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Abstract

There are many examples where the description of the complexity of flows can only be achieved by the
use of simple models. These models, obtained usually from phenomenological arguments, need in general
the knowledge of some parameters. The challenge is then to determine the values of these parameters
from experiments. We will give two examples where we have been able to evaluate the coefficients of
the complex Ginzburg-Landau equation from space-time chaotic data applied to first a row of coupled
cylinder wakes and then to wave propagation in the Ekman layer of a rotating disk. In the first case, our
analysis is based on a proper decomposition of experimental chaotic flow fields, followed by a projection
of the CGLE onto the proper directions. We show that our method is able to recover the parameters
of the model which permits to reconstruct the spatio-temporal chaos observed in the experiment. The
second physical system under consideration is the flow above a rotating disk and its cross-flow instability.
Our aim is to study the properties of the wavefield through a Volterra series equation. The kernels of
the Volterra expansion, which contain relevant physical information about the system, are estimated
by fitting two-point measurements via a nonlinear parametric model. We then consider describing the
wavefield with the complex Ginzburg-Landau equation, and derive analytical relations which express the
coefficients of the Ginzburg-Landau equation in terms of the kernels of the Volterra expansion.



1 Introduction

Despite the large Reynolds numbers of the flows that occur in natural or industrial situations, their
dynamical behaviour is very often dominated by the presence of large scale coherent structures. Classical
examples can be found in atmospheric or oceanic vortex flows and there is some hope that simplified
models might describe some of their complex or even chaotic spatio-temporal dynamics. Contrary to
the situation encountered in many laboratory flows, one cannot study the responses of these flows to
some control perturbations. In particular, when facing the problem of recovering the coefficients of some
models, there is no way to excite these flows via periodic forcing as it is often the case to recover the
dispersion relation of the waves which are involved in the solutions of the modelling equations. Therefore,
it is necessary to develop some techniques which are able to adjust a non linear dynamical model to some
measured data. This system identification thus leads to a problem of fitting a nonlinear differential
equation to experimental data and is usually addressed in the field of nonlinear system identification [1].
This problem can be divided in three parts:

e model selection : determine what type of model should be fitted to the data,
e inference : estimate the model coefficients from the data,
e model validation : determine if the model indeed describes the observations adequately.

Unfortunately, there does not exist a unifying framework for describing nonlinear systems (like the Fourier
transform for linear systems). One should therefore compare different approaches whenever possible. It
should also be stressed that the criteria for obtaining a good model differ depending on whether one wants
to make predictions, fit data, reproduce topological properties in phase space, etc. In the following, we
present two techniques which enable us to estimate with a good accuracy the coefficients of the Complex
Ginzburg Landau Equation in order to describe the space-time dynamics occuring in two instabilities of
fluid flows. The first analysis is devoted to the coupled wakes downstream a row of cylinders and the
second deals with the three-dimensionnal instability of a rotating disk boundary layer.

2 Part 1: Spatio-temporal chaos generated by coupled wakes

2.1 Introduction

It is known from experimental studies and numerical simulations (see the reviews by Zdrakovich [2] and
Chang et al. [3]), that the wakes of bluff bodies placed side by side, can interact and create a large variety
of phenomena. In the case of interest here, we analyze the space-time chaos created by the wakes of a
row of 16 circular cylinders placed in a water tunnel perpendicular to an incoming flow. Figure 1 presents
a snapshot of these 16 wakes made visible by dye injection through a small hole drilled at the rear front
of each cylinder.

These cylinders possess a length of 200 mm and a diameter of 2 mm. They are rigidly maintained
in the wall of a water tunnel. The distance separating each cylinder axes is equal to four times their
diameter and the Reynolds number Re of the flow is equal to 80. Note that the separating distance has
been chosen in accordance with previous results obtained on a pair of wakes by Peschard and Le Gal [4]
and in such a way that the coupled wakes experience a spatio-temporal chaotic regime. In order to build
space-time diagrams (512 time steps X 16 space positions) which represent the dynamics of the family
of wakes, we record a unique video line at the video frequency (25Hz) and gather these lines together as
presented in Figure 2. The acquisition line is situated 12mm downstream the row of cylinders and the
displacements of the dye streaks are recorded as a function of time (time unit is 0.04 s). We can see on
figure 2 the erratic appearance in space and time of amplitude holes [5].

It is known that the Bénard-von Karman wake of a cylinder placed in a flow appears via a Hopf
bifurcation. Thus the oscillating flow can be modeled by a Stuart-Landau equation as it has been done
by Provansal et al. in 1987 [6] or Dusek et al. in 1994 [7]:



Figure 1: Snapshot of the 16 coupled wakes (Re=80) where amplitude holes can be observed on wakes 6
and 15.

Figure 2: Space-time diagram, time is running downwards (10 seconds). The erratic appearance of
amplitude holes is visible.

diA(t) = (ar +jai) A(t) — (I +51:) [A@)PA(®) (1)

where A represents an order parameter (for instance the transverse velocity at one position behind
the cylinder). The complex coefficients a = (a,+ja; ) and | = (1. +jl; ) depend on the characteristics of
the wake (aspect ratio or cross-section shape of the cylinder) and must be determined from experiments.
Therefore, the coupled oscillators model that can be used to study the flow downstream the row of
cylinders is a discrete version of the Complex Ginzburg-Landau equation (CGLE) (see Cardoso et al.

[8]):

diAi(t) = (ar +ja;i) Ai(t) + (gr + 7 9 ) (Air () + Aia (8) — 245(8) )= (1 + 5 1) [Ai (1) 2 Ai (1) (2)

with the associated boundary conditions are Ag(t) = Ai7(t) = 0, where A;(t) is the complex amplitude
of the wake of index i and g = (g, + j g; ) is the linear coupling coefficient.

Since Eckhaus [9], most of the stability analysis of the Ginzburg-Landau equation have been carried
out for the continuous case. The instability arises from a resonance mechanism between wave trains,
and is called the Benjamin-Feir instability (or the sideband instability with modulations at k& ~ 0). In
particular, the well-know Newell’s criterion [10] is related to the instability of any plane wave perturbed
by a long wavelength modulation. More recently, Matkowsky and Volpert [11] considered perturbations



of arbitrary wave numbers. Thus, they showed that destabilizations can occur through finite wave num-
bers perturbations and not only through homogeneous perturbations as it was classically studied. For a
discrete system, the possible wave numbers of the waves are given by the number of oscillators and also
by the boundary conditions applied on the array. The first known stability study for the discrete case
has been performed by Willaime et al. in 1991 [12] with the wave numbers ¢ of the perturbations equal
to 0 or m. These investigations have then been extended to all wave numbers for the basic solutions and
to all wave numbers for the perturbations by Ravoux et al. [13].

wakes

time

Figure 3: Numerical simulation of 16 coupled Landau oscillators (a=1+20j, g=1+3j, 1=1-1j) with 10 %
noise added & posteriori.

2.2 Recovering the coefficients of the model

Contrary to what has been done for instance by Croquette et al. [14] in the study of non linear waves in
Rayleigh-Bénard convection (where the dispersion relation was determined for each frequency by applying
an external forcing), here we do not excite our hydrodynamical system but let it evolving in its natural
spatio-temporal chaotic state. Therefore, our goal is to invert some measurements of space-time chaos
in order to recover the coefficients of the model. Thus we need to solve linear systems of equations of
the type My, = Msx, where M; and M, are matrices and z an unknown vector. These matrices are
made up from data and the vector z consists in the coefficients a, g and [ of the CGLE equation. The
resolution is achieved via a least square method where the linear system is over-determined. Thus, the
coefficient vector is such that the distance between M; and Ms x is minimized in the associated phase
space. The initial spatio-temporal field is a 512 x 16 matrix A;; that can be generated synthetically by
numerical integration of CGLE as shown on Figure 3. However, as experimental data are corrupted by
noise, we added 10% Gaussian noise a posteriori (at the end of the whole simulation) in order to test the
robustness of our method [15]. Section 1.3 is thus devoted to test our methods on the results obtained
from numerical simulations, where the coefficients are given a priori.

2.3 Data from numerical simulations
2.3.1 Direct inversion

In this case, the CGLE simply writes:

D, = Apgp1i—Asi
ti  — At )

Diy=0aA; +9A¢i — 1Ny,  with Ayi = Apivr+ Ao — 2 A4,
Nei = |Apil? Agiy
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Figure 4: Direct Method, lack of accuracy of the inversion as a function of noise intensity.

where At is the time unit given by the video acquisition rate. The goal of our work is thus to invert
the algebraic system and to obtain the values of the coefficients a, g and [. Similar direct inversion of
chaotic spatio-temporal data series was done on the same problem by Fullana et al. [16], in a surface wave
study by Gollub et al. [17], by Voss et al. for spatio-temporal measurements of binary-fluid convection
[18], and in a reaction diffusion partial differential equation by Bér et al. [19].

As it can be seen on Figure 4, the presence of noise prohibits the recovery of the coefficients using
this direct inversion method. The calculated values depend drastically on the noise intensity and depart
strongly from the true values which have been chosen to compute the synthetic spatio-temporal data.

Even averaging the calculated coefficients on a great number of observation windows (typically 50,
corresponding to the total duration of the experimental data) does not cancel the influence of noise.
Figure 5 shows in solid lines this departure from the true values and a rapid convergence to false values.

2.3.2 Dispersion relation method

In order to filter out the noise pollution which is reminiscent of any experiments, it is traditional to use the
Fourier reciprocal space. Unfortunately, as it can be seen on the example of Figure 6, the Fourier power
spectra computed on our experimental chaotic space-time diagrams do not permit a clear determination
of the dispersion relation of the waves which are involved in the chaotic dynamics. Although, a more or
less parabolic shape can be observed (note the negative curvature linked to the signs of g and 1), it is
obvious that any fit of these spectra by a quadratic dispersion relation of Fourier modes deduced from
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Figure 5: Simulated data: in solid line (-), lack of accuracy of the direct inversion as a function of
observation windows. The crosses (x) show better results obtained with the relation dispersion method.
Error bars show the accuracy of the inversion.

the CGLE would lead to inaccurate coefficients. The reason why Fourier transforms are of little help for
making a Galerkin projection, is because Fourier modes are not an adequate basis for representing the
spatio-temporal dynamics of the wavefield. It would be more appropriate to seek a basis that exploits
the properties of the data, giving what could be considered as ”eigenmodes”. Such a basis is provided
by the Bi-Orthogonal Decomposition, also known as the Proper Orthogonal Decomposition [20].

Chauve and Le Gal proposed in 1992 [21] a method where we can filter the data and get a good
characterization of the dispersion relation obtained by a Galerkin projection onto the proper modes
of the Bi-Orthogonal Decomposition (BOD) [22]. Moreover, this method optimizes the total number
of modes which are needed for the series reconstruction. The N = 16 proper modes of the complex
field A;; = A;(t) are first calculated by diagonalization of the temporal correlation (16 x 16) matrix.
Note that as the CGLE is a complex model, the first step of the method consists in complexifying the
experimental data by the use of the Hilbert Transform. Then, the N = 16 proper modes of the complex
field A;; = A;(t) are calculated by diagonalization of the temporal correlation (16 x 16) matrix and by
the use of the projection relation:

N _
Ari = 0 an i (t) dr (i), (3)

k=1

where the overbar refers to the complex conjugation, v, the temporal mode and ¢, the spatial mode
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Figure 7: Simulated data: Matrices ', k, L and Q.

When the CGLE is projected onto the BOD modes, the following (16 x 16) matrices appear:

Q1 = ((Deidir)" Yex )"y Lit = ((Aeidin)™ ter )7,
kit = ((A¢idin) " ¥er )"y Thr = ((Neidit) Yew )™,

and the Dispersion Relation linking modes [ and &k can then be written as (see pages 411-412 of [21]):

Qui=aLy +gkg — [ Tyy. (4)

These matrices are therefore computed and the amplitudes of their entries are given in Figure 7. As
it can be seen, they are essentially constituted by diagonal elements. The reason of this particular shape
comes from the fact that the series are nearly pure sinusoidal functions which are themselves proportional
to their own derivatives. Therefore, the inter-correlations (diagonal elements of the matrices) between the



proper modes and their derivatives is higher than the cross-correlations. Using these diagonal elements,
we can plot the projections of the dispersion relation (equation (4)) on the different directions. Figure 8
represents such a projection in the 3D-space ., ';, k.. The linear relation between the different matrices
is in complete accordance with equation (4). Therefore, determining the complex director vector of the
dispersion relation plane in the space (2,T', k) allows the calculation of the coefficients of the CGLE.
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Figure 8: Simulated Data: Dispersion Relation in 3D space: Q,,T;, k.. In grey color is represented a
portion of the dispersion relation plane.

Figure 5 presents the results (with the crosses (x)) of the calculations of the coefficients when averaging
the obtained values on observation windows. We can observe that, although the convergence towards the
true value is less rapid than the convergence of the direct method, the final result is satisfactory with an
accuracy better than 7%. For all these coefficients, the result is better than the one obtained using the
direct method where some coefficients could depart from their true value of more than 50%.

2.4 Recovering the coefficients of the model from experimental data

As our inversion method was successfully tested by our simulated data, we apply it to experimental
space-time diagrams as the one presented in figure 2. Figure 9 shows the amplitudes of the entries of
the four matrices T', k, L and . As it was previously observed on the simulated data study, most of
the information is contained in the diagonal elements of the matrices. Therefore, only these diagonal
elements, ordered by their index | will be considered in the following. Then it can easily be seen on
Figure 10 that most of the modes line up and validate the linearity of the dispersion relation (equation
(4)).

To increase the accuracy of the linear regression, we then keep only the first twelve modes. The last
four modes of the BOD, where the signal to noise ratio is observed to be less than 50 % are thus neglected
in the inversion process. The least square method then leads to the determination on the coefficients
(average on 50 temporal windows):

a, = —0.0534[(t) "], a; = 0.4747[(£) "],
gr = —0.2396[(1) 1], gi = —2.7018 [(1) 1],
I, = 0.0567[(t)~"(A)~2], I; = —0.0795 ()" (4)~2].

In fact, the relevant parameters of (2) are normalized and deduced from the latter, n = 4=, ¢; = £

gr
and ¢y = llT n=448, ¢ =11.27, ¢, =—-1.40.
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Figure 10: Experimental Data: Projection of {2 on some other directions. Each symbol is labeled by the
index [ of the BOD modes.

which are coefficients with values in accordance with the values generally measured on wakes. Using
these coefficients, it is easy now to test this validity by a numerical simulation of the CGLE. As it can be
seen on figure 11, the reconstruction of the spatio-temporal dynamics shows a good agreement with the
observed spatio-temporal chaotic behavior. In particular, the intermittent extinctions of oscillators (or
amplitude holes) are recovered. Note that the main limitation of the BOD is that this method exploits
second order moments of the data only. Because of this, it cannot properly capture deviations from a
gaussian distribution, which are precisely a hallmark of nonlinear systems.

Another way to test our estimation of the coefficients of the model equation, is to compare simulated
predictions with various experimental configurations and verify that the regime really experienced by our
system can be indeed predicted. In our case, we changed the distance between the cylinders, so that the
coupling coefficient between the wakes is varied. For distant cylinders, the wakes are poorly coupled and
the phase between successive wakes is 7. On the contrary, for short distance between cylinders, the wakes
are strongly coupled and oscillate in an acoustic mode with a phase difference close to 0 (there can be a
long wave spatial modulation along the row). As presented in figure 12, our numerical simulations recover
correctly both this “in- phase” mode of the strong coupling case (note that the long wave modulations
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Figure 11: Space-time diagram of the 16 simulated coupled wakes with the coefficients obtained from the
experiment.
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Figure 12: left: Visualizations of “anti-phase” (top) and “in-phase” modes (bottom, with long waves
modulations) behind a row of cylinders. right: numerical simulations for weak and strong coupling,
(n = 0.035 (top) and 5 (bottom)), with the other coefficients obtained from experiments (¢; = 11.27, ¢2 =
—1.40).

are also recovered) and the “anti- phase” mode of the weak coupling case [5].

3 Part 2: Rotating disk flow instabilities

3.1 Introduction:

Ekman was the first in 1905 [23], to formulate in a geophysical context, the mathematical expression of
the velocity field of a rotating boundary layer. His analysis was based on the linearization of the fluid
motion equations and the search for self-similar solutions. He supposed for that, that the fluid and the
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Figure 13: Type I instability waves in the Karman boundary layer.

disk have angular velocities very close one to the other. The self-similar solution he wrote takes the form
of a spiral, now called the ”Ekman Spiral”, and is mainly localized in a thin boundary layer of depth §
nearby the rotating boundary (6 = /v/Q). In 1921, Karman [24] this search for self-similar solutions
to the full non linear case. Two types of instabilities (type I and type II) instabilities can appear in the
rotating boundary layer. Type II instability corresponds to a destabilization by the combined effects of
the forces due to the Coriolis and viscous effects. It produces waves which are rolled up in spirals in a
contrary direction to the disk rotation. Stuart in 1955 [25] shows that type I instability is inviscid and
comes from the presence of unstable inflection points in the radial velocity profiles. This instability also
produces spiral waves but which are rolled up in the direction of rotation of the disk. Our experimental
device is fully presented in Jarre et al. [26] and mainly consists of a 50 cm diameter horizontal disk,
which is immersed in a water tank. Visualization of the type I waves is made possible when using a white
dye as it is presented on figure 13. Around 30 wavelengths can be counted all around the disk.
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Figure 14: Wave packet shape widens as its amplitude grows.

Anemometric measurements of the waves generated by a small roughness element glued on the disk
surface just under the linear threshold have been performed by the association of two anemometric probes,
located at a distance of 8 mm one from the other, on a direction making an angle of 45 degrees from the
radial direction. Figure 13 presents the shape of the wave pattern measured at different radial locations.
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The growth of its amplitude with Reynolds number (the radius) and the marginal stability curve which
are obtained from Fourier analysis are given in figure 14. These measurements allowed in particular to
estimate the azimuthal coherence length &py from the curvature of the marginal stability curve: a value
around 1.2 mm was found [26] at the onset of the instability which occurs around Re = 280. Then and
before fully developed turbulence takes over for Re & 510 it was shown in Jarre et al. [27] that the non
linear waves propagate with a well defined pattern and group velocity which justify an amplitude equation
approach. However, the full determination of the values taken by the coefficients of the CGLE could not
be obtained by the Fourier analysis developed in [27]. Next section will present our new technique based
on Volterra series which allows such a determination [28].
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Figure 15: Growth of the waves along the radius and marginal stability curve. Note the second lobe
corresponding to the growth of harmonics driven by non linear effects.

3.2 Definition of the Volterra model

We use here a different approach for inferring the coefficients of CGLE model. Instead of fitting this
equation directly to the data (which would be an inductive approach), we first describe the data with
a general class of models, based on Volterra series. If the underlying physics is indeed described by a
CGLE model, then a direct mapping exists between the model coefficients and the Volterra kernels. In
this way we can not only estimate the CGLE model coefficients, but also and more importantly, deduce
whether this model is indeed correct.

Let v(zx,t, Re) be the azimuthal fluid velocity recorded at time ¢, position x and Reynolds number
Re. A general dynamical model for the wavefield amplitude is

Ov(z,t,Re)
o = f(v(x,t,Re)) ,

where F is a continuous, nonlinear and time-invariant operator. We assume we can write F as a Volterra
series [29], [30]:

W = ng(Re) vi—i (7, Re) W
k=0

+ Z Z 9k, (R@) Vi—k (37, R@) Vi—1 (ZL”, Re)
k=0 (=0
+ >

k=0

~

(o]
Z 9k1,m(Re) vi—i(x, Re) vi—(z, Re) vi_m(z, Re) + - -

m=0

NE

N
I
=)
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The wavefield v is sampled at a constant rate, so a discrete version of the Volterra series is used
here, with the notation v;(z, Re) = v(z,t = t;, Re). The coefficients g, gx,; and gim are respectively
called first, second and third order Volterra kernels. Furthermore, since we are dealing with nonlinearly
interacting waves, it is appropriate to consider Fourier modes of the wavefield. The discrete Fourier
transform in time gives:

00(z,w)
ox

[(w) o(z, w) (2)

+ Z D(w1,ws) 0(x, w1 )0 (z,ws)

w1 two=w

+ Z T(w1,wa,ws) 0(x,w)0(x, ws)d(x, ws)
witwetwz=w

+

where 9(w) stands for the Fourier transform of v; at frequency w. The link between the Volterra kernels
in Fourier space and their temporal counterparts is obviously:

(oo}

ng eiwk ; (3)
k=0
F(wi,we) = Zzgk,l eilwiktwal)

k=0 =0
[ee] o0 [ee]

Z Z gk, 62 w1k+wgl+uJ3m)
§ m

k=0 [=0 m=0

I'(w)

F(wl , W2, w3)
and so on for higher order kernels.

3.3 Inversion of the Volterra model: determination of the Kernels

We can give an estimation of the spatial derivative using the two-point measurements: as the probe
separation Az is sufficiently small compared to the wave-length, we can write:

Ovi(z,Re) _ vi(z + Az, Re) — v;(w, Re)
oz - Az '

The Volterra model may now be fully expressed into the more convenient framework of transfer functions:

u; = vi(z,Re) (the input) (4)
yi = vi(m + Az, Re) (the output)
= nguzk+zzgkluzkuzl
k=0 =0

n n
+ Zzzgklmuz k Ui—] Uj—m

k=0 1=0 m=0
+ te,
where ¢; is the residual error that has to be minimised and where g is related to g by
go I
Az

The discrete transfer function (ref équation 4) is also known as a NX (Nonlinear with eXogeneous input)
model. It is nothing but a nonlinear discrete mapping between the output and the input.
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The identification of nonlinear transfer functions from experimental data is a longstanding problem,
since even for low order polynomials, the number of unknown coefficients can be huge. Many solutions
have been developed for that purpose, see for example [1]. The key problem here is the selection of
the model structure, i.e. the determination of kernels g that significantly contribute to the wavefield
dynamics. The procedure we have followed is detailed in [28].

For example, for Re = 387, a least squares fit yields the model coefficients, which permit to reconstruct
the signals as it is presented in figure 16 (Note that the residuals between the output and the predictions
are barely visible on 16-b):

yi = —0.7610 u;_s +0.0032 u;_su? ,
—0.0105 u?_,,u; 3 + 0.1022 u;
+0.0017 uj—_23U;—20Uj—g
—0.0115 w;_14u;_3u;—1
+0.0103 w;_o3u;_11u; + €;

The most significant kernels are chosen among all possible combinations of linear, quadratic and cubic
terms, with a memory (i.e. a number of delays n) equaling up to three wavefield periods. For all the
Reynolds numbers of interest (Re going from 250 to 505), no higher order terms are needed to properly
model the wavefield dynamics. This is an important result, since it justifies the truncation of the Volterra
series at cubic terms, justifying the use of the CGLE as a model of wave propagation. More explicitely,
let us emphazise that the truncation of the Volterra equation (2) at cubic terms is not made “a priori”
but comes from the examination of the particular experimental data under consideration: for these data,
higher order kernels in the series are negligible. As a consequence, the truncated Volterra eqution has to
be related to the cubic CGLE.

3.4 Relation to the complex Ginzburg-Landau equation

The hydrodynamic field defining the wave packet, v(x,t), can be written as:
v(z,t) = Az, t) eFem=t L ce. (5)

where A(z,t) is a complex function, slowly varying in space and time, and which obeys the CGLE:

- aAg;’t) 1Y, aAg;, D) _ 4+ e+ icl)% L1+ ic)| A, )P At (6)
where
_ Re — Re,
n= Tec )
V, is the group velocity, L—O =a,~! and & = 7 give the characteristic time and length of the instability.

The general solution of a linear stability hydrodynamic problem can be expressed using a frequency
and a wavenumber that verify a complex dispersion relation w = w(k, Re). The coefficients 9, V5, &, ¢1
are related to the Taylor expansion of the frequency w(k, Re) near the critical threshold in the following
way [31]:

Ow
—1 I el
T, = —i Re. 6Re‘ , (7)
ow
V=2 ®
itn O%w
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Figure 16: Ezcerpt of the wavefield amplitude at Re = 387 showing from top to bottom (with the down-
stream probe always in bold) : (a) the measured in- and output, (b) the measured output and its prediction,
(¢) the measured output and the residuals, (d) the measured output and the linear constituent of the pre-
diction, (e) the measured output and the quadratic constituent of the prediction, (f) the measured output
and the cubic constituent of the prediction. The measured signals are centered and reduced.

where |, means that the partial derivatives are calculated at the critical point Re = Re., k = k.. If the
solution A(z,t) is developed in a temporal Fourier series

Az, t) = Z Az, v)e™ ™,

it is easy to verify that the CGLE is equivalent to

s dw| dA(z,v) i *w| 8%A(z,v)
0 = wAw) =3~ T2om| a2
— i 2] (Re—RedA@wr) =g Y Alen)Alwim)A* (@, —vs) (10)
ORe ¢ vi+vatrvz=v
where ¢ is defined by
q= by (1 +ics) 7 (11)
70
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which can be compared to the Volterra equation (2), truncated at cubic terms (as it is justified in section
3.3):

% = Iy(w)i(z,w) (12)
+ Z Ly (wi,w2)0(z, w1)d(2, w2)
witwe=w
+ Z I3 (w1, we, ws)0(x, w)0(z, ws)d(z,ws) .

witwatwz=w
Near the critical threshold Re = Re., we write v(z,t) in the form:
v(z,t) = [A(z,t) eFem et 4 B(z,t) ek 20t 4 ce (13)

with A(z,t), B(x,t) slowly varying in space and time. Equation (12) gives then, for w close to w,:

@%%%lﬁ = [0 (W) — ik A(z,w — we) (14)
+ 2 Z Fg(wl,wg)é(:n,wl — QwC)A*(a:, —Wa — We)

w1twe=w,

W1 ™NM2We, W™~ —Wwe

+ 3 Z Fg(wl,wg,wg)fi(:n,wl — wc)fl(a:,wg — wc)/i*(:n, —W3 — We) ,

w1 twetws=w,

WMWY —W3™We

and for wy ~ 2w,:

A

@%E%l%ﬁ = [Ti(wr) — 2ik] B2, wn — 202) (15)
+ Z Fg(bdg,bd4)fi($,0.)3 — W) A(a:,o.;4 —we) .

wztwa=wi,

W3™MWa™>We

The adiabatic approximation leads then to:

N 1 A A
B(r,w; —2w.) ~ ———— o (w3, was)A(z, w3 — we)A(z,ws — we) . 16
( 1 ) %(Fl(wl)) Z 2( 3 4) ( 3 ) ( 4 ) ( )
w3twa=w1,
W3NMWaAWe
Substituting this expression in (14), we get
Az, w — w, R
A0 =) Iy (w) — ik Al - o) (17)
+ Z Awr, wa, w3) A2, w1 — we) Az, wy — wo)A* (2, —ws — we) ,

witwstwz=w,

W1 NWeNY—W3™We

where A is defined by:

[s(wi,wa)Ta(w — w3, ws)

§R(F1 (w — W3))

Awy,wa,w3) = —2 + 33 (w1, w2,ws) . (18)
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Differentiating equation with respect to = we get:

P A(z,w — w,)
Ox?

[Ty (w) — ike]? Az, w — we)

+ Z A(Cﬂa wi — wc)!‘i(%&& - WC)A*(J;) —ws — we) Awy, w2, ws)

w1 twetwz=w,

w1 NMwaNr—w3zN¥w,e

(T (W) =ike) + (Ta(wr) —ike) + (Tr(w2) = ike) + (Ty(ws) + ike)] - (19)

Again, we keep only terms proportional to A™ with n < 3. We will now replace the expressions (17)
and (19) for 2420 5pq LA@0) 51 the CGLE:

o . Ow , Ow 1 0w .
0 = iA(r,w—w.) {(w —we)+i % ) [y (w) —ike] — Re ) (Re — Re.) + 3 92 ) [y (w) —ikc] }
. . . 0
+ Z Az, w1 — we)A(z,ws — we) A% (x, —w3 — we) {— 6—: C A(wr, wa,w3) (20)

witwetwz=w,
w1 NMwaNr—w3zN¥w,e
i 0w
2 Ok?

A(wl,WQ,W3)[F1(w) + Fl(wl) + Fl(wg) + Fl(wg) — 21]{?0)] — q} .

And identifying the terms, it comes:

fory 17!

v=i| 5] 21)

ar, [ 17!
To = Rec Vg @ , (22)

. i o0°T
GL+ic) =~V =—| (23)

. _ F2 (UJCa wc)r2(2w67 _wC)
I,(1+ico) =V, [2 (T (20)) 3T3(we,wey, —we) | - (24)

The imaginary part of the linear kernel I'(w) is directly related to the wavefield dispersion relation.
The real part of I'(w) is related to the linear growth rate and is displayed in figure 17 together with the
frequency f. of the fundamental mode. It can be checked that the zero growth rate curve is equivalent to
the marginal stability curve displayed in figure 14. Positive values of the growth rate confirm the onset
of the instability around Re = 300, in good agreement with the Fourier analysis.

Using the values of Volterra kernels we get, near the linear threshold

V, = 0.16+£0.03m-s"",
7 = 15.1£32ms,
& = 2.1+0.5mm,
e1 = —047+0.28.

At this stage, we were not able to obtain statistically significant values for the coefficients [, and ¢y
that are associated with the nonlinear term of the CGLE model. Extrapolating Extrapolating formulas
(21) and (23) for Re # Re., we can get an estimation of the dependence of the group velocity V, and the
diffusion length &y from Reynolds number. The resulting behaviour is consistent with the one presented
in section 2.1 and the values calculated by Jarre et al. in 1996. Taking into account the angle of 45
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Figure 17: Real part of the linear Volterra kernel T'y for various frequencies and Reynolds numbers.
Superimposed on it is the frequency f. of the fundamental.

between the probes direction and the radial one, we find £y = 1.4 mm which is close to the 1.2 mm
obtained previously. Moreover, the transition from convective to absolute instability can also be checked,
using the criterion obtained on the CGLE by Moon et al. in 1983 [31]:

Re — Re. V92T§
Re. 42(1+¢2)

Nabs gets positive for Re = 380, which is in agreement Le Gal [32] where a transition towards a better
spatio-temporal organisation of waves was detected for this value of the Reynolds number. Note that this
threshold is lower to what was predicted by Lingwood [33] and thus does not correspond to the transition
towards turbulence which is observed for a Reynolds number around 510.

Clearly, these results are still open to improvements. The NX nonlinear model we have used is static in
the sense that it cannot generate sustained oscillations if the input decays to zero. A significant reduction
of the residuals and probably a better description of the topological properties of the system could be
achieved by using a more general class of models, called Nonlinear Auto-Regressive Moving Average with
eXogeneous input (NARMAX). This will be the object of a forthcoming publication.

Nabs = (25)

4 Conclusion

In these studies, we have shown that measurements coming from image analysis or from anemometric
signals and describing spatio-temporal chaotic propagation of waves, can be described by the Complex
Ginzburg-Landau Equation.

In the first experiment which is devoted to coupled wakes, our concern was essentially to filter out
the noise that pollutes the video images. Our method is based on the Bi-Orthogonal Decomposition
(or Proper Orthogonal Decomposition) and leads to a generalized form of the dispersion relation of the
waves. The noise is then easily removed as it is concentrated on modes having a high index: these modes
are in fact poorly correlated. Therefore, the inversion problem is solved and the model coefficients can
be extracted from the experimental data. Their values are in agreement with known properties of wakes
and the reconstruction of chaotic space-time signals is then possible. Predictions of the dynamics have
also been made by the use of the CGLE but for different coupling coefficients. These predictions have
been favourably compared with experiments.

Our second analysis is devoted to the propagation of destabilizing waves in a rotating boundary layer.
The measurements are performed synchronously at two slightly different locations above a rotating disk.
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Figure 18: Group velocity V, projected along the probe separation vector, and diffusion length & . Error
bars represent + one standard deviation.
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Figure 19: The flow becomes absolutely unstable when 7 becomes positive.

Our analysis is based on Volterra series that allow the calculation of the linear properties of the wave trains
(their non linear ones are currently under study). An analytical calculation that uses the elimination
of fast harmonic modes made the connection between the Volterra kernels and the Ginzburg-Landau
model. It is then possible to deduce the main properties of the wave propagation: growth rate, group
velocity and coherence length. Moreover a transition from a convective instability to an absolute one has
been discovered and explains in fact the growing coherence of the wave pattern that has been observed
previously before its final transition to turbulence.

To conclude, let us remark that as both methods are based on general principles, they are not restricted
to fluid mechanics and must hold for a large class of weakly nonlinear systems.
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