
HAL Id: hal-00823554
https://hal.science/hal-00823554

Submitted on 17 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the semantic readings of proof-nets
Philippe de Groote, Christian Retoré

To cite this version:
Philippe de Groote, Christian Retoré. On the semantic readings of proof-nets. Formal grammar 1996,
1996, Prague, Czech Republic. pp.57–70. �hal-00823554�

https://hal.science/hal-00823554
https://hal.archives-ouvertes.fr


On the Semantic Readings of Proof-NetsPhilippe de Groote, Christian RetoréINRIA-Lorraine & CRIN�CNRS615, rue du Jardin Botanique - B.P. 10154602 Villers lès Nancy Cedex � FRANCEe-mail: Philippe.de.Groote@loria.fr, Christian.Retore@loria.frA la mémoire deXavier de GrooteAbstract. The goal of this paper is to demonstrate how the very rich notion of proof-net may be used, in the framework of categorial grammars, as a unique structure thatallows the syntactic and semantic aspects of sentence analysis to be uni�ed. We �rstexplain how the intuitionistic multiplicative proof-nets correspond exactly to the so-called linear �-terms. This allow us to interpret proof-nets not only as syntacticstructures but also as semantic readings à la van Benthem. Then, we generalize thecorrespondence between proof-nets and �-terms to the complete categorial hierarchy,and we show how Montague-like semantics may be handled in this framework.1 IntroductionIf one were to summarize in a few words the logical principles underlying categorial gram-mars [15, 17, 24], these could well be: Parsing as Deduction and Grammar Theory as ProofTheory. Indeed, during the last decade, proof-theoretical investigations of categorial gram-mars have been extremely fruitful, e.g., [21, 24].On the syntactic side, Roorda advocates the notion of proof-net as an appropriate pars-ing structure [21]. Proof-nets are a new proof-theoretic tool introduced by Girard in theframework of linear logic [6]. They allow several proofs of the sequent calculus to be repre-sented by the same structure when they do not di�er in an essential way. In this sense, theycorrespond to unambiguous representations of proofs. Moreover, their nice mathematicaltheory gives rise to new parsing algorithms [13, 16, 21].On the semantic side, van Benthem uses the Curry-Howard correspondence as an in-terface between syntax and semantics [23]. This correspondence, which dates back to thesixties [9] (see also [5, 8]), establishes an isomorphism between natural deduction, on theone hand, and typed �-calculus, on the other hand:Natural Deduction Typed �-CalculusFormulas TypesProofs �-TermsProof Normalization �-Reduction(cut elimination)In the framework of categorial grammars, a third collumn may be added to this table:Natural Deduction Typed �-Calculus Categorial GrammarsFormulas Types Semantic CategoriesProofs �-Terms Semantic Readings,Semantic RecipesProof Normalization �-Reduction Composition of Semantic Recipes(cut elimination)



Now, in the framework of linear logic, the essence of the Curry-Howard isomorphism isstated by Girard as follows: Formulas TypesProofs Proof-NetsProof Normalization Proof-Net Evaluation(cut elimination)Therefore, by a simple juxtaposition of the two tables above, one sees that proof-netsmay play the semantic part that is usually played by �-terms. In this paper we introduceand illustrate by several examples this new point of view.The next section gives a brief introduction to the notion of proof-net, and explains howlinear �-terms may be represented as proof-nets by using a notion of polarity. Section 3shows how to get semantic readings of categorial principles, such Montagovian type raising,directly from a proof-net. In Section 4, we explain how to adapt the notion of proof-net to thedi�erent logics of the categorial hierarchy, i.e., the Lambek calculus L, the intuitionistic logicI, and van Benthem's intermediate logics LP , LC, and LPC. Finally, Section 5 provides ashort but complete example of a syntactic and semantic analysis based on proof-nets, in thespirit of Montague's PTQ grammar [14].While this paper tries to be as self contained as possible, we assume that the reader hassome familiarity with categorial grammars [1, 17, 18], the Lambek calculus [12, 15, 24], andlinear logic [6, 7, 22].2 Correspondence between Linear �-Terms and IntuitionisticMultiplicative Proof-Nets2.1 A Brief Introduction to Multiplicative Proof-NetsThe notion of proof-net has been introduced by Girard [6] as the most suitable way ofrepresenting proofs in linear logic. With respect to sequential derivations, proof-nets haveat least two advantages: �rstly, they are more compact; secondly, they allow sequentialproofs that di�er in an inessential way to be identi�ed.Roughly speaking, proof-nets are obtained from sequential derivations by consideringonly the active formulas and by linking together the formulas that occur in the same axiom.Consider, for instance, the following derivation where the active formulas are framed:� C?; C � A?; A � B?; B� B; (A 
B?) ; A?� B; ((A 
 B?) &A?)� C?; B; (C 
 ((A 
B?) &A?))� (C? &B) ; (C 
 ((A
 B?) &A?)) (1)This derivation may be transformed into the following proof-net:C? B(C? &B) C A B?(A
 B?) A?((A 
 B?) &A?)(C 
 ((A
 B?) &A?)) (2)



More abstractly, the above proof-net may be identi�ed with the following graph:j j jj@@ �� ��@@ @@ ��@@ ��& 
 &
 (3)which represents the core of Derivation (1).On the formal side, Girard de�nes �rst the notion of proof structure, which correspondsto a class of graphs akin to Graph 3. Then, a global geometrical criterion allows the proof-nets, which are the graphs that correspond actually to sequential proofs, to be discriminatedfrom the other proof-structures (see [3, 6, 10, 20] for instances of such criteria and for moredetails).2.2 Intuitionistic Multiplicative Proof-NetsThe examples in the previous section are taken from the so-called classical multiplicativelinear logic. Now, logics such as the Lambek calculus are intuitionistic in the technicalsense that they are de�ned by means of sequent calculi whose sequents are made of severalantecedent formulas and only one succedent formula. In order to accommodate the notion ofproof-net to such logics, one must use a notion of input (�) and output (�) polarities [2, 10].The idea is that the input (or negative) polarities correspond to those occurrences of formulasthat appear in the antecedents of the sequents while the output (or positive) polaritiescorrespond to the occurrences of formulas that appear in the succedents.More precisely, consider the following table that de�nes the notion of links for the proof-structures of the intuitionistic implicative linear logic (IILL, also known as van Benthem'sLP�), whose only connective is the linear implication ��.Name Axiom Tensor Par CutLink � �c1 c2 j@@ ��� ��cp1 p2
 j@@ ��� ��cp1 p2& � �p1 p2Premises none p1, p2 p1, p2 p1, p2Conclusions c1, c2 c c noneTypes c1 : A�c2 : A+ p1 : A+p2 : B�c : (A ��B)� p1 : A�p2 : B+c : (A��B)+ p1 : A+p2 : A�Polarities c1 : inputc2 : output p2; c : inputp1 : output p1 : inputp2; c : output p2 : inputp1 : outputProof-structures are then de�ned to be graphs made of links such that:1. any premise of any link is connected to exactly one conclusion of some other link;2. any conclusion of any link is connected to at most one premise of some other link;3. input (resp. output) premises are connected to input (resp. output) conclusions of thesame type.



Then, as we have already pointed out, a correctness criterion allows one to distinguish theproof-nets among the proof-structures. In fact, this correctness criterion ensures that theproof-nets are those proof-structures that may be sequentialized into Gentzen-like deriva-tions. In particular, it ensures that any proof-net has exactly one output conclusion.The proof-net formalism also captures the dynamics of proofs: cut elimination may beperformed directly on the proof-nets without any reference to the sequent calculus. More-over, the cut elimination process is speci�ed by simple graph rewriting rules. In the case ofILLL, these rewriting rules, which are purely local, are the following:b r bx y �! xbyr b ryx �! yrxjr bb@@ �� jb rr@@ ��x1 x2 y1 y2& 
 �! r b b rx1 x2 y1 y22.3 Encoding of the Linear �-Terms into the Intuitionistic MultiplicativeProof-NetsThe proof-nets introduced in the previous section give a way of representing the proofs ofintuitionistic implicative linear logic. Another way of representing these proofs is given bythe Curry-Howard isomorphism. It consists of using the so-called linear �-terms. This raisesimmediately the following question: what is the relationship between these two di�erentformalisms? The answer is quite simple: the linear �-terms may be encoded as proof-netsand, in the case of linear �-terms in normal form, the resulting correspondence is one-one.As is well known, �-terms in normal form may be de�ned by the following grammar:A ::= x j (AT )T ::= A j �x:TBy adding the constraint that each � must bind exactly one variable occurrence, one de�nesthe linear �-terms that correspond, through the Curry-Howard isomorphism, to the proofsof IILL.Now, the encoding of these terms into proof-nets obeys the following principles:1. to any �-term of type A with free variables xi of types Ai corresponds some proof-netwhose unique output conclusion is of type A and whose input conclusions, which are oftypes Ai, may be labelled with the variables xi.2. to any �-term de�ned by the non-terminal A corresponds some proof-net whose uniqueoutput conclusion is the output conclusion of an axiom-link.Keeping these two invariants in mind, one may de�ne the encoding by induction on theabove grammar.Case 1: variable. The proof-net encoding a variable x is made of an axiom-link:� �x : A� A+



Case 2: application. Let �1 and �2 be the two proof-nets encoding respectively A and T :r br rr �1 (B ��C)+x1:A�1 x2:A�2 xn:A�n� � � r br �2y1:B�1 y2:B�2 B+� � �The proof-net encoding (AT ) is obtained by gluing �1 and �2 with a tensor-link as follows:
r rr �1x1:A�1 x2:A�2 xn:A�n� � �r br �2y1:B�1 y2:B�2 � � � j r b��@@ r
 C+Case 3: abstraction. Let � be the proof-net encoding T :r rr bx1:A�1 x2:A�2 � � ��x:B� C+The proof-net encoding �x:T is obtained by adding a par-link as follows:br rr j b��@@ &x1:A�1 x2:A�2 � � �� (B ��C)+The above encoding is not merely syntactic: it relies on an actual correspondence thatalso takes into account the dynamics of the �-calculus. Indeed, �-redexes may be repre-sented by using cuts as follows.



Let �1 and �2 be the proof-nets encoding respectively �x:T1 and T2:br rr j b��@@ &x1:A�1 x2:A�2 � � ��1 (B ��C)+ r br �2y1:B�1 y2:B�2 B+� � �The proof-net encoding ((�x:T1) T2) is obtained as follows:jb b@@ �� r r rjrbr rr b��@@�2� � �y1:B�1 y2:B�2� � ��1x1:A�1 x2:A�2 & 
 C+Then, the process of cut elimination, as speci�ed at the end of Section 2.2, amounts to thereduction of the �-redexes.3 Semantic Readings as Proof-NetsAs noticed by van Benthem, �-terms provide a semantic reading of categorial laws such asMontague type raising, Geach composition, argument lowering, etc.Consider, for instance, Montague type raising, i.e.,e � ((e; t); t)or, using Girard's notation, e � ((e �� t) �� t):Its semantic reading is provided by the �-term �x:x y, where y is a free variable of type e.In the case of a sequential proof, it is necessary to decorate each sequent with a �-term inorder to get this semantic reading:x : (e �� t) � x : (e �� t) y : e � y : ey : e; x : (e �� t) � x y : ty : e � �x: x y : ((e �� t)�� t)When using proof-nets, however, one may get the semantic reading directly. Considerthe proof-net that proves Montague type raising:r j bb@@ ��&rb j��@@
re� ((e �� t)�� t)+



As we will see, a simple traversal of this proof-net will provide the semantic reading. Thistraversal, which follows Lamarche's dependency paths [10], may be speci�ed by a simple setof instructions:1. enter the proof-net by its unique output conclusion;2. follow the path speci�ed by the output polarities until an axiom-link is eventuallyreached; this path, which is ascending, is made of par-links that correspond to successive�-abstractions;3. cross the axiom-link following the output-input direction;4. follow the path speci�ed by the input polarities; this path, which is descending, is madeof tensor-links that correspond to successive applications; it ends either on some inputconclusion of the proof-net, or on the input premise of some par-link; in both cases, theend of the path coincides with the head-variable of the corresponding �-term; in the�rst case (input conclusion), this head-variable is free; in the second case (premise of apar-link) this head-variable is bound to the � corresponding to the par-link;5. in order to get all the arguments to which the head-variable is applied, start again thesame sort of traversal from every output premise of the tensor-links that have beenencountered during the descending phase described in 4;It is worth noting that the above traversal algorithm does not make sense on every proof-structure. For instance, one may easily imagine proof-structures some links of which wouldnever have been visited during the traversal. Another possible problem is when reading thehead-variable: the descending path that follows the input polarities could end on the inputpremise of a par-link that would not have been visited before, i.e., a par-link that wouldnot correspond to a �-abstraction. But these �pathological� proof-structures, for which thereading algorithm does not work, are precisely the ones that are rejected by the correctnesscriterion. In other words, they are not proof-nets.As a further illustration, consider the following consequence of Geach composition rule:(a�� b) � (c �� a)�� (c�� b);to which is associated the following proof-net: r j bb@@ ��&rb j��@@
r jbQQ ��&rb j��@@
r(a�� b)� ((c �� a)�� (c�� b))+Let us try to apply the reading algorithm on this example:1. we enter the proof-net by its output conclusion (i.e. the conclusion of type ((c��a)��(c��b))+), and go up, following the output polarities; we cross two par-links that correspondto two successive �-abstractions, say �x and �y; hence, the �-term that we are readinghas the form �x:�y:T12. we follow the axiom-link in the output-input direction, and go down, following the intputpolarities; we cross the leftmost tensor-link, and we end on the input conclusion of type(a�� b)�; this input conclusion corresponds to a free head-variable, say z; therefore, weare reading a �-term of the form �x:�y:(z T2);



3. in order to read the argument to which is applied the head-variable z (i.e. the �-termT2), we again start the process from the output conclusion of the tensor-link that wejust crossed; we follow the leftmost axiom-link, cross the second tensor-link and we endon the input premise of the par-link corresponding to �x; hence, we have read a �-termof the form �x:�y:(z (x T3));4. similarly, we read the �-term corresponding to T3 and we get the complete reading ofthe proof-net: �x:�y:(z (x y)).Thus, we have shown how to obtain semantic readings from proof-nets by a simpletraversal following Lamarche's dependency paths. In fact, this traversal of the proof-nets isso simple (linear time) that one can say that the semantic reading is no longer provided bya �-term but by the proof-net itself. In other words, we argue that we no longer need the�-terms anymore since we have the proof-nets at our disposal. This point of view will makemore sense when working with logics more powerfull than IILL in which the correspondencebetween �-terms and proof-nets is no longer one-one. Indeed, for such logics, the notion ofproof-net is much richer than that of �-term.4 Proof-Nets for the Categorial Hierarchy4.1 The Categorial HierarchyIn [24], van Benthem de�nes the following categorial hierarchy, starting on the left with theLambek calculus and ending on the right with the intuitionistic implicative logic:����QQQQ QQQQ����LPL LC LPC ILEach of these implicational caculi may be obtained from another by adding or removingone or more structural rules. For instance, starting from L, one gets LC by admittingthe contraction-rule. Then, LPC is obtained by adding the permutation-rule. Finally, onereaches IL by adding to LPC by the weakening-rule.In Section 2, we have introduced the notion of proof-net in the framework of IILL, whichis another name for LP.1 Therefore, in order to adapt this notion to the Lambek calculus, wemust explain how to reject the permutation-rule. This will be explained brie�y in Section 4.2.On the other hand, in order to adapt the notion of proof-net to LC, LPC, and IL, wemust allow for the structural rules of contraction and weakening. This is done, in linearlogic, by using Girard's modal operator �!�. Hence, we will consider, in Section 4.3, a thefragment of intuitionistic linear logic that contains ���� and �!� as the only connectives.This fragment is called intuitionistic implicative exponential linear logic (IIELL, for short).4.2 Proof-Nets for the Lambek calculusProof-nets for the lambek calculus have been de�ned by Roorda in his thesis [21] and arepresented in detail in [11, 20].In order to deal with the non-commutativity of L, one must distinguish between the leftand right premises of the links. Consequently, one gets two di�erent sorts of tensor-links,corresponding to the formulas (AnB)� and (A=B)�, and two di�erent sorts of par-links,corresponding to the formulas (AnB)+ and (A=B)+ . One must also take into account thefact that the formulas in Lambek's sequents are ordered. This gives rise to an order on the1 There is actually one di�erence: in LP, the empty antecedent is not admitted in the sequents.



conclusions of the proof-nets (a cyclical order, to be precise). Then, in order to adapt thecorrectness criterion, one has to add a planarity requirement: the axiom-links may not crossone another.4.3 Proof-nets for Intuitionistic Implicative Exponential Linear LogicGirard's unary connective �!� is a modal operator that allows for the structural rules ofcontraction and weakening. It obeys the following logical rules:A;� � C (dereliction)!A;� � C !A1; : : : !An � C (promotion)!A1; : : : !An � !C!A; !A;� � C (contraction)!A;� � C � � C (weakening)!A;� � CConsequently, intuitionisitc implication �!� may be de�ned as follows:(A! B) = (!A ��B):Now, in order to accomodate the proof-nets with this modal operator, new sorts of linksmust be introduced: Name Dereliction ContractionLink j��cpd j@@ ��� ��cp1 p2cPremises p p1, p2Conclusions c cTypes p : A�c : !A� p1; p2; c : !A�Polarities p; c : input p1; p2; c : inputAs for promotion and weakening, simple links are not su�cient. The problem with thepromotion rule is that it is contextual:In order to circumvent these di�culties, one uses boxes: A box is a part of the proofstructure, the interior of which is itself a proof structure. The conclusions of a box are calledits doors. There are two kinds of boxes: promotion-boxes and weakening-boxes.r r bjbp: : :�!A1 !An Cpromotion-box : !C r r b: : :�rjw � C!Aweakening-box :Then, the notion of correctness is de�ned by induction on the nesting of the boxes:1. the proof-net obtained by replacing each box by a n-ary axiom-link whose conclusionsare the doors of the boxes satis�es the usual correctness criterion;



2. the interior of each box is correct.On the dynamic side, the presence of the connective �!� gives rise to new cut-eliminationcases that correspond to new graph rewriting rules:r r bj rjrb xp d: : :�y1 yn �! r r b rx: : :�y1 ynr r b: : :�1 r r b: : :�2rjwjbpy1 yn x1 xm �! r r b: : :�2r ry1 yn: : :jw jw x1 xmr r bj rjb r r@@ ��p: : :�y1 yn cx1 x2 �! bjbr r p�: : : bjbr r p�: : :rjcccc ### rjcccc ### r r: : : x1 x2y1 ynwhere, strictly speaking, the n-ary weakening-box in the lefthand side of the second rulecorrespond to n nested ordinary weakening-boxes.4.4 Encoding simply-typed �-termsThe intuitionistic implicative logic corresponds, through the Curry-Howard isomorphism,to the simply-typed �-calculus. Hence, the simply-typed �-terms may be encoded into theIIELL proof-nets.The translation is very similar to the one described in section 2. The main di�erence isthat a �-term whose free variables are of type Ai is now translated into a proof-net whoseinput conclusions are of type !Ai. This allows di�erent input conclusions of the same type tobe contracted, which is a way of taking the non-linearity of the terms into account. Then, thetranslation has to be adapted by using contraction-links, dereliction-links, weakening-boxes,and promotion-boxes when needed.Conversely, the traversal algorithm that provides the �-term corresponding to a proof-net is almost the same as the one described in Section 3. The only di�erence is during the



descending phase: after having crossed a bunch of tensor-links, one may cross a dereliction-link followed by several contraction-links before reaching the head-variable.For more details on this topic, see [2, 4, 19].5 Semantic Recipes as Proof-NetsIn this section we provide an example of the use of proof-nets as a uniform framework thatallows syntactic and semantic analysis to be uni�ed. This example, which is more elaboratethat those of Section 3, is in the spirit of Montague PTQ Grammar[14].On the syntactic side, we use the Lambek calculus together with three basic types: n,sn, and s.On the semantic side, we use IIELL with the two Montagovian basic types e and t. Forthe purpose of our example, we also assume the existence of the following typed constants(with their obvious intended meanings):8 : ((e �� t) �� t); � : (t �� (t�� t)); barber : (e�� t); shave : (e �� (e �� t)):Technically, these constants will be handled as free variables: they will decorate input con-clusions of proof-nets.We also assume that the following homomorpism H between syntactic and semantictypes is given: H(n) = (!e �� t) H(sn) = !e H(s) = tH(AnB) = H(A) ��H(B) H(A=B) = H(B) ��H(A)Then, we consider a lexicon made of words to which syntactic types and semantic proof-nets are attached. Each of these semantic proof-nets is such that:1. the type of its unique output conclusion is the semantic type of the corresponding word,i.e., the homomorphic image of the the associated syntactic type;2. its input conclusions (if any) are decorated with constants.LEXICONWord Syntactic Category Semantic Category Semantic Proof-Netbarber n (!e �� t) �barberevery (s=(npns))=n (!e�� t)�� ((!e �� t) �� t) �everyhimself ((npns)=np)n(npns) (!e�� (!e�� t)) �� (!e�� t) �himselfshaves npn(s=np) (!e�� (!e �� t)) �shaveswhere the proof-nets �barber, �every, �himself , �shaves are respectively the following:
�barber r j bb@@ ��&r rb j��@@
 rjdbarber �every j bbr@@ ��&jr r@@ ��c jr��@@
 r b r r��@@
jb j r��@@
 b r r��@@
j b r r��@@
j bjb@@ ��&jbHHH ���&8 �



�himself jbb j j bbjb jr r r r rrPPPP ������@@ @@ ��@@ ����@@ &
 c &
 �shaves r j bb@@ ��&rjd rjr j b@@ ��d &r rb j��@@
 rb j��@@
shaveThese semantic proof-nets correspond to semantic recipes. For instance, by applying thereading algorithm of Sections 3 and 4 on �every, one obtains the following �-term:�P:�Q:8 (�x:� (P x) (Qx))or, using a more usual notation for the connectives 8 and �:�P:�Q:8x:(P x) � (Qx)Now, consider the non-commutative proof-net resulting from the syntactic analysis ofthe sentence �every barber shaves himself�:
br j@@ ��
br j@@ ��
b rj��@@ &r(s=(npns))=n�every rn�barber b rj��@@
 br j@@ ��
rnpn(s=np)�shaves br j@@ ��&b rj��@@ & b rj��@@
b rjraaa !!!
((npns)=np)n(npns)�himself bs+If one does not take the orientation of the links into account (identifying both n and =with ��), we may think of the above proof-net as a proof-net of IILL or even IIELL. Then,replacing each syntactic type by the corresponding semantic type does not a�ect the well-typedness of the proof-net because H is a homomorphism. This allows the semantic recipesto be plugged by means of cuts, the resulting proof-net being still well-typed:



br j@@ ��
br j@@ ��
b rj��@@ & rr b rj��@@
 br j@@ ��
r br j@@ ��&b rj��@@ & b rj��@@
b rjraaa !!!
 b�barber�every�shaves�himself b bbb tThen, by cut elimination, one gets the semantic proof-net associated to the whole sen-tence:
b rj��@@
rbr j@@ ��& b rj��@@
rb rj��@@
b rj��@@
r b rj��@@
b rj��@@
rrjr ��@@ crjr ��@@ c jrdjrd jrd

bshavebarber�8whose semantic reading provides: 8x:(barber x) � (shave x x).AcknowlegmentWe would like to thank A. Cichon and F. Lamarche for helpful comments.References[1] B. Carpenter. Lectures on Type-Logical Semantics. MIT Press, Cambridge, Massachus-setts and London England, 1996.[2] V. Danos. Une application de la logique linéaire à l'étude des processus de normalisationet principalement du lambda calcul. Thèse de doctorat, Université de Paris VII, 1990.



[3] V. Danos and L. Regnier. The structure of multiplicatives. Archive for MathematicalLogic, 28:181�203, 1989.[4] V. Danos and L. Reigner. Local and asynchronous beta-reductions. In Proceedings ofthe eighth annual symposium on Logic in Computer Science, 1993.[5] Ph. de Groote, editor. The Curry-Howard Isomorphism, volume 8 of Cahier du centrede Logique. Université Catholique de Louvain, Academia, 1995.[6] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1�102, 1987.[7] J.-Y. Girard. Linear logic: its syntax and semantics. In J.-Y. Girard, Y. Lafont, andL. Regnier, editors, Advances in Linear Logic, London Mathematical Society LectureNotes. Cambridge University Press, 1995.[8] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tractsin Theoretical Computer Science. Cambridge University Press, 1989.[9] W.A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.Hindley, editors, to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus andFormalism, pages 479�490. Academic Press, 1980.[10] F. Lamarche. Games semantics for full propositional linear logic. In Ninth AnnualIEEE Symposium on Logic in Computer Science. IEEE Press, 1995.[11] F. Lamarche and C. Retoré. Proof nets for the lambek calculus. In M. Abrusci,C. Casadio, and G. Sandri, editors, Third Roma Workshop: Proofs and Linguistic Cate-gories, Rapporto di Ricerca del Dipartimento de Filoso�a. Università di Bologna, 1996.[12] J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154�170,1958.[13] A. Lecomte. Towards e�cient parsing with proofnets. In 11th Conference of Europeanchapter of the Association for Computational Linguistics. Utrecht, 1993.[14] R. Montague. The proper treatment of quanti�cation in ordinary english. InJ. Hintikka, J. Moravcsik, and P. Suppes, editors, Approaches to natural language: pro-ceedings of the 1970 Stanford workshop on Grammar and Semantics, Dordrecht, 1973.Reidel.[15] M. Moortgat. Categorial Investigations: logical and linguistic aspects of the lambekcalculus. Foris Publications, 1988.[16] G. Morrill. Memoisation of categorial proof nets: parallelism in categorial processing.Technical Report LSI-96-24-R, Dept. de Llengatges i Sistemes Informàtics, UniversitatPolitècnica de Catalunya, 1996.[17] G.V. Morrill. Type Logical Grammar. Kluwer Academic Publishers, Dordrecht andHingham, 1994.[18] A. Ranta. Type theoretical grammar. Oxford University Press, 1994.[19] L. Regnier. Lambda calcul et Réseaux. Thèse de doctorat, spécialité mathématiques,Université Paris 7, Janvier 1992.[20] C. Retoré. Des réseaux de démonstration pour la linguistique: une introduction à lalogique linéaire. Traitement Automatique de Langues, 1996. à paraître.[21] D. Roorda. Resource Logics: proof-theoretical investigations. PhD thesis, University ofAmsterdam, 1991.[22] A. Troelstra. Lectures on Linear Logic, volume 29 of CSLI Lecture Notes. Center forthe Study of Language and Information, 1992.[23] J. van Benthem. The semantics of variety in categorial grammar. In W. Buszkowski,W. Marciszewski, and J. van Benthem, editors, Categorial Grammars. John Benjamins,1988.[24] J. van Benthem. Language in action: Categories, Lambdas and Dynamic Logic, volume130 of Sudies in Logic and the foundation of mathematics. North-Holland, Amsterdam,1991.


