk) = P (ρk+1) =

N∑

j=1

ρj(θk+1)Pj =

N∑

i=1

ρi(θk)Pi

(28)

Multiplying (27) on the left by [I (A(ρk) − K(ρk)C)
T ] and on the right

by [I (A(ρk)−K(ρk)C)
T ]T , the following inequality is obtained:

(A(ρk)−K(ρk)C)
TP+(ρk)(A(ρk)−K(ρk)C)− P (ρk) < 0 (29)

In other words, the inequality (29) is the same inequality as in (25) by re-

calling that P+(ρk) = P (ρk+1). Hence, the estimation error (17) satisfies the

condition of poly-quadratic stability. �

As explained in the previous paragraphs, the design of a stable single

polytopic LPV filter has been provided to detect sensor faults. To achieve

a fault diagnosis task, fault isolation, which consists in deciding which ele-

ment(s) of the system has (have) indeed failed, a fault isolation procedure

should be performed as defined in the next section.

3.3. Fault isolation design

As presented in Fig. (1), a polytopic LPV filter can detect, isolate and

estimate sensor faults at each sample k based on γk and Ωk vectors norm.

However, the synthesis of a single filter to detect all sensor faults is not

possible due to the rank condition like rank(C̄F̄ ) = q < m which can not be

completed. So, in this case, the method consists in designing a bank of m

polytopic LPV filters where each of them is synthesized to estimate faults.
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The idea presented here is based on the efficiency of the ”quality factor”

which is insensitive to specific faults vector but sensitive to others.

Figure 1: Polytopic filter scheme

This fault diagnosis scheme is similar to the well-known generalized resid-

ual structure approach. According to the developed filter, it was possible to

establish various bank of filters such as Generalized Observer Scheme (GOS)

only able to isolate one fault or Dedicated Observer Scheme (DOS) able to

isolate simultaneous faults as proposed by (Frank and Ding, 1997). For the

well-known GOS, each residual γi, i ∈ [1, . . . , m] of the ith polytopic filter is

insensitive to the ith sensor fault but sensitive to all other faults i.e γk ∈ R
m−1

and Ωk ∈ R
1. However, for DOS, each residual γi, i ∈ [1, . . . , m] of the ith

polytopic filter is insensitive to all sensor faults except the ith sensor. i.e

γk ∈ R
1 and Ωk ∈ R

m−1. Fig. (2) summarizes the different levels of the FDI
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scheme.

Figure 2: FDI scheme for Isolation purpose

An incidence matrix (Tables 1 or 2) can be established where ‖γk‖ is

considered equal to ’0’ when the residual is close to zero in some sense and

equal to ’1’ otherwise. Each column of the incidence matrix is called the

coherence vector associated with each fault signature. From Tables 1 or 2,

a decision making selects which ones of the sensor is ’faulty’. A column

indicates that one signal is equal to zero whereas the others are equal to one,

i.e the ’0’ indicates the localization of the sensor fault with the dedicated

polytopic LPV filter.

Decision making is then used according to elementary logic (Leonhardt
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and Ayoubi, 1997), which can be described as follows: a ’fault indicator’ is

equal to one if the residual vector Υ =




‖γk‖
1

. . .

‖γk‖
i

. . .

‖γk‖
m




generated by the bank,

is equal to a column of the incidence matrix, and to zero otherwise. The

element associated with the indicator being equal to one is then declared to

be ’faulty’.

Table 1: Incidence matrix - GOS (*) Other fault or minimum two sensors are faulty.

Residual No Fault f̄ 1 . . . f̄ i . . . f̄m *

‖γk‖
1 0 0 1 1 1 1 1

...
... 1

. . .
...

...
... 1

‖γk‖
i 0 1

... 0
... 1 1

...
...

...
...

...
. . .

... 1

‖γk‖
m 0 1 . . . 1 . . . 0 1

Table 2: Incidence matrix - DOS (*) Other fault or all sensors are faulty.

Residual No Fault f̄ 1 . . . f̄ i . . . f̄m *

‖γ‖1 0 1 0 0 0 0 1
...

... 0
. . .

...
...

... 1

‖γ‖i 0 0
... 1

... 0 1
...

...
...

...
...

. . .
... 1

‖γ‖m 0 0 . . . 0 . . . 1 1

Note: The Fault Isolation method is already based on the fact that only
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one fault can be detected at exactly the same time, for recovering fault

signature from the Tables 1 or 2. It should be noticed that the probability

that two or more faults appearing at exactly the same time, so simultaneously,

is close to zero. Multiple faults can appear during an experiment, but not

exactly at the same time. If multiple faults appear at exactly the same time

(very small probability), then the fault isolation is not guaranteed but the

fault detection is still working.

4. The winding machine

4.1. System description

1
U

3
U

2
U

1
T

3
T

2
S

1
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ref
S

2

ref
T

1

ref
T

3

Figure 3: Winding process control architecture
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The winding process, (Noura et al., 2009) in chapter 3, is composed of

a plastic web and three reels, respectively, called the unwinding, pacer and

rewinding reels but the radius is unmeasurable directly. Each reel is coupled

with a DC-motor via gear reduction. The angular speed of the first two reels

(S1, S2) and both the tensions between the reels (T1, T3) are measured by

tachometers and tension meters. The three control inputs U1, U2 and U3 are

the input voltage of the three motors as illustrated in Fig.3. Each motor is

driven by a local controller composed of one or two PI controllers (Ponsart

et al., 2010). The first control loop adjusts the motor current (I1, I2, I3), and

its constant of time integration is about 40 ms, while the second loop con-

trols the angular speed with an integration time constant equal to 200 ms.

The set-points of those controllers are computed by a Programmable Logic

Controller (PLC) in order to control both tensions and the linear velocity of

the strip (300 m lentgh, 5 cm broad and 0.2 mm thickness). Under specific

experimental investigation which lasts 40 min, the radius of the unwind-

ing reel varies from 210 to 70 mm. A real-time development environment

(Simulink Real-Time Workshop+dSPACE) based on a PC computer is used

instead of the PLC to improve control for instance. System inputs and out-

puts are given in the interval [0 100%] corresponding to [−10V ; 10V ] equal

to [−1 ; +1] with Matlab variables.

4.2. The winding machine modelization with sensor faults

Based on (Ponsart et al., 2010) , where identification and validation steps

are developed and presented in details, the winding machine can be repre-
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sented in the following state space representation:





xk+1 = A(Rk)xk +B(Rk)uk

yk = Cxk + Ffk

(30)

where xk = x(kTe), with the sampling period Te = 0.1s, yk = xk = [T1 S2 T3]
T

and uk = [U1 U2 U3]
T . The system matrix A and the control matrix B are

linear polynomial matrices depending on a bounded positive time varying

parameter noted Rk where 0 < Rmin < Rk < Rmax and verifying:

G(R) = G0R
0 +G1R

1 +G2R
2 + . . .+GαR

α (31)

where G stands for A or B, α defines the polynomial degree equal to 6 as

proof in (Theilliol et al., 2008) . Here, the method developed by (Hetel

et al., 2007) is considered. This method underlines the exact equivalence

between polynomial model and convex polytopic representation. Thus each

polynomial matrix is defined by a convex polytope with (α+ 1) vertices ∆G
j

calculated as follows:




∆G
1 = GαR

α
min + ... +G2R

2
min +G1R

1
min +G0R

0
max

∆G
2 = GαR

α
min + ... +G2R

2
min +G1R

1
max +G0R

0
max

∆G
3 = GαR

α
min + ... +G2R

2
max +G1R

1
max +G0R

0
max

... =
...

∆G
α+1 = GαR

α
max + ...+G2R

2
max +G1R

1
max +G0R

0
max

(32)

The convex polytope formulation is achieved by the computation of the

parameter ρj(R) (∀j ∈ [0, . . . , α]) by the following recursive algorithm with
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τ = 2, . . . , α :






ρ1(R) = 1−
R −Rmin

Rmax − Rmin

ρα+1(R) =
Rα −Rα

min

Rα
max −Rα

min

ρτ (R) =
Rτ−1 −Rτ−1

min

Rτ−1
max −Rτ−1

min

−
α+1∑

j=τ+1

ρj(R)

(33)

Therefore, the parameter ρj(R) lies in a specific convex set Λ:

Λ = {ρ(R) ∈ R
α+1, ρ = [ρ1...ρα+1]

T and
α+1∑

j=1

ρj(R) = 1 ρj ≥ 0}

Whereupon, ∀j ∈ [1, . . . , α+1], ∆G
j defines the vertices of a convex polytope

such as:

G(R) =
α+1∑

j=1

ρj(R)∆G
j (34)

Based on these previous equations (6) and (34), the faulty discrete state

space representation (30) can be expressed as an augmented polytopic LPV

system: 



x̄k+1 =

α+1∑

j=1

ρj(Rk)(Āj x̄k + B̄juk + F̄ f̄k)

yk = C̄x̄k

(35)

where Āj ∈ R
n×n and B̄j ∈ R

n×p are constant matrices and ∀j ∈ [1, . . . , α+

1] : ρj ≥ 0,

α+1∑

j=1

ρj(Rk) = 1 and 0 < Rmin < Rk < Rmax.

Here, the winding machine can be represented with α = 6 with a depen-

dance on the unwinding real radius Rk as in equation (35) with 0 < Rmin <

Rk < Rmax with Rmin = 70mm and Rmax = 210mm. For technical reasons,
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the radius is estimated via the following equation:

Rk = Rk−1 +
h

2π
S1,k (36)

where h is the strip thickness.

The measured outputs are yk = xk = [T1 S2 T3]
T . S1,k is the time

dependance of the angular speed of reel S1 and is assumed to be fault-free.
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Figure 4: Parameters evolution ρj

Fig. (4) represents the 6 + 1 parameters evolution ρj which have been

obtained for this example. Their evolutions justify the use of a LPV model

where parameters evolve in a nonlinear way. The different matrices Aj and

Bj are presented in Appendix.
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Note that an input-output linearizing control law, based on the polyno-

mial model, has been implemented (as in (Noura et al., 2009)) using nonlin-

ear theoretical development from (Fossard and Normand-Cyrot, 1995) and

(Isidori, 1995): it is essential since this system is unstable in open loop. It

can be verified through the computation of eigenvalues of various matrices Aj

presented in Appendix. Without any restrictions on the developed method,

we consider in the following of the paper that only one fault can occur on

the system. In order to evaluate the method, a bank of polytopic LPV filters

have been developed in order to detect, isolate and estimate an accurate state

of the system in presence of faults. Each one of these filters is dedicated for

only one specific sensor fault following the GOS principle.

Remark 1. If two faults are considered to occur simultaneously, the decou-

pling condition is verified (rank(C̄F̄ ) = q = 2 < 3). A bank of 3 filters is

established in order to provide a DOS structure (γk ∈ R
2 and Ωk ∈ R

1). With

such scheme, it is possible to detect, isolate and estimate two simultaneous

faults under the assumption that no other faults occur or modeling errors.

However if three faults occur, the proposed scheme is able to detect faults

only. It can be noted that a single filter for all sensor faults with F = I3 can

not be synthesized as the decoupling condition rank(C̄F̄ ) = q = 3 < m would

not be fulfilled.

4.3. Experimental results

The effectiveness and performances of the developed FDI method is ap-

plied and a generalized polytopic LPV scheme is tested for the real process.

The synthesis of LPV filter gains Kj, presented in Appendix, has been com-
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puted with the LMI Toolbox of the Robust Control Toolbox which is a part

of the Matlab software environment.

In fault-free case: Fig.5 shows the evolution of the outputs driven in

closed loop by the inputs in the fault-free case. This experiment was carried

out for step changes with 20% of their corresponding operating values.
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Figure 5: Fault-free case: a) System outputs b) System inputs

It should be noticed that the residuals generated by the polytopic fil-

ter depicted on Fig.6 are zero-mean: that means there are no fault and no

modelings errors exist.

In the faulty case:

∗ First experimentation: A fault on the tension T1 is considered to occur

and to disappear at different times. According to (30), F is equal to [1 0 0]T .

As presented in Fig.7, the output T1 is different from the nominal regime
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Figure 6: Residual vector norms in fault-free case

due to the presence of faults. The real output is different from the reference

input for radius values around: 100, 170 and 215mm.

The results of the decoupling filter are depicted on Fig.8. As shown in

Fig.8 the residual ‖Ωk‖ is affected by abrupt changes which correspond to

the sensor fault of T1. Such residual has been synthesized in order to be

only sensitive to fault on the output T1. Fig.8, it clearly appears that the

quality factor ‖γk‖ is equal to zero then the fault estimation derived from the

sensitive residual vector can be used to estimate the real fault. The accurate

fault magnitude estimation illustrates the performance and the effectiveness

of the decoupling filter as it can be observed in Fig.9.

Remark 2. According to the developed MIMO control law, the output mea-

surements are affected by step variation on the other ones. Consequently,
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Figure 7: Measured and real system outputs in faulty case

some peaks can be observered on Fig.9 and other figures.

∗ Second experimentation: A sensor fault on the reel S2 is considered. In

order to underline the role of quality factor, the same filter, synthesized for

the sensor fault occurrence on T1, is used. So, it is not the adapted filter

for sensor fault on S2 and of course, the sensor fault estimation should be

corrupted.

Fig.10 presents two residual norms generated by the considered polytopic

LPV filter. As expected and illustrated in Fig.10, the residual ‖γk‖ is not

equal to zero which means that the residual ‖Ωk‖ can not be considered to

estimate the fault magnitude.
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Figure 8: Bias on sensor T1 - Norm of residuals filter designed for a fault on sensor T1.

Now, consider the filter dedicated to the sensor fault on the reel S2, i.e.

synthesized with F = [0 1 0]T . As illustrated in Fig.11, such filter provides an

appropriate sensor fault estimator. The quality factor equal to zero, indicates

that the sensitive residual can be used to estimate this sensor fault (as in

Table 1). The sensor fault estimation is close to the real one as shown in

Fig.12.

The main advantage of this polytopic LPV filter is the performance of

fault magnitude estimation but also the ability to generate an additional

qualitative information from the insensitive residual: if this quality factor

‖γk‖ is not equal to zero it means that it is corrupted by another fault or by
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Figure 9: a) Sensor fault estimation T1 b) Zoom around R ≈ 100 mm - Bias on sensor T1.

modeling errors and could not be used to estimate a sensor fault magnitude.

5. Conclusion

In this paper, a general approach for sensor fault diagnosis designed for

polytopic LPV systems has been proposed. This global method was devel-

oped using a polytopic LPV filter which is designed to detect, isolate and

estimate sensor faults through a polytopic LPV representation. Even if a sin-

gle filter synthesis is not always possible, a bank of dedicated polytopic LPV

filters has been introduced to allow a detection, isolation and sensor fault
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Figure 10: Bias on sensor S2 - Norm of residuals filter designed for a fault on the output

T1.

estimation under a quality factor. The stability of this filter has been per-

formed using LMI into a convex set. The effectiveness and performances of

the polytopic LPV filter have been demonstrated in a web transport process:

a winding machine.
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Figure 11: Bias on sensor S2 - Norm of residuals filter designed for a fault on the output

S2.

6. Appendix

Matrices Aj :

A1 =




0.7175 −0.8396 −0.2270

0.0122 0.5370 −0.0650

−0.0074 0.1675 0.1563




A2 =




29.7488 −88.2373 −29.5144

−0.1112 6.9024 −2.0532

15.9178 126.3875 −106.7138



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Figure 12: Bias on sensor S2 - a) Sensor fault estimation S2 b) Zoom around R ≈ 100mm.

A3 =




−120.5489 485.6371 164.0216

−0.6368 −32.7339 8.5105

−85.5748 −665.5708 544.8643




A4 =




0.1947 −1.0040 −0.3470

0.0037 0.0681 −0.0156

0.1841 1.3995 −1.1048


× 103

A5 =




−0.1444 0.9396 0.3338

−0.0057 −0.0625 0.0138

−0.1848 −1.3627 1.0353


× 103
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A6 =




43.2658 −335.2822 −121.1661

3.1253 22.9693 −4.9550

72.3623 511.4675 −369.7696




A7 =




0.4412 −0.0026 −0.0254

0.0354 0.5204 −0.0087

−0.0471 0.3558 0.5210




Matrices Bj:

B1 =




−1.1003 0.7929 0.3777

0.0617 0.5755 0.1169

−0.0470 −0.2363 1.5299




B2 =




44.0344 122.2789 −14.1984

7.0243 −11.0918 14.4880

50.8487 −128.2938 320.7654




B3 =




−0.1944 −0.6379 0.0433

−0.0328 0.0600 −0.0715

−0.2587 0.6670 −1.6587


× 103

B4 =




0.2430 1.2760 −0.0462

0.0644 −0.1180 0.1445

0.5287 −1.3791 3.4280


× 103

B5 =




−0.0885 −1.1601 0.0115

−0.0592 0.1092 −0.1358

−0.5074 1.3148 −3.2489


× 103

B6 =




−0.0128 0.4023 0.0033

0.0215 −0.0374 0.0496

0.1914 −0.4814 1.1763


× 103

33



B7 =




−1.1713 0.0450 0.2243

0.0799 0.5809 0.0942

−0.2549 −0.5926 3.0868




Matrices Kj for a fault vector equal to F = [1 0 0]T :

K1 =




0.6663 0 −0.3041

0.0150 0 −0.0572

−0.0172 0 0.2560

8.9932× 10−7 0 −7.1218× 10−7




K2 =




35.5841 0 −36.2347

0.1270 0 −2.4444

21.7830 0 −130.0642

8.3810× 10−7 0 −6.6695× 10−7




K3 =




−143.8215 0 200.2627

−2.1831 0 10.1451

−116.5421 0 661.2573

9.3783× 10−7 0 −6.9896× 10−7




K4 =




243.6176 0 −446.0330

7.8905 0 −19.4836

263.4774 0 −1.4117× 103

8.4298× 10−7 0 −6.6690× 10−7




K5 =




−193.4364 0 463.0827

−11.1942 0 18.5535

−284.7824 0 1.4271× 103

8.5434× 10−7 0 −6.9896× 10−7



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K6 =




62.1699 0 −184.2103

6.1130 0 −7.2484

121.6514 0 −558.0424

6.7022× 10−7 0 −5.5183× 10−7




K7 =




0.3383 0 0.1074

2.3482× 10−3 0 21.2326× 10−3

−0.3684 0 1.1766

8.9820× 10−7 0 −7.1121× 10−7




Matrices Kj for a fault vector equal to F = [0 1 0]T :

K1 =




0.6954 −0.7069 0

−1.1278× 10−3 0.2990 0

−11.3542× 10−3 0.1764 0

−3.1547× 10−5 −4.9406× 10−4 0




K2 =




38.9388 −58.1434 0

−0.1276 4.4628 0

17.0758 82.6757 0

6.9342× 10−5 1.0204× 10−3 0




K3 =




−162.0358 319.5950 0

−0.9691 −21.4814 0

−91.9862 −435.4859 0

1.9191× 10−5 2.9529× 10−4 0




K4 =




283.0694 −697.8027 0

5.2561 46.9645 0

209.3752 966.2187 0

3.5039× 10−5 5.2213× 10−4 0



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K5 =




−233.2794 704.4033 0

−8.5758 −46.6604 0

−227.9262 −1.0137× 103 0

1.1388× 10−4 1.6783× 10−3 0




K6 =




77.7121 −275.0765 0

5.0731 18.5601 0

98.3034 416.5143 0

9.8984× 10−5 1.4689× 10−3 0




K7 =




0.3161 0.3329 0

−12.5148× 10−3 0.2681 0

−0.3404 −0.4086 0

3.1325× 10−5 4.6642× 10−4 0



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