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LMI & BMI Technics for the Design of a PI Control for Irrigation Channels

Mickael Rodrigues∗, Yongxin Wu, Samir Aberkane†, Valérie Dos Santos Martins

Abstract

This paper considers the problem of control design for
a nonlinear distributed parameter system in infinite di-
mension which is described by hyperbolic Partial Dif-
ferential Equations (PDEs) of de Saint-Venant. For
describing the dynamic of this nonlinear system over
a wide operating range, the Multi-Models approach,
which takes into account Linear Time Invariant (LTI)
models defined around a set of operating points, has
been used. By means of an Internal Model Boundary
Control (IMBC), a new design of Proportional Inte-
gral (PI) feedback is performed through Bilinear Matrix
Inequality (BMI) and Linear Matrix Inequality (LMI)
technics. The new results have been simulated and also
compared to the previous results, illustrating the new
theoretical contribution.

1. Introduction
Regulation of irrigation channels has received an in-
creasing interest over the last two or three decades. In-
deed, water losses in open channels are very large due to
inefficient management and control. In order to deliver
water, it is important to ensure that water level and the
flow rate in the open channel remain at certain values
[15]. The difficulty of this regulation problem is that
only the gate positions are able to meet performance
specifications. So this needs to design boundary control
laws satisfying the control objectives. The channel reg-
ulation problem has been previously considered in the
literature using a wide variety of technics [14]. Study-
ing directly the nonlinear dynamics is also possible as
in [6, 13]. Recent approaches consider the distributed
feature of the system. Using the Riemann coordinates
approach on the de Saint-Venant equations, stability re-
sults are given for a system of two conservation laws,
and for system of larger dimension. Lyapunov tech-
nics have been used in [4, 6]. In practice, the physical
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systems are generally represented by nonlinear models.
The Multi-Models structure is well adapted for nonlin-
ear systems [1] and for fault diagnosis [2, 17] in finite
dimension. Indeed this structure allows to determine
a set of linear models defined around some predefined
operating points. Each local model is defined as a LTI
dynamic system defined for a specific operating point.
In the Multi-Models concept, some authors speak about
gain scheduling strategy for example in [11] or for in-
terpolated controllers or switching controllers [16].
The use of Multi-Models representation for stability
study of system described by nonlinear PDE has been
studied in [9]. In this paper, an analysis of the stabil-
ity of the problem of de Saint-Venant equations is pro-
posed with the use of Multi-Models and Internal Model
Boundary Control (IMBC) structure. The stability in
Multi-Models framework is often performed by Lin-
ear Matrix Inequality (LMI) due to the effectiveness for
calculating a unique gain solution for multiple models
[8, 9]. But in control synthesis, BMI provides more gen-
eral frameworks than LMI.
The paper is organized as follows: firstly, the equa-
tions of de Saint-Venant are presented as well as the
control problem. Secondly, the linearized systems are
developed around equilibrium sets which depend on the
space variable. Third part of the paper is dedicated to
the design of the feedback gain by LMI&BMI technics
which ensures the stability of the closed loop system in
finite dimension. The last section is dedicated to the
simulations and comparison with previous works.

2. Problem statement about channel regu-
lation

Let us consider the following class of water channels
represented on figure (1), i.e. a reach of an open channel
delimited by underflow gates whereQ(x, t) andZ(x, t)
are the state variables and stand for the water flow rate
and the height of water in the channel respectively,L
is the length of the reach from the upstreamx = 0 to
the downstreamx = L, Uup = U0(t), Udo = UL(t) are
the opening of the gates at upstream and downstream
respectively. The regulation problem concerns the sta-
bilization of the water flow rate and/or the height of
the water around an equilibrium for a reach denoted
by (Ze(x),Qe(x)). A linear model with variable coeffi-



cients can be deduced from the non-linear PDE, in order
to describe the variation of the water level and flow for
an open channel. Let us recall these models.

Figure 1. Channel scheme: 2 underflow gates

2.1. A model of a reach
The channel is supposed to be rectangular and to have
a sufficient lengthL such that hydraulic conditions are
assumed following the classical 1D assumptions. Non-
linear PDE of de Saint-Venant which describe the flow
on the channel are the following [8]1:

∂tZ =−∂x
Q
b
, (1)

∂tQ=−∂x(
Q2

bZ
+

1
2

gbZ2)+gbZ(I − J), (2)

Z0(x) = Z(x,0),Q0(x) = Q(x,0) (3)

∀x∈ Ω = (xup,xdo) = (0,L), t > 0, whereI is the slope,
b is the channel width,g is the gravity constant.J is the
friction slope from the formula of Manning-Strickler.
(3) are the initial conditions. The limit conditions con-
sidered here are the multivariable case,∀x∈Γ= ∂Ω the
boundary ofΩ on figure (1):

Q(x, t) =U(t)Ψi(Z(x, t)) (4)

with Ψi(Z) = κi
√

2g(Zup−Zdo). Zup Zdo are the water
height at the upstream of the considered gate, resp. at
downstream of the considered gate,κi is the product of
the channel width with the water flow rate coefficient of
the gaten0i, U(t) is the control of the considered gate.
The variable to control is the height of water at down-
stream, i.e.Z(L), considering two underflow gates.

2.2. A regulation model
An equilibrium state (∂t(.) ≡ 0) of the system satisfies
the following equations:

∂xQe = 0, ∂xZe = gbZe

I +2Je+
4
3Je

1
1+2Ze/b

gbZe−Q2
e/bZ2

e
(5)

The fluvial case is considered and it follows that:

Ze >
3
√

Q2
e/(gb2) (6)

1∂θ f = ∂ f/∂θ

Let us denote thatQe is constant butZe depends on
variable space. Withξ (t) = (z(t),q(t))t , the linearized
model around an equilibrium point(Ze(x),Qe(x))t is:

∂tξ (x, t) = [A1(x)∂x+A2(x)]ξ (x, t) = A ξ (x, t) (7)

ξ (0, t) = ξ0(t)

q(xup) =Uup,e∂zΨ1(Ze(xup))z(xup)+uupΨ1(Ze(xup))

q(xdo) =Udo,e∂zΨ2(Ze(xdo))z(xdo)+udoΨ2(Ze(xdo))

whereUup,e, Udo,e are the gates opening for the up-
stream and downstream at the equilibrium anduup(t),
udo(t) are the variation of these gates opening to be con-
trolled. The matricesA1(x), A2(x) are given by:

A1(x) =

(

0 −1/b
−a2 −a3

)

, A2(x) =

(

0 0
a4 −a5

)

with a2(x) = gbZe−
Q2

e
bZ2

e(x)
, a5(x) =

2gbJe(x)Ze(x)
Qe

,

a4(x) = gb(I +2Je(x)+
4
3Je(x)

1+2Ze(x)/b), a3(x) =
2Qe

bZe(x)
.

The control problem is to find the variations of
uup(t) and udo(t) at extremitiesx = xup and x = xdo

resp. of the reach such that downstream water level,
Z(xdo, t) = Z(L, t) (measured variable), tracks a refer-
ence signalr(t). r(t) is chosen for all cases either con-
stant or non-persistent (a stable step answer of a non-
oscilatory system). In this paper, the Internal Model
Boundary Control (IMBC) [7] is adopted (figure (2)).
This control strategy integrates the process model in
real time and allows to regulate the water height in all
the points of the channel by taking into account the er-
ror between the linearized model and the real system (or
the NL model for the simulations).

Figure 2. IMBC structure

2.3. Stability of the system

The equation (7) describes the dynamic of the system in
open loop. In this representation, the state vectorξ (x, t)
is not explicitly linked with the boundary control. In
order to design an output feedback, an operatorD of
distribution of the boundary control is introduced, it is a
bounded operator such thatIm(D) = Ker(A ) andDu∈

D(A ), [7]:

ξ (x, t) = ϕ(x, t)+Du(t) (8)



This operator is naturally null in the domain ofA (x) as
it is active only on the boundary of the domain. This
change of variables allows to get a Kalman representa-
tion for the system:

∂tϕ(x, t) = A (x)ϕ(x, t)−Du̇ (9)

ϕ(x,0) = ϕ0(x) = ξ0(x)−Du(0) (10)

It has been proved that the open loop system described
above is exponentially stable [7], as the operator of the
linearized system in infinite dimension generates an ex-
ponentially stableC0-semigroup. All the more, under
a controlu ∈ Cα([0,∞],U) 2, conditions on the tun-
ing parameters are also given to ensure the stability
of the closed loop system. Those theoretical results
have been coupled with simulations and experimenta-
tions that have confirmed this approach [7]. Those ex-
perimentations have risen up the limitations due to the
linearization around an equilibrium state and a first at-
tempt of a Multi-Models experimentations have been
realized with success (figure (5)) but it was not opti-
mal and no theoretical proof has been given. A first
approach for an integral control then for a PI control in
[8] have been done with gains of the proportional and of
the integrator equals. The aim of this paper is to develop
the previous results with the proportional gain different
from the integrator one. In order to control the water
level over a wide operating range, sufficient conditions
are presented to preserve the stability of this system all
along the operating set, under a PI control, in finite di-
mension.

2.4. A Multi-Models representation of Saint-
Venant’s Equation

The Multi-Models structure [17] allows to control the
system over a wide operating range because it takes into
account the different sub-models which can be activated
under different operating levels. The representation of
de Saint-Venant’s PDE aroundN operating points by
the Multi-Models approach is defined by the following
equations:

∂tξ (x, t) =
N

∑
i=1

µi(ζ (t))Ai(x)ξ (x, t) (11)

Ai(x) = A1,i(x)∂x+A2,i(x) (12)

ξ0(x) = ξ (x,0)

whereAi(x) is the operator which corresponds to theith

equilibrium state.ζ (t) is a function depending of some
decision variables directly linked with the mesurables
states variables and eventually to the input.µi(ζ (t)) ∈
(0,1) is the weighting functions which determines the
sub-model for the control law synthesis depending of

2Regularity coefficient is generally taken asα = 2

the output height of the processzL. In the following
section, the synthesis of a control law by LMI & BMI
technics is considered: a proportional integral control
and the synthesis of the gains which preserve the sta-
bility of the system all over the operating range are de-
duced from BMI technics.

3. Stability study

3.1. Closed-loop structure for a proportional
integral feedback

For a control with an output feedback,u(t) =
Kint

∫

ε(τ)dτ +Kprε(t), whereKint andKpr are defined
as the gains, it follows that [7]:

ε(t) = r(t)− y(t) (13)

u(t) = Kint

∫

[r(τ)− y(τ)]dτ +Kpr[r(t)− y(t)] (14)

with y(t) = C(ξ (x, t) + Eq(x, t)) where Eq(x, t) =

∑N
i=1 µi(ζ (t))(ze,i(x, t) qe,i)

t is the equilibrium state, and
for exampleCEq(x, t) = ∑N

i=1 µi(ζ (t))ze,i(L) if the aim
is to regulate the water level atx= L. C is the the output
operator is the Kalman structure.

y(t) =Cϕ(x, t)+CEq(x, t)+CDu(t) (15)

and by replacingy(t) into the control equation (14):

u(t) = Kpr[r(t)− (Cϕ(x, t)+CEq(x, t)+CDu(t))]

+Kint

∫

[r(τ)− (Cϕ(x,τ)+CEq(x,τ)+CDu(τ))]dτ

⇒ u̇(t) = Kint [r(t)−Cϕ(x, t)−CEq(x, t)−CDu(t)]

+Kpr[ṙ(t)−CĖq(x, t)−CAi(x)ϕ ]

In each local model,Eq(x, t) is a piecewise function
(Ėq(x, t) = 0), it is also the case ofr(t). So u̇ can be
simplified into the following form:

u̇(t) = Kint [r(t)−Cϕ(x, t)−CEq(x, t)−CDu(t)]

−KprCAi(x)ϕ (16)

and using ˙u into the equation (9), the expression of
closed-loop is then:

∂tϕ(x, t) =
N

∑
i=1

µi(ζ (t))[
(

Ai +DKintC+DKprCAi
)

ϕ(x, t)

+DKint
(

CDu(t)+CEq(x, t)− r(t)
)

] (17)

Let define:
K̃int = DKint , K̃pr = DKpr (18)

The equation (17) can be written as:

∂tϕ(x, t) =
N

∑
i=1

µi(ζ (t))
[

(Ai + K̃intC+ K̃prCAi)ϕ(x, t)

+K̃int
(

CDu(t)+CEq(x, t)− r(t))
]

=
N

∑
i=1

µi(ζ (t))Mi(x, t) (19)



The conditions which provide the stability are ensured
by using a quadratic Lyapunov function in order to guar-
antee the convergence of the water height to the refer-
encer(t), over the widest operating range.

3.2. Stability study with a quadratic Lyapunov
function

Let us consider:

V(ϕ(x, t), t) =< ϕ(x, t),Pϕ(x, t)> (20)

where< ., . > is the considered inner product. The
Multi-Models representation of the linearized PDE of
de Saint-Venant defined by equation (17) is asymptoti-
cally stable if there exists aP> 0, such that3: For finite
dimensional systems (P> 0 is a matrix) and infinite di-
mensional systems (P> 0 is an operator) [5] resp.:

V̇(ϕ(x, t), t)< 0⇔< ϕ̇ ,Pϕ >+< ϕ ,Pϕ̇ > < 0 (21)

< ϕ̇ ,Pϕ >+< ϕ ,Pϕ̇ >=−< ϕ ,ϕ > (22)

The LMI technics are usually defined for finite dimen-
sional systems, the authors begin to give some proof
of the LMI technics application for the stability study
to infinite dimensional system [9, 8]. The authors of
[19] have used LMI technics for the stability study to
a non-linear distributed parameter system with a devel-
opment of fuzzy state-feedback control. The authors in
[10] have worked on the stability of switching systems
in infinite dimension and they are still working to link
those mathematical results to the LMI approach. The
main difference here between the stability result in fi-
nite and infinite dimension, is located in the inequality
of the Lyapunov function for finite dimensional systems
(21) and equality for infinite ones (22). This equality
complexity can be removed in some cases: as for ex-
ample for operators with compact resolvent [5, 7] and
in this case the same inequality from finite dimension
is a sufficient and necessary condition for the infinite
dimensional case: it is a question of satisfying the spec-
tral growth assumption [9]. Moreover for the equations
of de Saint-Venant, it has been shown that the operator
has a compact resolvent [7] so it satisfies the spectral
growth assumption. Then, taking account of (17)-(22),
it follows that one has to prove the inequality:

< Mi ,Pϕ >+< ϕ ,PMi > < 0, ∀i (23)

whereMi is defined in (19). The development of this
inequality leads us to consider an inequality for each
local system of index i such that:

< [Ai + K̃intC+ K̃prCAi]ϕ(x, t),Pϕ(x, t)>

3We suppose that∂tφ = φ̇ whatever the functionφ .

+< K̃int [CDu(t)+CEq(x, t)− r(t)],Pϕ(x, t)>
+< ϕ(x, t),P[Ai + K̃intC+ K̃prCAi ]ϕ(x, t)> (24)

+< ϕ(x, t),PK̃int [CDu(t)+CEq(x, t)− r(t)]>< 0

In the inequality (24), which defines the stability condi-
tion of the system∀i, the control parameteru appears in
this inequality and it is a difficulty for the design of the
gainsK̃int , K̃pr. A first approach was made in [8] with
Kpr = Kint . Here, in this paperKint is considered differ-
ent ofKpr. It has been proved that a good choice ofKint

in [7] based on semi-group theory isKint =−αi [CD]† (†
represent the right pseudo-inverse) andKpr = αp[CD]†.
αi andαp are defined in [7]. So one can suppose that
∃β ∈ R such thatKpr = βKint , i.e. K̃pr = β K̃int (cf.
(18)). Then the equation (24) becomes:

< [Ai + K̃intC+β K̃intCAi ]ϕ(x, t),Pϕ(x, t)> (25)

+< K̃int [CDu(t)+CEq(x, t)− r(t)],Pϕ(x, t)>
+< ϕ(x, t),P[Ai + K̃intC+β K̃intCAi ]ϕ(x, t)>
+< ϕ(x, t),PK̃int [CDu(t)+CEq(x, t)− r(t)]>< 0

The term[CDu(t)+CEq(x, t)− r(t)] of (25) has been
treated in [9] and it has been proved that:

ϕTPK̃int(CDu+CEq− r)≤ αϕTPK̃intCϕ (26)

with α = (k+ 1)ε(ϕT PK̃intCϕ) and ε f (x) = sign( f (x)).
(25) is then implied by (27)

ϕ(x, t)T [A T
i P+PAi + γWintC+ γCTWT

int

+βWintCAi +β (CAi)
TWT

int ]ϕ(x, t)< 0 (27)

with γ = 1+α, Wint = PK̃int , K̃pr = β K̃int . The problem
is that (27) is a BMI in infinite dimension, for which the
tools do not exist as long as we know. In the follow-
ing proposition, the authors use the methods in finite
dimension to ensure the stability of the closed-loop sys-
tem (19).

Proposition 1 If there exists a symmetric positive-
definite matrix P, matrices Wint and Wpr, the scalars
σ , γ ∈R, such that:
[

A T
i P+PAi + γWintC+ γCTWT

int Wint

WT
int σ−1

]

< 0 (28)

[

A T
i P+PAi + γWintC+ γCTWT

int (CAi)
T

CAi σ−1

]

< 0 (29)

then, the closed-loop system (19) under the PI control
law (14) is stable.

Proof: The inequality (27) has two variables:β
andWint that lead to a BMI (Bilinear Matrix Inequality)
problem. As BMI is a non-convex constraint, we can
not use the convex optimization methods. So the idea



is to derive two LMIs which are equivalent to this BMI.
The BMI problem can thus be solved as a LMI problem
by convex optimization method. By using Schür com-
plement [3], the two inequalities (28-29) are sufficient
to prove (30)

G−σUTU < 0, G−σVTV < 0, ∀σ ∈R (30)

with G= A T
i P+PAi + γWintC+ γCTWT

int , UT =Wint ,
X = β , V =CAi . The Finsler’s lemma [18] proves that
(30) is equivalent to (31)

U⊥TGU⊥ < 0, V⊥TGV⊥ < 0 (31)

whereU⊥ andV⊥ are orthogonal complements ofU
andV respectively, i.e.U⊥U = 0 andV⊥V = 0. Then
based on the Elimination Lemma [3], the inequality (31)
is equivalent to the following inequalities:

G+UTXV+VTXU < 0⇔ (25) (32)

The two LMIs (28) and (29) allow to solve the BMI
problem (27) which can be solved by convex optimiza-
tion method and determine parameterσ−1, matrices
Wint andP> 0. After, and based on the numerical val-
ues ofWint andP, the only unknown parameter isβ . So,
one can determine this parameterβ by solving inequal-
ity (27). Then, the gains̃Kint =P−1Wint andK̃pr = β K̃int

can be obtained by solving LMI (28-29).
Now, the gainsK̃int 6= K̃pr have been implemented in
simulations so as to compare the dynamic of the closed-
loop system versus previous results. The aim is to com-
pare the simulated curves obtained with this method and
the ones obtained on the experimental benchmark [7]
and the simulations with the gains̃Kint = K̃pr [8, 9].

4. Simulations results
Firstly, let describe the benchmark used for the sim-
ulations in a rectangular micro-channel of Valence
(France), which are described in the following subsec-
tions. The simulations are based on a Chang and Cooper
scheme, for more details see [6, 9].

4.1. Parameters of the micro-channel
For the study of the micro-channel of Valence, the fol-
lowing set of parameters is considered where the data
are defined such that:L = 6.45m is the length of the
channel,b= 0.1 m is the width of the channel,N = 20
is the number of the discretizated points, the slope
I = 1.60/00 ZL is the water height to regulate, such that
zmin < Z < 0.2m, ∀Z(x, t); wherezmin is the minimum
critical fluvial water level, 0.2m is the channel height.
The equilibria profiles have been chosen such that the
calculated control law from the local models can be ef-
ficient over all the operating range of the water height
[7]. Let notice that it has been experimentally verified

that a local model is valid around±20% of an equilib-
rium profile. In order to assign references which are
included betweenzmin = 0.06mand 0.2m, the operating
points atx=0 are the following: In this application, the

Table 1. Initial set points for the simulations
Ze1(x= 0) Ze2(x= 0) Ze3(x= 0)
0.06219m 0.10149m 0.15819m

weighting functionµi(ζ (t)) is equal to 1 if the output’s
height is included into the validity domain of the model
and 0 in the other case for each operating state. The pa-
rameterζ (t) exclusively depends on the output which
is the only one variable of decision in this precise case.

4.2. Simulations of the micro-channel
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Figure 3. Variations along the valued domain

These results are obtained from an IMB Control and
a Multi-Models approach with a LMI gain previously
calculated. Figure (3) shows that the output con-
verges to the reference even is this one strongly varies
(variations> 100% towards the initial conditions). The
references tracks a dynamic and one can see that the
water tracks correctly to reference. The curves that de-
scribe the upstream and downstream opening gates of
the reach are given by figure (4). The convergence of
the output to the reference is ensured even when the ref-
erence is decreasing or increasing. The following sim-
ulations compare a PI controllers (gainsKint = Kpr [8])
and the new PI controllers (gainsKint 6= Kpr), these last
gains have been calculated by the LMI approach, the
first one with traditional LMI technics, the second by
the method of BMI, figure (5). One can observe on fig-
ure (5), that the convergence of the new PI controllers
is better than the one obtained by PI controllers with
Kint = Kpr [8], and the overshoot is less too. It is also
better than the experimental PI which has been firstly
implemented.



5. Conclusion

First attempts of a Multi-Models approach on irrigation
channels control, through an IMBC structure, have been
realized some years ago [7]. Good experimental re-
sults, but without theoretical approach, were obtained
and have shown promising results. The first theoretical
results in order to tune the feedback gain through LMI
have been raised in the case of an integral controller in
[9]. A preliminary results of a PI controller in a partic-
ular case (Kint = Kpr) have been published [8]. In this
paper, the authors take into account the more general
case of PI controller withKint 6= Kpr, and synthesize
a new feedback gain of this PI controller by solving
a BMI problem in finite dimension. Simulations have
shown a better performance through this new PI feed-
back controller designed by BMI & LMI than the pre-
vious results. The extension of those works is to extend
the tools of BMI technics to the infinite dimension.
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