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Abstra
tThere are many examples where the des
ription of the 
omplexity of 
ows 
an only be a
hieved by theuse of simple models. These models, obtained usually from phenomenologi
al arguments, need in generalthe knowledge of some parameters. The 
hallenge is then to determine the values of these parametersfrom experiments. We will give two examples where we have been able to evaluate the 
oeÆ
ients ofthe 
omplex Ginzburg-Landau equation from spa
e-time 
haoti
 data applied to �rst a row of 
oupled
ylinder wakes and then to wave propagation in the Ekman layer of a rotating disk. In the �rst 
ase, ouranalysis is based on a proper de
omposition of experimental 
haoti
 
ow �elds, followed by a proje
tionof the CGLE onto the proper dire
tions. We show that our method is able to re
over the parametersof the model whi
h permits to re
onstru
t the spatio-temporal 
haos observed in the experiment. These
ond physi
al system under 
onsideration is the 
ow above a rotating disk and its 
ross-
ow instability.Our aim is to study the properties of the wave�eld through a Volterra series equation. The kernels ofthe Volterra expansion, whi
h 
ontain relevant physi
al information about the system, are estimatedby �tting two-point measurements via a nonlinear parametri
 model. We then 
onsider des
ribing thewave�eld with the 
omplex Ginzburg-Landau equation, and derive analyti
al relations whi
h express the
oeÆ
ients of the Ginzburg-Landau equation in terms of the kernels of the Volterra expansion.
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1 Introdu
tionDespite the large Reynolds numbers of the 
ows that o

ur in natural or industrial situations, theirdynami
al behaviour is very often dominated by the presen
e of large s
ale 
oherent stru
tures. Classi
alexamples 
an be found in atmospheri
 or o
eani
 vortex 
ows and there is some hope that simpli�edmodels might des
ribe some of their 
omplex or even 
haoti
 spatio-temporal dynami
s. Contrary tothe situation en
ountered in many laboratory 
ows, one 
annot study the responses of these 
ows tosome 
ontrol perturbations. In parti
ular, when fa
ing the problem of re
overing the 
oeÆ
ients of somemodels, there is no way to ex
ite these 
ows via periodi
 for
ing as it is often the 
ase to re
over thedispersion relation of the waves whi
h are involved in the solutions of the modelling equations. Therefore,it is ne
essary to develop some te
hniques whi
h are able to adjust a non linear dynami
al model to somemeasured data. This system identi�
ation thus leads to a problem of �tting a nonlinear di�erentialequation to experimental data and is usually addressed in the �eld of nonlinear system identi�
ation [1℄.This problem 
an be divided in three parts:� model sele
tion : determine what type of model should be �tted to the data,� inferen
e : estimate the model 
oeÆ
ients from the data,� model validation : determine if the model indeed des
ribes the observations adequately.Unfortunately, there does not exist a unifying framework for des
ribing nonlinear systems (like the Fouriertransform for linear systems). One should therefore 
ompare di�erent approa
hes whenever possible. Itshould also be stressed that the 
riteria for obtaining a good model di�er depending on whether one wantsto make predi
tions, �t data, reprodu
e topologi
al properties in phase spa
e, et
. In the following, wepresent two te
hniques whi
h enable us to estimate with a good a

ura
y the 
oeÆ
ients of the ComplexGinzburg Landau Equation in order to des
ribe the spa
e-time dynami
s o

uring in two instabilities of
uid 
ows. The �rst analysis is devoted to the 
oupled wakes downstream a row of 
ylinders and these
ond deals with the three-dimensionnal instability of a rotating disk boundary layer.2 Part 1: Spatio-temporal 
haos generated by 
oupled wakes2.1 Introdu
tionIt is known from experimental studies and numeri
al simulations (see the reviews by Zdrakovi
h [2℄ andChang et al. [3℄), that the wakes of blu� bodies pla
ed side by side, 
an intera
t and 
reate a large varietyof phenomena. In the 
ase of interest here, we analyze the spa
e-time 
haos 
reated by the wakes of arow of 16 
ir
ular 
ylinders pla
ed in a water tunnel perpendi
ular to an in
oming 
ow. Figure 1 presentsa snapshot of these 16 wakes made visible by dye inje
tion through a small hole drilled at the rear frontof ea
h 
ylinder.These 
ylinders possess a length of 200 mm and a diameter of 2 mm. They are rigidly maintainedin the wall of a water tunnel. The distan
e separating ea
h 
ylinder axes is equal to four times theirdiameter and the Reynolds number Re of the 
ow is equal to 80. Note that the separating distan
e hasbeen 
hosen in a

ordan
e with previous results obtained on a pair of wakes by Pes
hard and Le Gal [4℄and in su
h a way that the 
oupled wakes experien
e a spatio-temporal 
haoti
 regime. In order to buildspa
e-time diagrams (512 time steps � 16 spa
e positions) whi
h represent the dynami
s of the familyof wakes, we re
ord a unique video line at the video frequen
y (25Hz) and gather these lines together aspresented in Figure 2. The a
quisition line is situated 12mm downstream the row of 
ylinders and thedispla
ements of the dye streaks are re
orded as a fun
tion of time (time unit is 0:04 s). We 
an see on�gure 2 the errati
 appearan
e in spa
e and time of amplitude holes [5℄.It is known that the B�enard-von Karman wake of a 
ylinder pla
ed in a 
ow appears via a Hopfbifur
ation. Thus the os
illating 
ow 
an be modeled by a Stuart-Landau equation as it has been doneby Provansal et al. in 1987 [6℄ or Dusek et al. in 1994 [7℄:2



Figure 1: Snapshot of the 16 
oupled wakes (Re=80) where amplitude holes 
an be observed on wakes 6and 15.

Figure 2: Spa
e-time diagram, time is running downwards (10 se
onds). The errati
 appearan
e ofamplitude holes is visible.dtA(t) = ( ar + j ai )A(t) � ( lr + j li ) jA(t)j2A(t) (1)where A represents an order parameter (for instan
e the transverse velo
ity at one position behindthe 
ylinder). The 
omplex 
oeÆ
ients a = ( ar+j ai ) and l = ( lr+j li ) depend on the 
hara
teristi
s ofthe wake (aspe
t ratio or 
ross-se
tion shape of the 
ylinder) and must be determined from experiments.Therefore, the 
oupled os
illators model that 
an be used to study the 
ow downstream the row of
ylinders is a dis
rete version of the Complex Ginzburg-Landau equation (CGLE) (see Cardoso et al.[8℄):dtAi(t) = ( ar + j ai )Ai(t) + ( gr + j gi )(Ai+1(t) +Ai�1(t)� 2Ai(t) )�( lr + j li ) jAi(t)j2Ai(t) (2)with the asso
iated boundary 
onditions are A0(t) = A17(t) = 0, where Ai(t) is the 
omplex amplitudeof the wake of index i and g = ( gr + j gi ) is the linear 
oupling 
oeÆ
ient.Sin
e E
khaus [9℄, most of the stability analysis of the Ginzburg-Landau equation have been 
arriedout for the 
ontinuous 
ase. The instability arises from a resonan
e me
hanism between wave trains,and is 
alled the Benjamin-Feir instability (or the sideband instability with modulations at k � 0). Inparti
ular, the well-know Newell's 
riterion [10℄ is related to the instability of any plane wave perturbedby a long wavelength modulation. More re
ently, Matkowsky and Volpert [11℄ 
onsidered perturbations3



of arbitrary wave numbers. Thus, they showed that destabilizations 
an o

ur through �nite wave num-bers perturbations and not only through homogeneous perturbations as it was 
lassi
ally studied. For adis
rete system, the possible wave numbers of the waves are given by the number of os
illators and alsoby the boundary 
onditions applied on the array. The �rst known stability study for the dis
rete 
asehas been performed by Willaime et al. in 1991 [12℄ with the wave numbers q of the perturbations equalto 0 or �. These investigations have then been extended to all wave numbers for the basi
 solutions andto all wave numbers for the perturbations by Ravoux et al. [13℄.
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w
a
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s

Figure 3: Numeri
al simulation of 16 
oupled Landau os
illators (a=1+20j, g=1+3j, l=1-1j) with 10 %noise added �a posteriori.2.2 Re
overing the 
oeÆ
ients of the modelContrary to what has been done for instan
e by Croquette et al. [14℄ in the study of non linear waves inRayleigh-B�enard 
onve
tion (where the dispersion relation was determined for ea
h frequen
y by applyingan external for
ing), here we do not ex
ite our hydrodynami
al system but let it evolving in its naturalspatio-temporal 
haoti
 state. Therefore, our goal is to invert some measurements of spa
e-time 
haosin order to re
over the 
oeÆ
ients of the model. Thus we need to solve linear systems of equations ofthe type M1 = M2x, where M1 and M2 are matri
es and x an unknown ve
tor. These matri
es aremade up from data and the ve
tor x 
onsists in the 
oeÆ
ients a, g and l of the CGLE equation. Theresolution is a
hieved via a least square method where the linear system is over-determined. Thus, the
oeÆ
ient ve
tor is su
h that the distan
e between M1 and M2 x is minimized in the asso
iated phasespa
e. The initial spatio-temporal �eld is a 512� 16 matrix Ati that 
an be generated syntheti
ally bynumeri
al integration of CGLE as shown on Figure 3. However, as experimental data are 
orrupted bynoise, we added 10% Gaussian noise �a posteriori (at the end of the whole simulation) in order to test therobustness of our method [15℄. Se
tion 1.3 is thus devoted to test our methods on the results obtainedfrom numeri
al simulations, where the 
oeÆ
ients are given �a priori.2.3 Data from numeri
al simulations2.3.1 Dire
t inversionIn this 
ase, the CGLE simply writes:Dt i = aAt i + g�t i � l Nt i; with Dti = At+1 i�At i�t ;�t i = At i+1 +At i�1 � 2At i;Nt i = jAt ij2At i;4
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Figure 4: Dire
t Method, la
k of a

ura
y of the inversion as a fun
tion of noise intensity.where �t is the time unit given by the video a
quisition rate. The goal of our work is thus to invertthe algebrai
 system and to obtain the values of the 
oeÆ
ients a, g and l. Similar dire
t inversion of
haoti
 spatio-temporal data series was done on the same problem by Fullana et al. [16℄, in a surfa
e wavestudy by Gollub et al. [17℄, by Voss et al. for spatio-temporal measurements of binary-
uid 
onve
tion[18℄, and in a rea
tion di�usion partial di�erential equation by B�ar et al. [19℄.As it 
an be seen on Figure 4, the presen
e of noise prohibits the re
overy of the 
oeÆ
ients usingthis dire
t inversion method. The 
al
ulated values depend drasti
ally on the noise intensity and departstrongly from the true values whi
h have been 
hosen to 
ompute the syntheti
 spatio-temporal data.Even averaging the 
al
ulated 
oeÆ
ients on a great number of observation windows (typi
ally 50,
orresponding to the total duration of the experimental data) does not 
an
el the in
uen
e of noise.Figure 5 shows in solid lines this departure from the true values and a rapid 
onvergen
e to false values.2.3.2 Dispersion relation methodIn order to �lter out the noise pollution whi
h is reminis
ent of any experiments, it is traditional to use theFourier re
ipro
al spa
e. Unfortunately, as it 
an be seen on the example of Figure 6, the Fourier powerspe
tra 
omputed on our experimental 
haoti
 spa
e-time diagrams do not permit a 
lear determinationof the dispersion relation of the waves whi
h are involved in the 
haoti
 dynami
s. Although, a more orless paraboli
 shape 
an be observed (note the negative 
urvature linked to the signs of g and l), it isobvious that any �t of these spe
tra by a quadrati
 dispersion relation of Fourier modes dedu
ed from5
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Figure 5: Simulated data: in solid line ({), la
k of a

ura
y of the dire
t inversion as a fun
tion ofobservation windows. The 
rosses (x) show better results obtained with the relation dispersion method.Error bars show the a

ura
y of the inversion.the CGLE would lead to ina

urate 
oeÆ
ients. The reason why Fourier transforms are of little help formaking a Galerkin proje
tion, is be
ause Fourier modes are not an adequate basis for representing thespatio-temporal dynami
s of the wave�eld. It would be more appropriate to seek a basis that exploitsthe properties of the data, giving what 
ould be 
onsidered as "eigenmodes". Su
h a basis is providedby the Bi-Orthogonal De
omposition, also known as the Proper Orthogonal De
omposition [20℄.Chauve and Le Gal proposed in 1992 [21℄ a method where we 
an �lter the data and get a good
hara
terization of the dispersion relation obtained by a Galerkin proje
tion onto the proper modesof the Bi-Orthogonal De
omposition (BOD) [22℄. Moreover, this method optimizes the total numberof modes whi
h are needed for the series re
onstru
tion. The N = 16 proper modes of the 
omplex�eld At i = Ai(t) are �rst 
al
ulated by diagonalization of the temporal 
orrelation (16 � 16) matrix.Note that as the CGLE is a 
omplex model, the �rst step of the method 
onsists in 
omplexifying theexperimental data by the use of the Hilbert Transform. Then, the N = 16 proper modes of the 
omplex�eld At i = Ai(t) are 
al
ulated by diagonalization of the temporal 
orrelation (16 � 16) matrix and bythe use of the proje
tion relation: At i = NPk=1�k  k(t) ��k(i); (3)where the overbar refers to the 
omplex 
onjugation,  k the temporal mode and �k the spatial mode6



0

5

10

15

20

25

30

35

40

45

50

Wave number

F
re

q
u

e
n

c
y

 0−π πFigure 6: (k,!) Fourier Transform plane.asso
iated with the eigenvalue �k.
1 4 8 12 16

1
4

8
12

16
0

2

4

6

8

x 10
−5

lk

||Γ
kl
||

1 4 8 12 16
1

4

8

12

16

l

k

1 4 8 12 16
1

4
8

12
16

0

0.1

0.2

0.3

lk

||κ
kl
||

1 4 8 12 16
1

4

8

12

16

l

k

1 4 8 12 16
1

4
8

12
16

0

0.1

0.2

0.3

0.4

0.5

lk

||L
kl
||

1 4 8 12 16
1

4

8

12

16

l

k

1 4 8 12 16
1

4
8

12
16

0

2

4

6

8

10

12

lk

||Ω
kl
||

1 4 8 12 16
1

4

8

12

16

l

k

Figure 7: Simulated data: Matri
es �, �, L and 
.When the CGLE is proje
ted onto the BOD modes, the following (16� 16) matri
es appear:
k l = ( (Dt i�il)�  t k )�; Lk l = ( (At i�i l)�  t k )�;�k l = ( (�t i�i l)�  t k )�; �k l = ( (Nt i�i l)�  t k )�;and the Dispersion Relation linking modes l and k 
an then be written as (see pages 411-412 of [21℄):
kl = aLkl + g �kl � l�kl: (4)These matri
es are therefore 
omputed and the amplitudes of their entries are given in Figure 7. Asit 
an be seen, they are essentially 
onstituted by diagonal elements. The reason of this parti
ular shape
omes from the fa
t that the series are nearly pure sinusoidal fun
tions whi
h are themselves proportionalto their own derivatives. Therefore, the inter-
orrelations (diagonal elements of the matri
es) between the7



proper modes and their derivatives is higher than the 
ross-
orrelations. Using these diagonal elements,we 
an plot the proje
tions of the dispersion relation (equation (4)) on the di�erent dire
tions. Figure 8represents su
h a proje
tion in the 3D-spa
e 
r;�i; �r. The linear relation between the di�erent matri
esis in 
omplete a

ordan
e with equation (4). Therefore, determining the 
omplex dire
tor ve
tor of thedispersion relation plane in the spa
e (
;�; �) allows the 
al
ulation of the 
oeÆ
ients of the CGLE.
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Figure 8: Simulated Data: Dispersion Relation in 3D spa
e: 
r;�i; �r. In grey 
olor is represented aportion of the dispersion relation plane.Figure 5 presents the results (with the 
rosses (x)) of the 
al
ulations of the 
oeÆ
ients when averagingthe obtained values on observation windows. We 
an observe that, although the 
onvergen
e towards thetrue value is less rapid than the 
onvergen
e of the dire
t method, the �nal result is satisfa
tory with ana

ura
y better than 7%. For all these 
oeÆ
ients, the result is better than the one obtained using thedire
t method where some 
oeÆ
ients 
ould depart from their true value of more than 50%.2.4 Re
overing the 
oeÆ
ients of the model from experimental dataAs our inversion method was su

essfully tested by our simulated data, we apply it to experimentalspa
e-time diagrams as the one presented in �gure 2. Figure 9 shows the amplitudes of the entries ofthe four matri
es �, �, L and 
. As it was previously observed on the simulated data study, most ofthe information is 
ontained in the diagonal elements of the matri
es. Therefore, only these diagonalelements, ordered by their index l will be 
onsidered in the following. Then it 
an easily be seen onFigure 10 that most of the modes line up and validate the linearity of the dispersion relation (equation(4)).To in
rease the a

ura
y of the linear regression, we then keep only the �rst twelve modes. The lastfour modes of the BOD, where the signal to noise ratio is observed to be less than 50 % are thus negle
tedin the inversion pro
ess. The least square method then leads to the determination on the 
oeÆ
ients(average on 50 temporal windows):ar = �0:0534 [(t)�1℄; ai = 0:4747 [(t)�1℄,gr = �0:2396[(t)�1℄; gi = �2:7018 [(t)�1℄,lr = 0:0567 [(t)�1(A)�2℄; li = �0:0795 [(t)�1(A)�2℄:In fa
t, the relevant parameters of (2) are normalized and dedu
ed from the latter, � = grar , 
1 = gigrand 
2 = lilr : � = 4:48; 
1 = 11:27; 
2 = �1:40.8
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Figure 9: Experimental data: Matri
es �, �, L and 
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Figure 10: Experimental Data: Proje
tion of 
 on some other dire
tions. Ea
h symbol is labeled by theindex l of the BOD modes.whi
h are 
oeÆ
ients with values in a

ordan
e with the values generally measured on wakes. Usingthese 
oeÆ
ients, it is easy now to test this validity by a numeri
al simulation of the CGLE. As it 
an beseen on �gure 11, the re
onstru
tion of the spatio-temporal dynami
s shows a good agreement with theobserved spatio-temporal 
haoti
 behavior. In parti
ular, the intermittent extin
tions of os
illators (oramplitude holes) are re
overed. Note that the main limitation of the BOD is that this method exploitsse
ond order moments of the data only. Be
ause of this, it 
annot properly 
apture deviations from agaussian distribution, whi
h are pre
isely a hallmark of nonlinear systems.Another way to test our estimation of the 
oeÆ
ients of the model equation, is to 
ompare simulatedpredi
tions with various experimental 
on�gurations and verify that the regime really experien
ed by oursystem 
an be indeed predi
ted. In our 
ase, we 
hanged the distan
e between the 
ylinders, so that the
oupling 
oeÆ
ient between the wakes is varied. For distant 
ylinders, the wakes are poorly 
oupled andthe phase between su

essive wakes is �. On the 
ontrary, for short distan
e between 
ylinders, the wakesare strongly 
oupled and os
illate in an a
ousti
 mode with a phase di�eren
e 
lose to 0 (there 
an be along wave spatial modulation along the row). As presented in �gure 12, our numeri
al simulations re
over
orre
tly both this \in- phase" mode of the strong 
oupling 
ase (note that the long wave modulations9
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Figure 11: Spa
e-time diagram of the 16 simulated 
oupled wakes with the 
oeÆ
ients obtained from theexperiment.
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Time Figure 12: left: Visualizations of \anti-phase" (top) and \in-phase" modes (bottom, with long wavesmodulations) behind a row of 
ylinders. right: numeri
al simulations for weak and strong 
oupling,(� = 0:035 (top) and 5 (bottom)), with the other 
oeÆ
ients obtained from experiments (
1 = 11:27; 
2 =�1:40).are also re
overed) and the \anti- phase" mode of the weak 
oupling 
ase [5℄.3 Part 2: Rotating disk 
ow instabilities3.1 Introdu
tion:Ekman was the �rst in 1905 [23℄, to formulate in a geophysi
al 
ontext, the mathemati
al expression ofthe velo
ity �eld of a rotating boundary layer. His analysis was based on the linearization of the 
uidmotion equations and the sear
h for self-similar solutions. He supposed for that, that the 
uid and the10



Figure 13: Type I instability waves in the Karman boundary layer.disk have angular velo
ities very 
lose one to the other. The self-similar solution he wrote takes the formof a spiral, now 
alled the "Ekman Spiral", and is mainly lo
alized in a thin boundary layer of depth Ænearby the rotating boundary (Æ = p�=
). In 1921, Karman [24℄ this sear
h for self-similar solutionsto the full non linear 
ase. Two types of instabilities (type I and type II) instabilities 
an appear in therotating boundary layer. Type II instability 
orresponds to a destabilization by the 
ombined e�e
ts ofthe for
es due to the Coriolis and vis
ous e�e
ts. It produ
es waves whi
h are rolled up in spirals in a
ontrary dire
tion to the disk rotation. Stuart in 1955 [25℄ shows that type I instability is invis
id and
omes from the presen
e of unstable in
e
tion points in the radial velo
ity pro�les. This instability alsoprodu
es spiral waves but whi
h are rolled up in the dire
tion of rotation of the disk. Our experimentaldevi
e is fully presented in Jarre et al. [26℄ and mainly 
onsists of a 50 
m diameter horizontal disk,whi
h is immersed in a water tank. Visualization of the type I waves is made possible when using a whitedye as it is presented on �gure 13. Around 30 wavelengths 
an be 
ounted all around the disk.

Figure 14: Wave pa
ket shape widens as its amplitude grows.Anemometri
 measurements of the waves generated by a small roughness element glued on the disksurfa
e just under the linear threshold have been performed by the asso
iation of two anemometri
 probes,lo
ated at a distan
e of 8 mm one from the other, on a dire
tion making an angle of 45 degrees from theradial dire
tion. Figure 13 presents the shape of the wave pattern measured at di�erent radial lo
ations.11



The growth of its amplitude with Reynolds number (the radius) and the marginal stability 
urve whi
hare obtained from Fourier analysis are given in �gure 14. These measurements allowed in parti
ular toestimate the azimuthal 
oheren
e length �0� from the 
urvature of the marginal stability 
urve: a valuearound 1.2 mm was found [26℄ at the onset of the instability whi
h o

urs around Re = 280. Then andbefore fully developed turbulen
e takes over for Re � 510 it was shown in Jarre et al. [27℄ that the nonlinear waves propagate with a well de�ned pattern and group velo
ity whi
h justify an amplitude equationapproa
h. However, the full determination of the values taken by the 
oeÆ
ients of the CGLE 
ould notbe obtained by the Fourier analysis developed in [27℄. Next se
tion will present our new te
hnique basedon Volterra series whi
h allows su
h a determination [28℄.

Figure 15: Growth of the waves along the radius and marginal stability 
urve. Note the se
ond lobe
orresponding to the growth of harmoni
s driven by non linear e�e
ts.3.2 De�nition of the Volterra modelWe use here a di�erent approa
h for inferring the 
oeÆ
ients of CGLE model. Instead of �tting thisequation dire
tly to the data (whi
h would be an indu
tive approa
h), we �rst des
ribe the data witha general 
lass of models, based on Volterra series. If the underlying physi
s is indeed des
ribed by aCGLE model, then a dire
t mapping exists between the model 
oeÆ
ients and the Volterra kernels. Inthis way we 
an not only estimate the CGLE model 
oeÆ
ients, but also and more importantly, dedu
ewhether this model is indeed 
orre
t.Let v(x; t; Re) be the azimuthal 
uid velo
ity re
orded at time t, position x and Reynolds numberRe. A general dynami
al model for the wave�eld amplitude is�v(x; t; Re)�x = F�v(x; t; Re)� ;where F is a 
ontinuous, nonlinear and time-invariant operator. We assume we 
an write F as a Volterraseries [29℄, [30℄:�vi(x;Re)�x = 1Xk=0 gk(Re) vi�k(x;Re) (1)+ 1Xk=0 1Xl=0 gk;l(Re) vi�k(x;Re) vi�l(x;Re)+ 1Xk=0 1Xl=0 1Xm=0 gk;l;m(Re) vi�k(x;Re) vi�l(x;Re) vi�m(x;Re) + � � �12



The wave�eld v is sampled at a 
onstant rate, so a dis
rete version of the Volterra series is usedhere, with the notation vi(x;Re) = v(x; t = ti; Re). The 
oeÆ
ients gk; gk;l and gk;l;m are respe
tively
alled �rst, se
ond and third order Volterra kernels. Furthermore, sin
e we are dealing with nonlinearlyintera
ting waves, it is appropriate to 
onsider Fourier modes of the wave�eld. The dis
rete Fouriertransform in time gives:�v̂(x; !)�x = �(!) v̂(x; !) (2)+ X!1+!2=!�(!1; !2) v̂(x; !1)v̂(x; !2)+ X!1+!2+!3=!�(!1; !2; !3) v̂(x; !1)v̂(x; !2)v̂(x; !3)+ � � �where v̂(!) stands for the Fourier transform of vi at frequen
y !. The link between the Volterra kernelsin Fourier spa
e and their temporal 
ounterparts is obviously:�(!) = 1Xk=0 gk ei!k ; (3)�(!1; !2) = 1Xk=0 1Xl=0 gk;l ei(!1k+!2l) ;�(!1; !2; !3) = 1Xk=0 1Xl=0 1Xm=0 gk;l;m ei(!1k+!2l+!3m) ;and so on for higher order kernels.3.3 Inversion of the Volterra model: determination of the KernelsWe 
an give an estimation of the spatial derivative using the two-point measurements: as the probeseparation �x is suÆ
iently small 
ompared to the wave-length, we 
an write:�vi(x;Re)�x � vi(x+�x;Re)� vi(x;Re)�x :The Volterra model may now be fully expressed into the more 
onvenient framework of transfer fun
tions:ui = vi(x;Re) (the input) (4)yi = vi(x+�x;Re) (the output)= nXk=0 �gk ui�k + nXk=0 nXl=0 �gk;l ui�k ui�l+ nXk=0 nXl=0 nXm=0 �gk;l;m ui�k ui�l ui�m+ � � �+ "i ;where "i is the residual error that has to be minimised and where �g is related to g byg = �g�xThe dis
rete transfer fun
tion (ref �equation 4) is also known as a NX (Nonlinear with eXogeneous input)model. It is nothing but a nonlinear dis
rete mapping between the output and the input.13



The identi�
ation of nonlinear transfer fun
tions from experimental data is a longstanding problem,sin
e even for low order polynomials, the number of unknown 
oeÆ
ients 
an be huge. Many solutionshave been developed for that purpose, see for example [1℄. The key problem here is the sele
tion ofthe model stru
ture, i.e. the determination of kernels g that signi�
antly 
ontribute to the wave�elddynami
s. The pro
edure we have followed is detailed in [28℄.For example, for Re = 387, a least squares �t yields the model 
oeÆ
ients, whi
h permit to re
onstru
tthe signals as it is presented in �gure 16 (Note that the residuals between the output and the predi
tionsare barely visible on 16-b): yi = �0:7610 ui�8 + 0:0032 ui�8u2i�1�0:0105 u2i�24ui�3 + 0:1022 ui+0:0017 ui�23ui�20ui�8�0:0115 ui�14ui�3ui�1+0:0103 ui�23ui�11ui + "iThe most signi�
ant kernels are 
hosen among all possible 
ombinations of linear, quadrati
 and 
ubi
terms, with a memory (i.e. a number of delays n) equaling up to three wave�eld periods. For all theReynolds numbers of interest (Re going from 250 to 505), no higher order terms are needed to properlymodel the wave�eld dynami
s. This is an important result, sin
e it justi�es the trun
ation of the Volterraseries at 
ubi
 terms, justifying the use of the CGLE as a model of wave propagation. More expli
itely,let us emphazise that the trun
ation of the Volterra equation (2) at 
ubi
 terms is not made \a priori"but 
omes from the examination of the parti
ular experimental data under 
onsideration: for these data,higher order kernels in the series are negligible. As a 
onsequen
e, the trun
ated Volterra eqution has tobe related to the 
ubi
 CGLE.3.4 Relation to the 
omplex Ginzburg-Landau equationThe hydrodynami
 �eld de�ning the wave pa
ket, v(x; t), 
an be written as:v(x; t) = A(x; t) eik
x�i!
t + 
:
: ; (5)where A(x; t) is a 
omplex fun
tion, slowly varying in spa
e and time, and whi
h obeys the CGLE:�0 ��A(x; t)�t + Vg �A(x; t)�x � = �A+ �20(1 + i
1)�2A(x; t)�x2 � lr(1 + i
2)jA(x; t)j2A(x; t) ; (6)where � = Re�Re
Re
 ;Vg is the group velo
ity, �0� = ar�1 and �20 = � give the 
hara
teristi
 time and length of the instability.The general solution of a linear stability hydrodynami
 problem 
an be expressed using a frequen
yand a wavenumber that verify a 
omplex dispersion relation ! = !(k;Re). The 
oeÆ
ients �0, Vg , �0, 
1are related to the Taylor expansion of the frequen
y !(k;Re) near the 
riti
al threshold in the followingway [31℄: ��10 = �i Re
 �!�Re ����
 ; (7)Vg = �!�k ����
 ; (8)�20(1 + i
1) = i�02 �2!�k2 ����
 ; (9)14
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(f)Figure 16: Ex
erpt of the wave�eld amplitude at Re = 387 showing from top to bottom (with the down-stream probe always in bold) : (a) the measured in- and output, (b) the measured output and its predi
tion,(
) the measured output and the residuals, (d) the measured output and the linear 
onstituent of the pre-di
tion, (e) the measured output and the quadrati
 
onstituent of the predi
tion, (f) the measured outputand the 
ubi
 
onstituent of the predi
tion. The measured signals are 
entered and redu
ed.where j
 means that the partial derivatives are 
al
ulated at the 
riti
al point Re = Re
, k = k
. If thesolution A(x; t) is developed in a temporal Fourier seriesA(x; t) =X� Â(x; �) e�i�t ;it is easy to verify that the CGLE is equivalent to0 = i�Â(x; �) � �!�k ����
 �Â(x; �)�x + i2 �2!�k2 ����
 �2Â(x; �)�x2� i �!�Re ����
 (Re�Re
)Â(x; �)� q X�1+�2+�3=� Â(x; �1)Â(x; �2)Â�(x;��3) ; (10)where q is de�ned by q = lr(1 + i
2)�0 ; (11)15



whi
h 
an be 
ompared to the Volterra equation (2), trun
ated at 
ubi
 terms (as it is justi�ed in se
tion3.3): �v̂(x; !)�x = �1(!)v̂(x; !) (12)+ X!1+!2=! �2(!1; !2)v̂(x; !1)v̂(x; !2)+ X!1+!2+!3=! �3(!1; !2; !3)v̂(x; !1)v̂(x; !2)v̂(x; !3) :Near the 
riti
al threshold Re = Re
, we write v(x; t) in the form:v(x; t) = �A(x; t) eik
x�i!
t +B(x; t) ei2k
x�i2!
t�+ 
:
: ; (13)with A(x; t), B(x; t) slowly varying in spa
e and time. Equation (12) gives then, for ! 
lose to !
:�Â(x; ! � !
)�x = [�1(!)� ik
℄Â(x; ! � !
) (14)+ 2 X!1+!2=!;!1'2!
; !2'�!
 �2(!1; !2)B̂(x; !1 � 2!
)Â�(x;�!2 � !
)+ 3 X!1+!2+!3=!;!1'!2'�!3'!
 �3(!1; !2; !3)Â(x; !1 � !
)Â(x; !2 � !
)Â�(x;�!3 � !
) ;and for !1 ' 2!
:�B̂(x; !1 � 2!
)�x = [�1(!1)� 2ik
℄B̂(x; !1 � 2!
) (15)+ X!3+!4=!1;!3'!4'!
 �2(!3; !4)Â(x; !3 � !
)Â(x; !4 � !
) :The adiabati
 approximation leads then to:B̂(x; !1 � 2!
) ' � 1<(�1(!1)) X!3+!4=!1;!3'!4'!
 �2(!3; !4)Â(x; !3 � !
)Â(x; !4 � !
) : (16)Substituting this expression in (14), we get�Â(x; ! � !
)�x = [�1(!)� ik
℄Â(x; ! � !
) (17)+ X!1+!2+!3=!;!1'!2'�!3'!
 �(!1; !2; !3)Â(x; !1 � !
)Â(x; !2 � !
)Â�(x;�!3 � !
) ;where � is de�ned by:�(!1; !2; !3) = � 2 �2(!1; !2)�2(! � !3; !3)<(�1(! � !3)) + 3�3(!1; !2; !3) : (18)16



Di�erentiating equation with respe
t to x we get:�2Â(x; ! � !
)�x2 = [�1(!)� ik
℄2Â(x; ! � !
)+ X!1+!2+!3=!;!1'!2'�!3'!
 Â(x; !1 � !
)Â(x; !2 � !
)Â�(x;�!3 � !
)�(!1; !2; !3)[(�1(!)� ik
) + (�1(!1)� ik
) + (�1(!2)� ik
) + (�1(!3) + ik
)℄ : (19)Again, we keep only terms proportional to An with n � 3. We will now repla
e the expressions (17)and (19) for �Â(x;�)�x and �2Â(x;�)�x2 in the CGLE:0 = iÂ(x; ! � !
)�(! � !
) + i �!�k ����
 [�1(!)� ik
℄� �!�Re ����
 (Re�Re
) + 12 �2!�k2 ����
 [�1(!)� ik
℄2�+ X!1+!2+!3=!;!1'!2'�!3'!
 Â(x; !1 � !
)Â(x; !2 � !
)Â�(x;�!3 � !
)�� �!�k ����
 �(!1; !2; !3) (20)+ i2 �2!�k2 ����
 �(!1; !2; !3)[�1(!) + �1(!1) + �1(!2) + �1(!3)� 2ik
)℄� q� :And identifying the terms, it 
omes: Vg = i � ��1�! ����
��1 ; (21)�0 = �Re
 Vg ��1�Re ����
��1 ; (22)�20(1 + i
1) = ��02 V 3g �2�1�!2 ����
 ; (23)lr(1 + i
2) = Vg �0 � 2 �2(!
; !
)�2(2!
;�!
)<(�1(2!
)) � 3�3(!
; !
;�!
)� : (24)The imaginary part of the linear kernel �(!) is dire
tly related to the wave�eld dispersion relation.The real part of �(!) is related to the linear growth rate and is displayed in �gure 17 together with thefrequen
y f
 of the fundamental mode. It 
an be 
he
ked that the zero growth rate 
urve is equivalent tothe marginal stability 
urve displayed in �gure 14. Positive values of the growth rate 
on�rm the onsetof the instability around Re = 300, in good agreement with the Fourier analysis.Using the values of Volterra kernels we get, near the linear thresholdVg = 0:16� 0:03m � s�1 ;�0 = 15:1� 3:2ms ;�0 = 2:1� 0:5mm ;
1 = �0:47� 0:28 :At this stage, we were not able to obtain statisti
ally signi�
ant values for the 
oeÆ
ients lr and 
2that are asso
iated with the nonlinear term of the CGLE model. Extrapolating Extrapolating formulas(21) and (23) for Re 6= Re
, we 
an get an estimation of the dependen
e of the group velo
ity Vg and thedi�usion length �0 from Reynolds number. The resulting behaviour is 
onsistent with the one presentedin se
tion 2.1 and the values 
al
ulated by Jarre et al. in 1996. Taking into a

ount the angle of 4517
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Figure 17: Real part of the linear Volterra kernel �1 for various frequen
ies and Reynolds numbers.Superimposed on it is the frequen
y f
 of the fundamental.between the probes dire
tion and the radial one, we �nd �0� = 1:4 mm whi
h is 
lose to the 1.2 mmobtained previously. Moreover, the transition from 
onve
tive to absolute instability 
an also be 
he
ked,using the 
riterion obtained on the CGLE by Moon et al. in 1983 [31℄:�abs = Re�Re
Re
 � V 2g �204�20(1 + 
21) : (25)�abs gets positive for Re = 380, whi
h is in agreement Le Gal [32℄ where a transition towards a betterspatio-temporal organisation of waves was dete
ted for this value of the Reynolds number. Note that thisthreshold is lower to what was predi
ted by Lingwood [33℄ and thus does not 
orrespond to the transitiontowards turbulen
e whi
h is observed for a Reynolds number around 510.Clearly, these results are still open to improvements. The NX nonlinear model we have used is stati
 inthe sense that it 
annot generate sustained os
illations if the input de
ays to zero. A signi�
ant redu
tionof the residuals and probably a better des
ription of the topologi
al properties of the system 
ould bea
hieved by using a more general 
lass of models, 
alled Nonlinear Auto-Regressive Moving Average witheXogeneous input (NARMAX). This will be the obje
t of a forth
oming publi
ation.4 Con
lusionIn these studies, we have shown that measurements 
oming from image analysis or from anemometri
signals and des
ribing spatio-temporal 
haoti
 propagation of waves, 
an be des
ribed by the ComplexGinzburg-Landau Equation.In the �rst experiment whi
h is devoted to 
oupled wakes, our 
on
ern was essentially to �lter outthe noise that pollutes the video images. Our method is based on the Bi-Orthogonal De
omposition(or Proper Orthogonal De
omposition) and leads to a generalized form of the dispersion relation of thewaves. The noise is then easily removed as it is 
on
entrated on modes having a high index: these modesare in fa
t poorly 
orrelated. Therefore, the inversion problem is solved and the model 
oeÆ
ients 
anbe extra
ted from the experimental data. Their values are in agreement with known properties of wakesand the re
onstru
tion of 
haoti
 spa
e-time signals is then possible. Predi
tions of the dynami
s havealso been made by the use of the CGLE but for di�erent 
oupling 
oeÆ
ients. These predi
tions havebeen favourably 
ompared with experiments.Our se
ond analysis is devoted to the propagation of destabilizing waves in a rotating boundary layer.The measurements are performed syn
hronously at two slightly di�erent lo
ations above a rotating disk.18
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Figure 18: Group velo
ity Vg proje
ted along the probe separation ve
tor, and di�usion length �0. Errorbars represent � one standard deviation.
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Figure 19: The 
ow be
omes absolutely unstable when � be
omes positive.Our analysis is based on Volterra series that allow the 
al
ulation of the linear properties of the wave trains(their non linear ones are 
urrently under study). An analyti
al 
al
ulation that uses the eliminationof fast harmoni
 modes made the 
onne
tion between the Volterra kernels and the Ginzburg-Landaumodel. It is then possible to dedu
e the main properties of the wave propagation: growth rate, groupvelo
ity and 
oheren
e length. Moreover a transition from a 
onve
tive instability to an absolute one hasbeen dis
overed and explains in fa
t the growing 
oheren
e of the wave pattern that has been observedpreviously before its �nal transition to turbulen
e.To 
on
lude, let us remark that as both methods are based on general prin
iples, they are not restri
tedto 
uid me
hani
s and must hold for a large 
lass of weakly nonlinear systems.
19
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