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AbstratThere are many examples where the desription of the omplexity of ows an only be ahieved by theuse of simple models. These models, obtained usually from phenomenologial arguments, need in generalthe knowledge of some parameters. The hallenge is then to determine the values of these parametersfrom experiments. We will give two examples where we have been able to evaluate the oeÆients ofthe omplex Ginzburg-Landau equation from spae-time haoti data applied to �rst a row of oupledylinder wakes and then to wave propagation in the Ekman layer of a rotating disk. In the �rst ase, ouranalysis is based on a proper deomposition of experimental haoti ow �elds, followed by a projetionof the CGLE onto the proper diretions. We show that our method is able to reover the parametersof the model whih permits to reonstrut the spatio-temporal haos observed in the experiment. Theseond physial system under onsideration is the ow above a rotating disk and its ross-ow instability.Our aim is to study the properties of the wave�eld through a Volterra series equation. The kernels ofthe Volterra expansion, whih ontain relevant physial information about the system, are estimatedby �tting two-point measurements via a nonlinear parametri model. We then onsider desribing thewave�eld with the omplex Ginzburg-Landau equation, and derive analytial relations whih express theoeÆients of the Ginzburg-Landau equation in terms of the kernels of the Volterra expansion.
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1 IntrodutionDespite the large Reynolds numbers of the ows that our in natural or industrial situations, theirdynamial behaviour is very often dominated by the presene of large sale oherent strutures. Classialexamples an be found in atmospheri or oeani vortex ows and there is some hope that simpli�edmodels might desribe some of their omplex or even haoti spatio-temporal dynamis. Contrary tothe situation enountered in many laboratory ows, one annot study the responses of these ows tosome ontrol perturbations. In partiular, when faing the problem of reovering the oeÆients of somemodels, there is no way to exite these ows via periodi foring as it is often the ase to reover thedispersion relation of the waves whih are involved in the solutions of the modelling equations. Therefore,it is neessary to develop some tehniques whih are able to adjust a non linear dynamial model to somemeasured data. This system identi�ation thus leads to a problem of �tting a nonlinear di�erentialequation to experimental data and is usually addressed in the �eld of nonlinear system identi�ation [1℄.This problem an be divided in three parts:� model seletion : determine what type of model should be �tted to the data,� inferene : estimate the model oeÆients from the data,� model validation : determine if the model indeed desribes the observations adequately.Unfortunately, there does not exist a unifying framework for desribing nonlinear systems (like the Fouriertransform for linear systems). One should therefore ompare di�erent approahes whenever possible. Itshould also be stressed that the riteria for obtaining a good model di�er depending on whether one wantsto make preditions, �t data, reprodue topologial properties in phase spae, et. In the following, wepresent two tehniques whih enable us to estimate with a good auray the oeÆients of the ComplexGinzburg Landau Equation in order to desribe the spae-time dynamis ouring in two instabilities ofuid ows. The �rst analysis is devoted to the oupled wakes downstream a row of ylinders and theseond deals with the three-dimensionnal instability of a rotating disk boundary layer.2 Part 1: Spatio-temporal haos generated by oupled wakes2.1 IntrodutionIt is known from experimental studies and numerial simulations (see the reviews by Zdrakovih [2℄ andChang et al. [3℄), that the wakes of blu� bodies plaed side by side, an interat and reate a large varietyof phenomena. In the ase of interest here, we analyze the spae-time haos reated by the wakes of arow of 16 irular ylinders plaed in a water tunnel perpendiular to an inoming ow. Figure 1 presentsa snapshot of these 16 wakes made visible by dye injetion through a small hole drilled at the rear frontof eah ylinder.These ylinders possess a length of 200 mm and a diameter of 2 mm. They are rigidly maintainedin the wall of a water tunnel. The distane separating eah ylinder axes is equal to four times theirdiameter and the Reynolds number Re of the ow is equal to 80. Note that the separating distane hasbeen hosen in aordane with previous results obtained on a pair of wakes by Peshard and Le Gal [4℄and in suh a way that the oupled wakes experiene a spatio-temporal haoti regime. In order to buildspae-time diagrams (512 time steps � 16 spae positions) whih represent the dynamis of the familyof wakes, we reord a unique video line at the video frequeny (25Hz) and gather these lines together aspresented in Figure 2. The aquisition line is situated 12mm downstream the row of ylinders and thedisplaements of the dye streaks are reorded as a funtion of time (time unit is 0:04 s). We an see on�gure 2 the errati appearane in spae and time of amplitude holes [5℄.It is known that the B�enard-von Karman wake of a ylinder plaed in a ow appears via a Hopfbifuration. Thus the osillating ow an be modeled by a Stuart-Landau equation as it has been doneby Provansal et al. in 1987 [6℄ or Dusek et al. in 1994 [7℄:2



Figure 1: Snapshot of the 16 oupled wakes (Re=80) where amplitude holes an be observed on wakes 6and 15.

Figure 2: Spae-time diagram, time is running downwards (10 seonds). The errati appearane ofamplitude holes is visible.dtA(t) = ( ar + j ai )A(t) � ( lr + j li ) jA(t)j2A(t) (1)where A represents an order parameter (for instane the transverse veloity at one position behindthe ylinder). The omplex oeÆients a = ( ar+j ai ) and l = ( lr+j li ) depend on the harateristis ofthe wake (aspet ratio or ross-setion shape of the ylinder) and must be determined from experiments.Therefore, the oupled osillators model that an be used to study the ow downstream the row ofylinders is a disrete version of the Complex Ginzburg-Landau equation (CGLE) (see Cardoso et al.[8℄):dtAi(t) = ( ar + j ai )Ai(t) + ( gr + j gi )(Ai+1(t) +Ai�1(t)� 2Ai(t) )�( lr + j li ) jAi(t)j2Ai(t) (2)with the assoiated boundary onditions are A0(t) = A17(t) = 0, where Ai(t) is the omplex amplitudeof the wake of index i and g = ( gr + j gi ) is the linear oupling oeÆient.Sine Ekhaus [9℄, most of the stability analysis of the Ginzburg-Landau equation have been arriedout for the ontinuous ase. The instability arises from a resonane mehanism between wave trains,and is alled the Benjamin-Feir instability (or the sideband instability with modulations at k � 0). Inpartiular, the well-know Newell's riterion [10℄ is related to the instability of any plane wave perturbedby a long wavelength modulation. More reently, Matkowsky and Volpert [11℄ onsidered perturbations3



of arbitrary wave numbers. Thus, they showed that destabilizations an our through �nite wave num-bers perturbations and not only through homogeneous perturbations as it was lassially studied. For adisrete system, the possible wave numbers of the waves are given by the number of osillators and alsoby the boundary onditions applied on the array. The �rst known stability study for the disrete asehas been performed by Willaime et al. in 1991 [12℄ with the wave numbers q of the perturbations equalto 0 or �. These investigations have then been extended to all wave numbers for the basi solutions andto all wave numbers for the perturbations by Ravoux et al. [13℄.
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Figure 3: Numerial simulation of 16 oupled Landau osillators (a=1+20j, g=1+3j, l=1-1j) with 10 %noise added �a posteriori.2.2 Reovering the oeÆients of the modelContrary to what has been done for instane by Croquette et al. [14℄ in the study of non linear waves inRayleigh-B�enard onvetion (where the dispersion relation was determined for eah frequeny by applyingan external foring), here we do not exite our hydrodynamial system but let it evolving in its naturalspatio-temporal haoti state. Therefore, our goal is to invert some measurements of spae-time haosin order to reover the oeÆients of the model. Thus we need to solve linear systems of equations ofthe type M1 = M2x, where M1 and M2 are matries and x an unknown vetor. These matries aremade up from data and the vetor x onsists in the oeÆients a, g and l of the CGLE equation. Theresolution is ahieved via a least square method where the linear system is over-determined. Thus, theoeÆient vetor is suh that the distane between M1 and M2 x is minimized in the assoiated phasespae. The initial spatio-temporal �eld is a 512� 16 matrix Ati that an be generated synthetially bynumerial integration of CGLE as shown on Figure 3. However, as experimental data are orrupted bynoise, we added 10% Gaussian noise �a posteriori (at the end of the whole simulation) in order to test therobustness of our method [15℄. Setion 1.3 is thus devoted to test our methods on the results obtainedfrom numerial simulations, where the oeÆients are given �a priori.2.3 Data from numerial simulations2.3.1 Diret inversionIn this ase, the CGLE simply writes:Dt i = aAt i + g�t i � l Nt i; with Dti = At+1 i�At i�t ;�t i = At i+1 +At i�1 � 2At i;Nt i = jAt ij2At i;4
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Figure 4: Diret Method, lak of auray of the inversion as a funtion of noise intensity.where �t is the time unit given by the video aquisition rate. The goal of our work is thus to invertthe algebrai system and to obtain the values of the oeÆients a, g and l. Similar diret inversion ofhaoti spatio-temporal data series was done on the same problem by Fullana et al. [16℄, in a surfae wavestudy by Gollub et al. [17℄, by Voss et al. for spatio-temporal measurements of binary-uid onvetion[18℄, and in a reation di�usion partial di�erential equation by B�ar et al. [19℄.As it an be seen on Figure 4, the presene of noise prohibits the reovery of the oeÆients usingthis diret inversion method. The alulated values depend drastially on the noise intensity and departstrongly from the true values whih have been hosen to ompute the syntheti spatio-temporal data.Even averaging the alulated oeÆients on a great number of observation windows (typially 50,orresponding to the total duration of the experimental data) does not anel the inuene of noise.Figure 5 shows in solid lines this departure from the true values and a rapid onvergene to false values.2.3.2 Dispersion relation methodIn order to �lter out the noise pollution whih is reminisent of any experiments, it is traditional to use theFourier reiproal spae. Unfortunately, as it an be seen on the example of Figure 6, the Fourier powerspetra omputed on our experimental haoti spae-time diagrams do not permit a lear determinationof the dispersion relation of the waves whih are involved in the haoti dynamis. Although, a more orless paraboli shape an be observed (note the negative urvature linked to the signs of g and l), it isobvious that any �t of these spetra by a quadrati dispersion relation of Fourier modes dedued from5
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Figure 5: Simulated data: in solid line ({), lak of auray of the diret inversion as a funtion ofobservation windows. The rosses (x) show better results obtained with the relation dispersion method.Error bars show the auray of the inversion.the CGLE would lead to inaurate oeÆients. The reason why Fourier transforms are of little help formaking a Galerkin projetion, is beause Fourier modes are not an adequate basis for representing thespatio-temporal dynamis of the wave�eld. It would be more appropriate to seek a basis that exploitsthe properties of the data, giving what ould be onsidered as "eigenmodes". Suh a basis is providedby the Bi-Orthogonal Deomposition, also known as the Proper Orthogonal Deomposition [20℄.Chauve and Le Gal proposed in 1992 [21℄ a method where we an �lter the data and get a goodharaterization of the dispersion relation obtained by a Galerkin projetion onto the proper modesof the Bi-Orthogonal Deomposition (BOD) [22℄. Moreover, this method optimizes the total numberof modes whih are needed for the series reonstrution. The N = 16 proper modes of the omplex�eld At i = Ai(t) are �rst alulated by diagonalization of the temporal orrelation (16 � 16) matrix.Note that as the CGLE is a omplex model, the �rst step of the method onsists in omplexifying theexperimental data by the use of the Hilbert Transform. Then, the N = 16 proper modes of the omplex�eld At i = Ai(t) are alulated by diagonalization of the temporal orrelation (16 � 16) matrix and bythe use of the projetion relation: At i = NPk=1�k  k(t) ��k(i); (3)where the overbar refers to the omplex onjugation,  k the temporal mode and �k the spatial mode6
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Figure 7: Simulated data: Matries �, �, L and 
.When the CGLE is projeted onto the BOD modes, the following (16� 16) matries appear:
k l = ( (Dt i�il)�  t k )�; Lk l = ( (At i�i l)�  t k )�;�k l = ( (�t i�i l)�  t k )�; �k l = ( (Nt i�i l)�  t k )�;and the Dispersion Relation linking modes l and k an then be written as (see pages 411-412 of [21℄):
kl = aLkl + g �kl � l�kl: (4)These matries are therefore omputed and the amplitudes of their entries are given in Figure 7. Asit an be seen, they are essentially onstituted by diagonal elements. The reason of this partiular shapeomes from the fat that the series are nearly pure sinusoidal funtions whih are themselves proportionalto their own derivatives. Therefore, the inter-orrelations (diagonal elements of the matries) between the7



proper modes and their derivatives is higher than the ross-orrelations. Using these diagonal elements,we an plot the projetions of the dispersion relation (equation (4)) on the di�erent diretions. Figure 8represents suh a projetion in the 3D-spae 
r;�i; �r. The linear relation between the di�erent matriesis in omplete aordane with equation (4). Therefore, determining the omplex diretor vetor of thedispersion relation plane in the spae (
;�; �) allows the alulation of the oeÆients of the CGLE.
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Figure 8: Simulated Data: Dispersion Relation in 3D spae: 
r;�i; �r. In grey olor is represented aportion of the dispersion relation plane.Figure 5 presents the results (with the rosses (x)) of the alulations of the oeÆients when averagingthe obtained values on observation windows. We an observe that, although the onvergene towards thetrue value is less rapid than the onvergene of the diret method, the �nal result is satisfatory with anauray better than 7%. For all these oeÆients, the result is better than the one obtained using thediret method where some oeÆients ould depart from their true value of more than 50%.2.4 Reovering the oeÆients of the model from experimental dataAs our inversion method was suessfully tested by our simulated data, we apply it to experimentalspae-time diagrams as the one presented in �gure 2. Figure 9 shows the amplitudes of the entries ofthe four matries �, �, L and 
. As it was previously observed on the simulated data study, most ofthe information is ontained in the diagonal elements of the matries. Therefore, only these diagonalelements, ordered by their index l will be onsidered in the following. Then it an easily be seen onFigure 10 that most of the modes line up and validate the linearity of the dispersion relation (equation(4)).To inrease the auray of the linear regression, we then keep only the �rst twelve modes. The lastfour modes of the BOD, where the signal to noise ratio is observed to be less than 50 % are thus negletedin the inversion proess. The least square method then leads to the determination on the oeÆients(average on 50 temporal windows):ar = �0:0534 [(t)�1℄; ai = 0:4747 [(t)�1℄,gr = �0:2396[(t)�1℄; gi = �2:7018 [(t)�1℄,lr = 0:0567 [(t)�1(A)�2℄; li = �0:0795 [(t)�1(A)�2℄:In fat, the relevant parameters of (2) are normalized and dedued from the latter, � = grar , 1 = gigrand 2 = lilr : � = 4:48; 1 = 11:27; 2 = �1:40.8
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Figure 9: Experimental data: Matries �, �, L and 
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Figure 10: Experimental Data: Projetion of 
 on some other diretions. Eah symbol is labeled by theindex l of the BOD modes.whih are oeÆients with values in aordane with the values generally measured on wakes. Usingthese oeÆients, it is easy now to test this validity by a numerial simulation of the CGLE. As it an beseen on �gure 11, the reonstrution of the spatio-temporal dynamis shows a good agreement with theobserved spatio-temporal haoti behavior. In partiular, the intermittent extintions of osillators (oramplitude holes) are reovered. Note that the main limitation of the BOD is that this method exploitsseond order moments of the data only. Beause of this, it annot properly apture deviations from agaussian distribution, whih are preisely a hallmark of nonlinear systems.Another way to test our estimation of the oeÆients of the model equation, is to ompare simulatedpreditions with various experimental on�gurations and verify that the regime really experiened by oursystem an be indeed predited. In our ase, we hanged the distane between the ylinders, so that theoupling oeÆient between the wakes is varied. For distant ylinders, the wakes are poorly oupled andthe phase between suessive wakes is �. On the ontrary, for short distane between ylinders, the wakesare strongly oupled and osillate in an aousti mode with a phase di�erene lose to 0 (there an be along wave spatial modulation along the row). As presented in �gure 12, our numerial simulations reoverorretly both this \in- phase" mode of the strong oupling ase (note that the long wave modulations9
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Figure 11: Spae-time diagram of the 16 simulated oupled wakes with the oeÆients obtained from theexperiment.
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Time Figure 12: left: Visualizations of \anti-phase" (top) and \in-phase" modes (bottom, with long wavesmodulations) behind a row of ylinders. right: numerial simulations for weak and strong oupling,(� = 0:035 (top) and 5 (bottom)), with the other oeÆients obtained from experiments (1 = 11:27; 2 =�1:40).are also reovered) and the \anti- phase" mode of the weak oupling ase [5℄.3 Part 2: Rotating disk ow instabilities3.1 Introdution:Ekman was the �rst in 1905 [23℄, to formulate in a geophysial ontext, the mathematial expression ofthe veloity �eld of a rotating boundary layer. His analysis was based on the linearization of the uidmotion equations and the searh for self-similar solutions. He supposed for that, that the uid and the10



Figure 13: Type I instability waves in the Karman boundary layer.disk have angular veloities very lose one to the other. The self-similar solution he wrote takes the formof a spiral, now alled the "Ekman Spiral", and is mainly loalized in a thin boundary layer of depth Ænearby the rotating boundary (Æ = p�=
). In 1921, Karman [24℄ this searh for self-similar solutionsto the full non linear ase. Two types of instabilities (type I and type II) instabilities an appear in therotating boundary layer. Type II instability orresponds to a destabilization by the ombined e�ets ofthe fores due to the Coriolis and visous e�ets. It produes waves whih are rolled up in spirals in aontrary diretion to the disk rotation. Stuart in 1955 [25℄ shows that type I instability is invisid andomes from the presene of unstable inetion points in the radial veloity pro�les. This instability alsoprodues spiral waves but whih are rolled up in the diretion of rotation of the disk. Our experimentaldevie is fully presented in Jarre et al. [26℄ and mainly onsists of a 50 m diameter horizontal disk,whih is immersed in a water tank. Visualization of the type I waves is made possible when using a whitedye as it is presented on �gure 13. Around 30 wavelengths an be ounted all around the disk.

Figure 14: Wave paket shape widens as its amplitude grows.Anemometri measurements of the waves generated by a small roughness element glued on the disksurfae just under the linear threshold have been performed by the assoiation of two anemometri probes,loated at a distane of 8 mm one from the other, on a diretion making an angle of 45 degrees from theradial diretion. Figure 13 presents the shape of the wave pattern measured at di�erent radial loations.11



The growth of its amplitude with Reynolds number (the radius) and the marginal stability urve whihare obtained from Fourier analysis are given in �gure 14. These measurements allowed in partiular toestimate the azimuthal oherene length �0� from the urvature of the marginal stability urve: a valuearound 1.2 mm was found [26℄ at the onset of the instability whih ours around Re = 280. Then andbefore fully developed turbulene takes over for Re � 510 it was shown in Jarre et al. [27℄ that the nonlinear waves propagate with a well de�ned pattern and group veloity whih justify an amplitude equationapproah. However, the full determination of the values taken by the oeÆients of the CGLE ould notbe obtained by the Fourier analysis developed in [27℄. Next setion will present our new tehnique basedon Volterra series whih allows suh a determination [28℄.

Figure 15: Growth of the waves along the radius and marginal stability urve. Note the seond lobeorresponding to the growth of harmonis driven by non linear e�ets.3.2 De�nition of the Volterra modelWe use here a di�erent approah for inferring the oeÆients of CGLE model. Instead of �tting thisequation diretly to the data (whih would be an indutive approah), we �rst desribe the data witha general lass of models, based on Volterra series. If the underlying physis is indeed desribed by aCGLE model, then a diret mapping exists between the model oeÆients and the Volterra kernels. Inthis way we an not only estimate the CGLE model oeÆients, but also and more importantly, deduewhether this model is indeed orret.Let v(x; t; Re) be the azimuthal uid veloity reorded at time t, position x and Reynolds numberRe. A general dynamial model for the wave�eld amplitude is�v(x; t; Re)�x = F�v(x; t; Re)� ;where F is a ontinuous, nonlinear and time-invariant operator. We assume we an write F as a Volterraseries [29℄, [30℄:�vi(x;Re)�x = 1Xk=0 gk(Re) vi�k(x;Re) (1)+ 1Xk=0 1Xl=0 gk;l(Re) vi�k(x;Re) vi�l(x;Re)+ 1Xk=0 1Xl=0 1Xm=0 gk;l;m(Re) vi�k(x;Re) vi�l(x;Re) vi�m(x;Re) + � � �12



The wave�eld v is sampled at a onstant rate, so a disrete version of the Volterra series is usedhere, with the notation vi(x;Re) = v(x; t = ti; Re). The oeÆients gk; gk;l and gk;l;m are respetivelyalled �rst, seond and third order Volterra kernels. Furthermore, sine we are dealing with nonlinearlyinterating waves, it is appropriate to onsider Fourier modes of the wave�eld. The disrete Fouriertransform in time gives:�v̂(x; !)�x = �(!) v̂(x; !) (2)+ X!1+!2=!�(!1; !2) v̂(x; !1)v̂(x; !2)+ X!1+!2+!3=!�(!1; !2; !3) v̂(x; !1)v̂(x; !2)v̂(x; !3)+ � � �where v̂(!) stands for the Fourier transform of vi at frequeny !. The link between the Volterra kernelsin Fourier spae and their temporal ounterparts is obviously:�(!) = 1Xk=0 gk ei!k ; (3)�(!1; !2) = 1Xk=0 1Xl=0 gk;l ei(!1k+!2l) ;�(!1; !2; !3) = 1Xk=0 1Xl=0 1Xm=0 gk;l;m ei(!1k+!2l+!3m) ;and so on for higher order kernels.3.3 Inversion of the Volterra model: determination of the KernelsWe an give an estimation of the spatial derivative using the two-point measurements: as the probeseparation �x is suÆiently small ompared to the wave-length, we an write:�vi(x;Re)�x � vi(x+�x;Re)� vi(x;Re)�x :The Volterra model may now be fully expressed into the more onvenient framework of transfer funtions:ui = vi(x;Re) (the input) (4)yi = vi(x+�x;Re) (the output)= nXk=0 �gk ui�k + nXk=0 nXl=0 �gk;l ui�k ui�l+ nXk=0 nXl=0 nXm=0 �gk;l;m ui�k ui�l ui�m+ � � �+ "i ;where "i is the residual error that has to be minimised and where �g is related to g byg = �g�xThe disrete transfer funtion (ref �equation 4) is also known as a NX (Nonlinear with eXogeneous input)model. It is nothing but a nonlinear disrete mapping between the output and the input.13



The identi�ation of nonlinear transfer funtions from experimental data is a longstanding problem,sine even for low order polynomials, the number of unknown oeÆients an be huge. Many solutionshave been developed for that purpose, see for example [1℄. The key problem here is the seletion ofthe model struture, i.e. the determination of kernels g that signi�antly ontribute to the wave�elddynamis. The proedure we have followed is detailed in [28℄.For example, for Re = 387, a least squares �t yields the model oeÆients, whih permit to reonstrutthe signals as it is presented in �gure 16 (Note that the residuals between the output and the preditionsare barely visible on 16-b): yi = �0:7610 ui�8 + 0:0032 ui�8u2i�1�0:0105 u2i�24ui�3 + 0:1022 ui+0:0017 ui�23ui�20ui�8�0:0115 ui�14ui�3ui�1+0:0103 ui�23ui�11ui + "iThe most signi�ant kernels are hosen among all possible ombinations of linear, quadrati and ubiterms, with a memory (i.e. a number of delays n) equaling up to three wave�eld periods. For all theReynolds numbers of interest (Re going from 250 to 505), no higher order terms are needed to properlymodel the wave�eld dynamis. This is an important result, sine it justi�es the trunation of the Volterraseries at ubi terms, justifying the use of the CGLE as a model of wave propagation. More expliitely,let us emphazise that the trunation of the Volterra equation (2) at ubi terms is not made \a priori"but omes from the examination of the partiular experimental data under onsideration: for these data,higher order kernels in the series are negligible. As a onsequene, the trunated Volterra eqution has tobe related to the ubi CGLE.3.4 Relation to the omplex Ginzburg-Landau equationThe hydrodynami �eld de�ning the wave paket, v(x; t), an be written as:v(x; t) = A(x; t) eikx�i!t + :: ; (5)where A(x; t) is a omplex funtion, slowly varying in spae and time, and whih obeys the CGLE:�0 ��A(x; t)�t + Vg �A(x; t)�x � = �A+ �20(1 + i1)�2A(x; t)�x2 � lr(1 + i2)jA(x; t)j2A(x; t) ; (6)where � = Re�ReRe ;Vg is the group veloity, �0� = ar�1 and �20 = � give the harateristi time and length of the instability.The general solution of a linear stability hydrodynami problem an be expressed using a frequenyand a wavenumber that verify a omplex dispersion relation ! = !(k;Re). The oeÆients �0, Vg , �0, 1are related to the Taylor expansion of the frequeny !(k;Re) near the ritial threshold in the followingway [31℄: ��10 = �i Re �!�Re ���� ; (7)Vg = �!�k ���� ; (8)�20(1 + i1) = i�02 �2!�k2 ���� ; (9)14
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(f)Figure 16: Exerpt of the wave�eld amplitude at Re = 387 showing from top to bottom (with the down-stream probe always in bold) : (a) the measured in- and output, (b) the measured output and its predition,() the measured output and the residuals, (d) the measured output and the linear onstituent of the pre-dition, (e) the measured output and the quadrati onstituent of the predition, (f) the measured outputand the ubi onstituent of the predition. The measured signals are entered and redued.where j means that the partial derivatives are alulated at the ritial point Re = Re, k = k. If thesolution A(x; t) is developed in a temporal Fourier seriesA(x; t) =X� Â(x; �) e�i�t ;it is easy to verify that the CGLE is equivalent to0 = i�Â(x; �) � �!�k ���� �Â(x; �)�x + i2 �2!�k2 ���� �2Â(x; �)�x2� i �!�Re ���� (Re�Re)Â(x; �)� q X�1+�2+�3=� Â(x; �1)Â(x; �2)Â�(x;��3) ; (10)where q is de�ned by q = lr(1 + i2)�0 ; (11)15



whih an be ompared to the Volterra equation (2), trunated at ubi terms (as it is justi�ed in setion3.3): �v̂(x; !)�x = �1(!)v̂(x; !) (12)+ X!1+!2=! �2(!1; !2)v̂(x; !1)v̂(x; !2)+ X!1+!2+!3=! �3(!1; !2; !3)v̂(x; !1)v̂(x; !2)v̂(x; !3) :Near the ritial threshold Re = Re, we write v(x; t) in the form:v(x; t) = �A(x; t) eikx�i!t +B(x; t) ei2kx�i2!t�+ :: ; (13)with A(x; t), B(x; t) slowly varying in spae and time. Equation (12) gives then, for ! lose to !:�Â(x; ! � !)�x = [�1(!)� ik℄Â(x; ! � !) (14)+ 2 X!1+!2=!;!1'2!; !2'�! �2(!1; !2)B̂(x; !1 � 2!)Â�(x;�!2 � !)+ 3 X!1+!2+!3=!;!1'!2'�!3'! �3(!1; !2; !3)Â(x; !1 � !)Â(x; !2 � !)Â�(x;�!3 � !) ;and for !1 ' 2!:�B̂(x; !1 � 2!)�x = [�1(!1)� 2ik℄B̂(x; !1 � 2!) (15)+ X!3+!4=!1;!3'!4'! �2(!3; !4)Â(x; !3 � !)Â(x; !4 � !) :The adiabati approximation leads then to:B̂(x; !1 � 2!) ' � 1<(�1(!1)) X!3+!4=!1;!3'!4'! �2(!3; !4)Â(x; !3 � !)Â(x; !4 � !) : (16)Substituting this expression in (14), we get�Â(x; ! � !)�x = [�1(!)� ik℄Â(x; ! � !) (17)+ X!1+!2+!3=!;!1'!2'�!3'! �(!1; !2; !3)Â(x; !1 � !)Â(x; !2 � !)Â�(x;�!3 � !) ;where � is de�ned by:�(!1; !2; !3) = � 2 �2(!1; !2)�2(! � !3; !3)<(�1(! � !3)) + 3�3(!1; !2; !3) : (18)16



Di�erentiating equation with respet to x we get:�2Â(x; ! � !)�x2 = [�1(!)� ik℄2Â(x; ! � !)+ X!1+!2+!3=!;!1'!2'�!3'! Â(x; !1 � !)Â(x; !2 � !)Â�(x;�!3 � !)�(!1; !2; !3)[(�1(!)� ik) + (�1(!1)� ik) + (�1(!2)� ik) + (�1(!3) + ik)℄ : (19)Again, we keep only terms proportional to An with n � 3. We will now replae the expressions (17)and (19) for �Â(x;�)�x and �2Â(x;�)�x2 in the CGLE:0 = iÂ(x; ! � !)�(! � !) + i �!�k ���� [�1(!)� ik℄� �!�Re ���� (Re�Re) + 12 �2!�k2 ���� [�1(!)� ik℄2�+ X!1+!2+!3=!;!1'!2'�!3'! Â(x; !1 � !)Â(x; !2 � !)Â�(x;�!3 � !)�� �!�k ���� �(!1; !2; !3) (20)+ i2 �2!�k2 ���� �(!1; !2; !3)[�1(!) + �1(!1) + �1(!2) + �1(!3)� 2ik)℄� q� :And identifying the terms, it omes: Vg = i � ��1�! ������1 ; (21)�0 = �Re Vg ��1�Re ������1 ; (22)�20(1 + i1) = ��02 V 3g �2�1�!2 ���� ; (23)lr(1 + i2) = Vg �0 � 2 �2(!; !)�2(2!;�!)<(�1(2!)) � 3�3(!; !;�!)� : (24)The imaginary part of the linear kernel �(!) is diretly related to the wave�eld dispersion relation.The real part of �(!) is related to the linear growth rate and is displayed in �gure 17 together with thefrequeny f of the fundamental mode. It an be heked that the zero growth rate urve is equivalent tothe marginal stability urve displayed in �gure 14. Positive values of the growth rate on�rm the onsetof the instability around Re = 300, in good agreement with the Fourier analysis.Using the values of Volterra kernels we get, near the linear thresholdVg = 0:16� 0:03m � s�1 ;�0 = 15:1� 3:2ms ;�0 = 2:1� 0:5mm ;1 = �0:47� 0:28 :At this stage, we were not able to obtain statistially signi�ant values for the oeÆients lr and 2that are assoiated with the nonlinear term of the CGLE model. Extrapolating Extrapolating formulas(21) and (23) for Re 6= Re, we an get an estimation of the dependene of the group veloity Vg and thedi�usion length �0 from Reynolds number. The resulting behaviour is onsistent with the one presentedin setion 2.1 and the values alulated by Jarre et al. in 1996. Taking into aount the angle of 4517
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Figure 17: Real part of the linear Volterra kernel �1 for various frequenies and Reynolds numbers.Superimposed on it is the frequeny f of the fundamental.between the probes diretion and the radial one, we �nd �0� = 1:4 mm whih is lose to the 1.2 mmobtained previously. Moreover, the transition from onvetive to absolute instability an also be heked,using the riterion obtained on the CGLE by Moon et al. in 1983 [31℄:�abs = Re�ReRe � V 2g �204�20(1 + 21) : (25)�abs gets positive for Re = 380, whih is in agreement Le Gal [32℄ where a transition towards a betterspatio-temporal organisation of waves was deteted for this value of the Reynolds number. Note that thisthreshold is lower to what was predited by Lingwood [33℄ and thus does not orrespond to the transitiontowards turbulene whih is observed for a Reynolds number around 510.Clearly, these results are still open to improvements. The NX nonlinear model we have used is stati inthe sense that it annot generate sustained osillations if the input deays to zero. A signi�ant redutionof the residuals and probably a better desription of the topologial properties of the system ould beahieved by using a more general lass of models, alled Nonlinear Auto-Regressive Moving Average witheXogeneous input (NARMAX). This will be the objet of a forthoming publiation.4 ConlusionIn these studies, we have shown that measurements oming from image analysis or from anemometrisignals and desribing spatio-temporal haoti propagation of waves, an be desribed by the ComplexGinzburg-Landau Equation.In the �rst experiment whih is devoted to oupled wakes, our onern was essentially to �lter outthe noise that pollutes the video images. Our method is based on the Bi-Orthogonal Deomposition(or Proper Orthogonal Deomposition) and leads to a generalized form of the dispersion relation of thewaves. The noise is then easily removed as it is onentrated on modes having a high index: these modesare in fat poorly orrelated. Therefore, the inversion problem is solved and the model oeÆients anbe extrated from the experimental data. Their values are in agreement with known properties of wakesand the reonstrution of haoti spae-time signals is then possible. Preditions of the dynamis havealso been made by the use of the CGLE but for di�erent oupling oeÆients. These preditions havebeen favourably ompared with experiments.Our seond analysis is devoted to the propagation of destabilizing waves in a rotating boundary layer.The measurements are performed synhronously at two slightly di�erent loations above a rotating disk.18
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