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Despite remarkable accomplishment, the classical hydrodynamic stability theory fails

to predict transition in wall-bounded shear flow. The shortcoming of this modal ap-

proach was found 20 years ago and is linked to the non-orthogonality of the eigen-

modes of the linearised problem, defined by the Orr Sommerfeld and Squire equations.

The associated eigenmodes of this linearised problem are the normal velocity and the

normal vorticity eigenmodes, which are not dimensionally homogeneous quantities.

Thus non-orthogonality condition between these two families of eigenmodes have not

been clearly demonstrated yet. Using an orthogonal decomposition of solenoidal ve-

locity fields, a velocity perturbation is expressed as an L2 orthogonal sum of an Orr

Sommerfeld velocity field (function of the perturbation normal velocity) and a Squire

velocity field (function of the perturbation normal vorticity). Using this decomposi-

tion, a variational formulation of the linearised problem is written, that is equivalent

to the Orr Sommerfeld and Squire equations, but whose eigenmodes consist of two

families of velocity eigenmodes (thus dimensionally homogeneous). We demonstrate

that these two sets are non-orthogonal and linear combination between them can

produce large transient growth. Using this new formulation, the link between op-

timal mode and continuous mode transition will also be clarified, as the role of direct

resonance. Numerical solutions are presented to illustrate the analysis in the case of

thin boundary layers developing between two parallel walls at large Reynolds number.

Characterisations of the destabilizing perturbations will be given in that case.

Keywords: Orthogonal decomposition of vector fields, Orr-Sommerfeld/Squire equa-

tions, linear stability, bypass transition, boundary layer

a)Electronic mail: marc.buffat@univ-lyon1.fr; www.ufrmeca.univ-lyon1.fr/~buffat

2



I. INTRODUCTION

Since the pioneer work of Reynolds (1883), the study of transition in wall-bounded shear

flow is still today the subject of intense research (see e.g. Schmid1 for a review). Des-

pite remarkable accomplishment, the classical hydrodynamic stability theory fails to predict

transition in wall-bounded shear flow. The shortcoming of this modal approach was found

20 years ago (see e.g. Trefethen et al2 and Schmid and Henningson3) and is linked to the

non-orthogonality of the eigenmodes of the linearised problem, defined by the Orr Sommer-

feld and Squire (O-S) equations. Onset of transition in wall-bounded flows is characterised

by subcritical instability, i.e. instability that occurs below the critical Reynolds number

predicted by O-S equations. A theory for subcritical instability that has received a great

deal of attention is the transient growth (Butler and Farrell4). It is based on the observa-

tion that a general initial wave other than a pure eigenmode may undergo transient growth,

even though all eigenmodes are decaying. Among this form of initial perturbations, the one

which yields the largest amplification is referred to as being “optimal”. The transient growth

theory emphasises the linear nature of the non modal amplification mechanism (Trefethen

et al2 and Henningson et al5).

The evolution of infinitesimal perturbations with two homogeneous and one inhomogen-

eous directions is described by the linearised incompressible Navier-Stokes equations. By

using a velocity-vorticity formulation, the linearised equations reduce to the classical Orr-

Sommerfeld and Squire equations. The associated matrix operators are non-normal and

large transient growth of energy is possible, even if all eigenvalues are confined to the stable

half-plane. Using the transient growth theory, the initial conditions that will reach the max-

imum possible amplification at a given time can be determined (Butler and Farrell4 and

Anderson et al6) and are called optimal disturbances. For the Blasius boundary layer, the

optimal perturbations are stationary streamwise vortices inside the boundary layer, periodic

in the spanwise direction with wavelength of the order of 2 times the boundary layer thick-

ness (Luchini7). The associated optimal responses are large steady streamwise streaks, that

are created due to lift-up of mean momentum by the initial cross stream velocity perturba-

tions. These optimal streaks have been observed experimentally by perturbing the boundary

layer with the means of spanwise periodic array of small cylindrical roughness elements fixed

on the wall (Fransson et al8).
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Streamwise streaks are also observed in boundary layer in the presence of free-stream

turbulence. These streaks forced by free-stream turbulence typically slowly oscillate in

the boundary layer and are called Klebanoff modes. Destabilisation of these streaks can

then induce a bypass transition in boundary layer. Using the notion of continuous mode

transition, Durbin and Wu9 attribute the creation of these streaks to penetrating (or low

frequency) modes in the continuous spectrum of the O-S equations. These penetrating

modes generate perturbation jets (streaks) by lift-up of fluid into the upper portion of the

layer. Then non penetrating modes (with higher frequency) trigger breakdown, ultimately

producing a turbulent transition. To quantify the forcing by free-stream turbulence, Zaki and

Durbin10 define a coupling coefficient, related to the forcing term in the Squire equation,

that characterize modal penetration of free-stream turbulence inside the boundary layer.

They also attribute the growth of disturbances to exact resonance between Orr-Sommerfeld

and Squire eigenmodes.

In this paper we will revisit the classical O-S equations using an orthogonal decomposition

of solenoidal velocity fields, based on the normal velocity and vorticity component. This

allows to analyse the linearised Navier-Stokes equations (equivalent to the O-S equations)

in term of two dimensionally homogeneous families of velocity eigenmodes instead of the

classical (not dimensionally homogeneous) eigenmodes for the normal velocity and vorticity

(Schmid and Henningson3). Using this formulation, the link between optimal mode and

continuous mode transition will be clarified. We will also address the question of the role

of direct resonance as it was suggested by the asymptotic analysis of Hultgren et al11, and

emphasis in Zaki and Durbin10.

This paper is organised as follows. Section II contains the description of the orthogonal

decomposition used for the analysis. In Section III, this decomposition is applied to the linear

stability analysis of parallel flow in bounded domain. Numerical solutions will be presented

in Section IV to illustrated the analysis in the case of thin boundary layers developing

between two parallel walls at large Reynolds number. Discussion and concluding remarks

are then presented in Section V.
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II. ORTHOGONAL DECOMPOSITION OF SOLENOIDAL FIELDS

Orthogonal decomposition of solenoidal fields, based on complete representations, have

proved invaluable in studies of hydrodynamic stability (Chandrasekhar12), fluid turbulence

(Holmes et al13) and magneto-hydrodynamic turbulence (Turner14). For instance, repres-

entation of solenoidal vector field by poloidal and toroidal potentials (Warner15) is a useful

analytic technique in many problems of mechanics and electromagnetics. Likewise, in strati-

fied homogeneous turbulence, the formalism of Craya can be used to decompose the velocity

field in the Fourier space into a vortical component and an orthogonal wavy component

(Herring16).

Le Penven and Buffat17 proposed a general orthogonal decomposition for solenoidal vector

fields expressed in terms of projections of the velocity and vorticity fields on an arbitrary

direction in space. For doubly-periodic flows with one direction of inhomogeneity ey (called

the normal direction), Buffat et al18 derived an explicit form of this decomposition using

the Helmholtz-Hodge theorem (Chorin and Marsden19). The solenoidal velocity field is

expanded in Fourier series in the streamwise and spanwise directions in the form:

u(x, y, z, t) =

∞∑

m=−∞

∞∑

p=−∞

u
mp(y, t) eı(αx+βz) (1)

where u
mp is the vector function of Fourier coefficients associated with wave-numbers α and

β. Each Fourier mode u
mp can thus be decomposed as u

mp = u
mp
os + u

mp
sq , where u

mp
os and

u
mp
sq are respectively functions of v(y) and ω(y) that are the Fourier modes of the normal

velocity and normal vorticity:

u
mp
os =

(

ı

α

k2
∂yv , v , ı

β

k2
∂yv

)t

, ump
sq =

(

−ı

β

k2
ω , 0 , ı

α

k2
ω

)t

with k2 = α2 + β2 (2)

Both velocity and vorticity components verify orthogonality conditions: u
mp
os .u

mp
sq = 0 and

(Dmp × u
mp
os ) .

(
Dmp × u

mp
sq

)
= 0, where Dmp is the gradient operator in Fourier space: Dmp =

(

ıα , ∂y , ıβ
)t

. An L2 orthogonal decomposition for the velocity field, function of the

normal velocity and vorticity fields, can easily be derived from this orthogonal decomposition

of the Fourier components :

u = usq(v) + uos(ω) with < usq,uos >L2
= 0 and ∇.usq = ∇.uos = 0 (3)
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Figure 1: bounded domainΩ

This decomposition induces an L2 orthogonal decomposition of the solenoidal fields space

W into two subspaces W os and W sq, and a similar decomposition of the space Wmp of

divergence free Fourier modes u
mp (i.e. with Dmp.ump = 0).

In the following, the decomposition (3) will be applied to parallel flows in a bounded

domain. Linear stability theory of parallel flows is generally formulated in terms of two scalar

differential equations: the Orr-Sommerfeld equation for the y component of the velocity v

and the Squire equation for the y component of the vorticity ω (Schmid and Henningson3).

As the two velocity fields in the decomposition (3) are defined respectively by the normal

component of velocity and the normal component of vorticity, these two fields uos and usq

have been denominated as the Orr-Sommerfeld velocity (OS velocity) and Squire velocity

(SQ velocity).

III. SHEAR FLOW IN BOUNDED DOMAIN

A shear flow is considered in a parallelepiped Ω limited by two parallel planes distant

from Ly = 2h apart (see Figure1). As usual for local stability analysis, the base flow is

assumed to be parallel in the x-direction Ub = Ub(y) ex and the perturbation is expanded

in Fourier series (1) with homogeneous boundary conditions at y = ±h.

Following Pasquarelli et al20, a weak formulation of the Navier-Stokes equations for the

perturbation can be written in divergence-free function space. By using an expansion in

Fourier series, the weak formulation for ump reads by virtue of orthogonality of the trigono-

metric functions with respect to the L2 inner product < ., . >L2
:
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Find ump ∈ Wmp such that ∀vmp ∈ Wmp

< ∂tump +U
b.Dmpump + ump.∇U

b −Re−1D2
mpump,vmp >L2

= < NL(u,u),vmp >L2
(4)

where NL(u,u) represents the non linear terms. We note that the pressure is eliminated

from the formulation (4), because the solution ump and its variations vmp are solenoidal.

Using the orthogonal decomposition (2), the weak formulation (4) is equivalent to:

Find u
mp
os (v) ∈ W os

mp and u
mp
sq (ω) ∈ W sq

mp such that ∀vos(w), ∀vsq(η)

< (M+ L)ump
os ,vos > +

ıα

k2
< ∂y

(
v dyU

b
)
, w > = < NL(u,u),vos > (5)

< (M+ L)ump
sq ,vsq > +

ıβ

k2
< v dyU

b, η > = < NL(u,u),vsq > (6)

where M = ∂t is the temporal operator and L = ıαU b − Re−1D2
mp the diffusion and

transport by the mean flow U b operator. The linear parts of these equations are equivalent

to the classical Orr-Sommerfeld/Squire equations. As this weak formulation is equivalent to

the virtual work principle apply to the perturbation, the different terms of equations (5-6)

can also be interpreted in terms of transport, diffusion and transfer of kinetic energy. By

denoting Mos and Los the OS projection of M and L (i.e. Mosu =< Mu, vos >L2
), and

identically for Msq and Lsq, the equivalent matrix form of equations (5-6) reads:




Mos + Los 0

0 Msq + Lsq








u
mp
os

u
mp
sq





︸ ︷︷ ︸

transport& diffusion

+




< ıα

k2
∂y

(
v dyU

b
)
, w >

< ıβ

k2

(
vdyU

b
)
, η >





︸ ︷︷ ︸

transfer of energy fromUb

=




< NL(u,u),vos >

< NL(u,u),vsq >





︸ ︷︷ ︸

redistribution

(7)

In these equations, the term that represents the transfer of energy between the base flow U b

and the perturbation depends only on Orr-Sommerfeld velocity and consists in two parts: the

first, proportional to the longitudinal wavenumber α, in the first (Orr-Sommerfeld) equation

and the second, proportional to the transverse wavenumber β, in the second (Squire) equa-

tion. If α ≫ β, then the Orr-Sommerfeld perturbation is essentially a two-dimensional per-

turbation. Energy can be transferred from the base flow to the streamwise Orr-Sommerfeld

velocity component, which can then increase with time to develop Tolmien Schlichting (TS)

7



waves. In that case, large Squire velocity cannot be created by a linear mechanism. If

α ≪ β, then the Orr-Sommerfeld perturbation is essentially a streamwise vortex. Energy

can be transferred from the base flow to streamwise Squire velocity to develop large stream-

wise Squire velocity component. This mechanism is interpreted as the lift-up effect of a

fluid particle by the normal velocity (Schmid and Henningson3). As the transfer term does

not depend on Squire velocity, in absence of Orr-Sommerfeld velocity u
mp
os or if the span-

wise wave-number β is small, the Squire velocity u
mp
sq is always damped if the non-linear

right-hand side is neglected.

A. Temporal stability analysis

To solve the linearised equations (7), wavelike solutions are sought of the form u(x, t) =

u
mp(y) eı(αx+βz−λt) where λ is a complex frequency. The problem reduces to an eigenvalue

problem: Lũ = −ıλũ. The associated linear operator L is nonnormal, and the vector eigen-

functions ũ
l(y) associated with the eigenvalues λl do not form an orthogonal set. However,

because the operator L is compact, in bounded domains it has infinitely many isolated

eigenvalues and the set Emp of normalized eigenvectors ũ
l(y) forms a complete set in the

solution space Wmp (Prima and Habetler21). By using the orthogonal decomposition (3) on

the eigenvectors ũ
l = u

l
os(v) + u

l
sq(ω), the eigenvalue problem can be rewritten in matrix

form:




Los + Cos 0

Csq Lsq








u
l
os

u
l
sq



 = −ıλl




Mos

Msq








u
l
os

u
l
sq



 (8)

which is equivalent to the classical Orr–Sommerfeld/Squire eigenvalue problem for the nor-

mal velocity v and the normal vorticity ω. The main interest of the formulation (8) compared

to the classical O-S eigenvalue problem, is the dimensional homogeneity of the two compon-

ents u
l
os(v) and u

l
sq(ω) of the eigenvectors. This allows one to define two distinct velocity

eigenvectors subsets E+
mp and E−

mp (with E+
mp∪E

−
mp = Emp) depending on their orthogonality

with W os
mp (the space of OS velocity Fourier modes):

1. E−
mp =

{
ũ
−,l/

∥
∥ũ

−,l
∥
∥ = 1 and u

−,l
os = 0

}
includes velocity eigenmodes with no OS ve-

locity components, i.e. E−
mp ⊂ W sq

mp ⊥ W os
mp,
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2. E+
mp =

{
ũ
+,l/

∥
∥ũ

+,l
∥
∥ = 1 and u

+,l
os 6= 0

}
includes velocity eigenmodes with OS velocity

components, i.e. E+
mp ∩W os

mp 6= Ø.

The subset E+
mp contains the eigenmodes of the Orr-Sommerfeld eigenvalues problem and

includes the classical longitudinal Tolmien Schlichting waves. Meanwhile, the subset E−
mp

contains the eigenvalues of the homogeneous Squire equation. As the linear operator Lsq

associated with the set E−
mp is a transport-diffusion operator, the velocity eigenmodes ũ

−,l

are always damped. Moreover Lsq is a compact linear operator in W sq
mp and the set E−

mp

forms a complete set in W sq
mp. Due to the linear coupling operator Csq (with Csquos =<

ı
β

k2
vosdyU

b, η >L2
), which represents the transfer of energy from the base flow to the SQ

velocity by the mediation of an OS velocity, the two subsets E+
mp and E−

mp are not L2-

orthogonal, except for zero transverse wave-number (β = 0). In that case, the set E+
mp is a

complete set in W os
mp. On the contrary, for a non-zero transverse wave-number (β 6= 0), the

eigenmodes ũ+,l of E+
mp have both an OS component u+,l

os and a SQ component u+,l
sq , and thus

are not orthogonal to E−
mp (because E−

mp is a complete set in W sq
mp). This non-orthogonality

of the velocity eigenmodes allows for the possibility of initial transient growth, that in

many cases overshadows the asymptotic behaviour predicted by the eigenmodes (Butler

and Farrell4). For transverse wave-number (α = 0), the non-orthogonality (defined more

precisely in Section IVB) of E+
mp with E−

mp is important, because in that case the transfer

of energy to the SQ velocity (proportional to β/k2) is maximum.

B. Transient growth

As explained in Section IIIA, the OS projection uos of a perturbation u
mp can initiate

transient growth. In the following, we will consider an initial OS perturbation u(t = 0) =

uos, in a linearly stable problem where all the eigenvectors in Emp are damped. From the

previous analysis, the perturbation u can be decomposed into the sum of two contributions:

u
+ that is a sum of eigenvectors ũ+,l ∈ E+

mp and u
− that is a sum of eigenvectors ũ−,l ∈ E−

mp.

To simplify the analysis, let us consider the case where u
+ is equal to an eigenvector ũ+,l:

u = u
+ + u

− = u
+,l
os + u

+,l
sq + u

−
sq with at t = 0 u

+,l
sq + u

−
sq = 0 (9)

At t = 0, the SQ projection u
+,l
sq of u+ can be decomposed into the set E−

mp:
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W os

W sq
ũ
+

ũ
−

u(t = 0)

u
+
sq

(a) t = 0

W os

W sq
u
+
os

u(t = t0)

u
−
sq

u
+
sq

(b) t = t0

Figure 2: Sketch illustrating transient growth of an OS perturbation u. ũ+ and ũ
− are the

eigenvectors, uos and usq the projections on W os
mp and W sq

mp:

(a) initial perturbation u(0) = u
+
os; (b) response, at t = t0,u(t0) = u

−
sq.

u
+,l
sq =

∑

n

anu
−,n
sq = −u

−
sq (10)

The evolution of the perturbation with time is then given by:

u(t) = u
+,l
os e

−ıλlt +
∑

n

anu
−,n
sq

(
e−ıλlt − e−ıλnt

)
(11)

for non resonant modes, i.e. λl 6= λn. Transient growth can be expected from this relation,

if at t = 0 we have
∥
∥u

+,l
os

∥
∥ ≪

∥
∥u

+,l
sq

∥
∥ and if the decomposition (10) of u+,l

sq has large contri-

butions from eigenvectors u−,n
sq with eigenvalues λl different from λl, as illustrated on Figure

2. At t = 0, the perturbation is a small OS velocity u
+
os(t = 0), but consists of a sum of

two large non-orthogonal eigenvectors ũ
+ and ũ

−, having large but opposite SQ velocity. If

the imaginary part of λ+ is smaller than those of λ−, that is the decay rate of ũ+ is larger

than ũ
−, then ũ

+ decreases more rapidly than ũ
−. Over time, the perturbation becomes

essentially a SQ velocity u
−
sq(t = t0), that can be much larger than the initial SQ velocity

u
+
os(t = 0) for short time t0 > 0. This is however a transient growth, because in the large

time limit t0 → ∞, the perturbation u will decrease to zero. A characterisation of this

transient growth is the amplification rate that can be written for an OS perturbation as:

Gmp(t0) =
‖ump(t0)‖

2

‖ump(0)‖2
≈

∥
∥u

+
sq(t0) + u

−
sq(t0)

∥
∥
2

‖u+
os(0)‖

2 (12)
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C. Optimal mode

A classical tool to analyse transient growth is the determination of optimal perturbations,

that are initial conditions, that will reach the maximum possible amplification at a given

time t0. The optimal mode is the initial perturbation u
mp(t = 0) with unity L2-norm having

the largest L2-norm at time t0. By using the orthogonal decomposition (3), the maximum

possible amplification Gmax(t0) is:

Gmax(t0) = max
u
mp(0)6=0

‖ump(t0)‖
2

‖ump(0)‖2
= max

u
mp(0)6=0

‖ump
os (t0)‖

2 +
∥
∥u

mp
sq (t0)

∥
∥2

‖ump
os (0)‖

2
+ ‖ump

sq (0)‖
2

As the transient growth is related to the transfer term in the Squire equation, and there-

fore to the growth of the streamwise velocity component, we expect that the optimal per-

turbation has initially nearly zero streamwise velocity component, i.e. u
mp
sq (0) ≈ 0, and

thus consists mainly of the Orr-Sommerfeld velocity u
mp
os . As this velocity u

mp
os induces large

streamwise velocity component and decreases with time, the perturbation u
mp(t0) becomes

overtime a Squire velocity u
mp(t0) ≈ u

mp
sq (t0). Thus the maximum possible amplification

G(t0) should verify:

Gmax(t0) ≈ max
u
mp
os (0)6=0

∥
∥u

mp
sq (t0)

∥
∥
2

‖ump
os (0)‖

2

D. Resonance

Several authors (Hultgren et al11, Schmid and Henningson3 and Zaki and Durbin10) have

considered the possibility of degenerate eigenvalues between Orr Sommerfeld and Squire

eigenmodes to explain fast transient growth through a resonance. Using the decomposi-

tion(3), we will demonstrate that a modal degeneracy between two eigenvectors ũ
+,l and

ũ
−,l is impossible because ũ

+,l has a non-zero OS projection u
+,l
os orthogonal to ũ

−,l.

Indeed, suppose that a modal degeneracy exists, then 2 eigenvectors ũ
+,l = u

+,l
os + u

+,l
sq

in E+
mp and ũ

−,l = u
−,l
sq in E−

mp share the same eigenvalueλ. Then, because of the coupling

operator Csq in the eigenvalue problem (8), the vector ũ
+,l + θũ−,l = u

+,l
os + u

+,l
sq + θu−,l

sq is

also an eigenvector in E+
mp associated with the same eigenvalueλ. Thus an infinite number

of eigenvectors u
+,l
os + u

+,l
sq + θu−,l

sq (θ ∈ R) share the same eigenvalue λ. As they are not

countable, they should be dependant as their Squire projections. Thus the two vectors u
+,l
sq

11



and u
−,l
sq should be linearly dependant, which implies that u

+,l
sq is an eigenvector in E−

mp

associated with the eigenvalue λ. This implies that the transfer term in (8) must be zero,

i.e. < ıβ

k2

(
v+,l
os dyU

b
)
, η >= 0 ∀η and thus the OS projection u

+,l
os = 0 (because β 6= 0), which

is inconsistent with the initial assumption.

Thus in bounded domains, transient growth of disturbances cannot be attributed to exact

resonance of Squire modes with Orr-Sommerfeld modes. However, the eigenvectors ũ+,l and

ũ
−,l can have close eigenvalues λ+

l and λ−
l and thus the possibility of near resonance still

exists.

IV. NUMERICAL SOLUTION FOR WALL-BOUNDED FLOW

The wall-bounded flow studied here consists of thin boundary layers developing between

two parallel walls at large Reynolds number. The channel height is such that the bound-

ary layer thickness is small compared to the wall distance, so that there is no interaction

between the two boundary layers. Such a configuration was used by Mack22 to study the

eigenvalue spectrum of the Blasius boundary layer. This configuration corresponds also

to the experimental set-up used in wind tunnels to study boundary layer. However, in

numerical simulations, this approach is seldom used and alternative approaches are usually

preferred, such as mapping transformation (Fisher23) or direct numerical integration (Jacobs

and Durbin24), but imposition of boundary conditions at infinity may remain problematic.

At large Reynolds number, the considered base flow is a nearly parallel mean flow U
b ≈

U b(y)x, corresponding to a Blasius profile in each half of the domain. The Reynolds number

in the channel, Reh = U0h/ν, is equal to 20 000. The analysed section is located at x =

2h from the entrance, that corresponds to a boundary layers thickness δ/h = 0.05 and

a Reynolds number (based on the displacement thicknessδ1) Reδ1 = 344. This Reynolds

number is lower than the critical Reynolds number Reδ1 = 520, such that, for the considered

case, all the eigenmodes are decaying with time. Dimensionless quantities with respect to

the displacement thickness δ1 are denoted by an asterisk. To solve the variational eigenvalue

problem (8), we use a spectral Galerkin method with Chebyshev approximation described

in Buffat et al18. The corresponding NadiaSpectral computer code has been validated in

Buffat et al18 by comparison to linear stability analysis of plane Poiseuille flow. Using

Chebyshev polynomials of order Ny = 192 insure a relative error of at least 10−12 for the

12
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Figure 3: Optimal perturbation at Reδ = 344 for a spanwise wave α∗ = 0,β∗ = 0.67: a)

(left) norm of the optimal perturbation with an OS-SQ decomposition; b) (right) modulus

of the expansion coefficients a+l and a−l versus the mode number l sorted by decreasing

eigenvalue imaginary part.

firstNy eigenvalues of the system (8) (of size 2Ny).

A. Optimal mode

Using the variational formulation of Butler and Farrell4 with the eigenvalue problem (4),

the optimal perturbation has been calculated at Reδ1 = 344 . The transient time t0 is

equal to the time tmax, at which the transient growth is maximum for a Blasius boundary

layer with α = 0, i.e. tmax = 0.8Reδ1δ1/U0 (Butler and Farrell4). The maximum value

of the amplification Gmax(tmax) is obtained for a spanwise wavenumber α∗ = 0, β∗ ≈ 0.67

and Gmax(tmax) reaches 186. These values are closed to the values found by Butler and

Farrell4) for the boundary layer (β∗ = 0.65 and Gmax(tmax) = 177). We observe also that

the transient growth rate is very large, i.e. greater than 100, for a large range of disturbances

having spanwise wavenumber β between 1/δ and 3/δ and streamwise wavenumber at least

ten times smaller α ≤ 0.1/δ.

Figure 3a shows the calculated optimal mode and its orthogonal decomposition at t = 0

and t = tmax. As seen on this figure, the initial optimal disturbance is an OS velocity

characterised by nearly spanwise vortices inside the boundary layer. Then, as expected, the

perturbation transforms itself over time into Squire velocity, and at t = tmax this perturb-

ation is mainly a SQ velocity, that presents a large peak in the streamwise direction. This
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profile corresponds to the classical shape of streaks inside the boundary layer. Figure 3b

shows the repartition of the modulus of the expansion coefficients al in the eigenvectors basis

E+ and E− for this optimal perturbation:

uopt(t) =
∑

l

a+l e
−ıλlt(u+,l

os + u
+,l
sq ) +

∑

n

a−n e
−ıλntu

−,n
sq

As seen in this figure, the optimal mode is a wide combination of eigenmodes ũ+,l and ũ
−,l.

In the following, the mode number l is sorted by decreasing eigenvalue imaginary part, such

that a low mode number l corresponds to an eigenvalue ũ
l with a low decay rate. We notice

also the clear separation between the dominant modes associated with the coefficients a+l

and a−l , indicating that they are associated with well-separated eigenvalues. The modulus

of the coefficients is large (≫ 1), indicating a strong non-orthogonality of the eigenvectors

(for orthogonal eigenvectors we should have |al| < 1). As the coefficients a− are larger than

a+ for small mode numbers l, they are associated with eigenmodes with smaller decay rate

and the optimal mode will contain at t = tmax essentially u
−,l
sq eigenvectors:

uopt(tmax) ≈
∑

n

a−n e
−ıλntmaxu

−,n
sq

B. Transient growth

To characterize the link between transient growth and non-orthogonality, we define for

each eigenvector u
+,l a coefficient Ξl

mp defined as the relative norm of its OS projection:

Ξl
mp =

∥
∥u

+,l
os

∥
∥
L2

‖u+,l‖L2

This coefficient is the absolute value of the cosine of the angle between the eigenvector and

the OS velocity space and thus characterises the orthogonality of the eigenvector with the

set E−
mp. If for all eigenvectors Ξl

mp ≈ 1, then the set E+
mp is orthogonal to E−

mp and transient

growth does not occur. On the other hand, transient growth is possible, with an initial

perturbation equal to the OS projection of u+,l, if Ξl
mp ≈ 0 for some eigenvectors u

+,l with

low decay rate (i.e. associated with low mode number l).

The value of this coefficient Ξl
mp and the corresponding transient growth Gl

mp are plotted

in Figure 4 as a function of the mode number l and for various streamwise wavenumber α∗.
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The spanwise wavenumber is β∗ = 0.67, but similar plots are obtained for β between 1/δ

and 3/δ. As seen on this figure, for zero or low values of α∗, the coefficient Ξl
mp is very

small for a large number of modes with low mode numbers l, that are associated with large

transient growth. On the contrary for larger value of α∗, the coefficient Ξl
mp remains equal

to one for low mode numbers and no transient growth is observed.

For zero streamwise wavenumber α∗ = 0, analytical solutions can be obtained for u
−,l
sq

and u
+,l
os as in Drazin and Reid25. Outside the boundary layer, they are sinusoidal functions

in the wall normal direction y with a wavenumber µ, independent of the Reynolds number,

and solution of transcendental equations: µ+
l cotµ+

l = β coth β and µ−
l = lπ for odd modes,

µ+
l tanµ+

l = −β tanh β and µ−
l = (2l + 1)π/2 for even modes. It can be found that only

the projection u
+,l
sq depends on the gradient of the mean flow and scales with the Reynolds

number. Thus for α = 0, the coefficient Ξl
mp scales at high Reynolds number as the inverse

of the Reynolds number, indicating as expected an increase of transient growth with the

Reynolds number. For low value of the streamwise wavenumber α, the coefficient Ξl
mp is

very small for many eigenmodes with low mode number l, whereas for larger value of α

the coefficient Ξl
mp remains equal to one for small l as seen in Figure 4. By looking at the

shape of the eigenvectors, we conclude that the eigenmodes with very small Ξl
mp and low

mode number l correspond to eigenmodes ũ+,l, having an half-wavelength π/µ in the normal

direction ey of the order of the boundary layer thickness δ.

V. DISCUSSION

Using the orthogonal decomposition (3) of the velocity perturbation, we have a clear

demonstration of the link between transient growth and the non-orthogonality of the ei-

genvectors of the Orr-Sommerfeld Squire equations. Large transient growth results from

the non-orthogonality of the two sets of velocity eigenmodes E+
mp and E−

mp and the ability

of an OS velocity to transfer energy to a SQ velocity. To generate large transient growth,

a general perturbation (as a free-stream turbulence) must induce large transfer of kinetic

energy to the SQ velocity. This perturbation must thus contain OS velocity uos associated

with non-orthogonal eigenmodes u
+,l with low decay rate (i.e. such that Ξl

mp ≈ 0 for small

l). They are essentially streamwise vortex (α ≪ β) with a spanwise half-wavelength and a

normal half-wavelength of the order of the shear distance (the boundary layer thickness).
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Figure 4: a) Orthogonality coefficient Ξl
mp and b) amplification rate Gmp(tmax) at t0 = tmax

for different wavenumber α∗versus the mode number l sorted by decreasing eigenvalue

imaginary part (Reδ = 344, β∗ = 0.67)

Over time this OS velocity perturbation can develop large SQ velocity perturbation. This

transient growth problem is similar to the initial value problem considered in Zaki and

Durbin10 to study boundary layer transition due to free-stream turbulence. From the Squire

equation they consider the initial value problem for the case of Squire modes, generated by

a single Orr–Sommerfeld mode forcing. They define a coupling coefficient to characterize

the ability of Orr–Sommerfeld mode to generate large Squire response. The low frequency

Orr-Sommerfeld mode with large coupling coefficient are called “penetrating modes”, and

they correspond to OS velocity uos associated with non-orthogonal eigenmodes u
+,l with

low decay rate. Zaki and Durbin10 attribute the large growth of disturbances generated by

theses penetrating modes to exact resonance between Squire and Orr-Sommerfeld modes.

Existence of resonance for a boundary layer in a semi-infinite domain is invoked by Zaki and

Durbin10, arguing that since the dispersion relation for the temporal continuous spectrum

modes being identical for the Orr-Sommerfeld and Squire modes, they can have identical

eigenvalues. As demonstrated in section III, this is not true in a bounded domain where

exact resonance is impossible between the two sets of velocity eigenmodes E+ and E−. How-

ever, eigenvectors in the two sets can have close eigenvalues and thus the possibility of near

resonance still exists. Thus, in bounded domains and presumably in infinite domains also,

large transient growth are mainly the consequence of the non-orthogonality between the two
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sets E+ and E− of velocity eigenmodes.

Destabilizing perturbations uos, that lead to large transient growth, are OS projection u
+
os

of eigenvectors u
+,l with α ≪ β and π/β ≈ δ (i.e with Ξl

mp ≈ 0 for small l). Their transient

growth can trigger the boundary layer transition induced by free-stream turbulence. Indeed

as the two sets E+ and E− form a complete set, any free-stream turbulence can be expanded

using these two sets. The modes in the free-stream turbulence that trigger the first instability

are the destabilizing perturbations u+
os, that create streaks. To initiate the destabilisation of

these streaks, higher frequency perturbations in the free-stream induce inflectional instability

that leads to turbulent transition (Zaki and Durbin10, Schlatter et al26).

The number of destabilizing perturbations u+
os is large and a particular combination can

be formed to optimize the transient growth. This is the optimal mode uopt, that combines

the perturbations u
+
os such that uopt is nearly zero outside the shear region because in that

region the transfer term is zero. This optimal mode can model perturbations inside the

boundary layer, like spanwise periodic array of small cylindrical roughness elements fixed

on the wall (Fransson et al8).

A remarkable fact is that the shape of the transient response is nearly identical for an

initial condition equal to the optimal mode uopt and for initial conditions equal to the OS

projections u
+
os of a large number of eigenvectors u

+,l. Only the amplitude of the transient

response depends on the particular initial condition. Some considerations supporting this

expectation are given in Appendix A.

APPENDIX A. SHAPE OF THE TRANSIENT RESPONSE

For a wide range of initial conditions, the transient response corresponds to streaks char-

acterised by a large peak of streamwise velocity component inside the boundary layer. The

generic shape of this peak, characteristic of the transient response, can be explained by look-

ing at the equation for the SQ streamwise velocity usq obtained from the weak formulation

(6) and the decomposition (3):

(
∂t + ıαU b

)
usq +

β2

k2
dyU

bvos − Re−1D2
mpusq = 0 (13)

As large transient growth corresponds mainly to the SQ velocity u
−,l
sq with eigenvalues near

the eigenvalue λ of the perturbation u
+,k
os , we are looking for solutions of (13) of the form:
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usq = F (y) u−,l
sq t e

−ıλt

Taking into account that u−,l
sq is an eigenvector of (13) with vos = 0, F (y) is a solution of

the following equation:

u−,l
sq F +

β2

k2
dyU

bv+,k
os − Re−1t u−,k

sq d2yF = 0

At short time, by neglecting the viscous term proportional to Re−1, we obtain an approx-

imate form for F and thus for the transient response usq:

usq ≈ −
β2

k2
v+,k
os dyU

b t e−ıλt

As the mean shear ∂yU
b is zero outside the boundary layer, the streamwise transient response

usq is zero outside the boundary layer and depends on the normal velocity v+os inside the

boundary layer. Transient growth is obtained with perturbations u+,k
os associated with small

decay rates and normal wavelengths of the order of a few boundary layer thickness δ. In that

case v+,k
os ≈ Cy/δ in the boundary layer, and an approximation for the transient response

reads:

usq ≈ −
β2

k2
C
y

δ
dyU

b t e−ıλt (14)

In that case the shape (along y) y dyUb of the transient response usq is independent of the

destabilizing perturbation vos, and only its amplitude β2

k2
C
δ

is a function of the perturbation

vos (C depends on the normal wavelength of vos).

Luchini7 had already noted that the shape of the transient response for the optimal initial

perturbation is similar to the shape for more generic initial perturbations. He pointed out

that this shape looks very much like an analytical expression (due to Stewartson 1957)

simply given by y dyUb.

REFERENCES

1Peter J. Schmid, “Nonmodal stability theory,” Annu. rev. Fluid Mech. 39, 129–62 (2007)

2Lloyd N. Trefethen, Anne E. Trefethen, Sartish C. Reddy, and Tobin A. Driscoll, “Hydro-

dynamic stability without eigenvalues,” Science 261, 578–584 (1993)

18



3P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows. (Springer,

2001)

4K. M. Butler and B. F. Farrell, “Three-dimensional optimal perturbations in viscous shear

flow,” Phys. Fluids A 4, 1637–1650 (1992)

5Dan S. Henningson and Satish C. Reddy, “On the role of linear mechanisms in transition

to turbulence,” Phys. Fluids 6, 3, 1396–1398 (1994)

6Paul Andersson, Martin Berggren, and Dan S. Henningson, “Optimal disturbances and

bypass transition in boundary layers,” Phys. Fluids 11, 134–150 (1999)

7P. Luchini, “Reynolds-number-independent instability of the boundary layer over a flat

surface: optimal perturbations,” J. Fluid Mech. 404, 289–309 (2000)

8Jens H. M. Fransson, Luca Brandt, Alessandro Talamelli, and Carlo Cossu, “Experimental

and theoretical investigation of the nonmodal growth of steady streaks in a flat plate

boundary layer,” Physics of Fluids 16,10, 3627–3638 (2004)

9Paul Durbin and Xiaohua Wu, “Transition beneath vortical disturbances,” Annu. Rev.

Fluid Mech. 39, 107–128 (2007)

10Tamer A. Zaki and Paul A. Durbin, “Mode interaction and the bypass route to transition,”

J. Fluid Mech. 85-111 (2005)

11Lennart S. Hultgren and L. Hakan Gustavsson, “Algebraic growth of disturbances in a

laminar boundary layer,” Phys. Fluids 24 (6), 1000–1004 (1981)

12S. Chandrasekhar, Hydrodynamic and hydromagnetic stability (Dover Publications, 1981)

13P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical

Systems, and Symmetry (Cambridge University Press, New York, 1996)

14Leaf Turner, “Orthogonal, solenoidal, three-dimensional vector fields for no-slip boundary

conditions,” J. Phys. A: Math. Theor. 40, 741–754 (2007)

15William H. Warner, “Poloidal and toroidal potentials for solenoidal fields,” Journal of

Applied Mathematics and Physics 23, 221–230 (1972)

16J.R. Herring, “Approach of axisymmetric turbulence to isotropy,” Phys. Fluids 17, 859–872

(1974)

17Lionel Le Penven and Marc Buffat, “A general orthogonal decomposition of solenoidal

fields function of the projection of velocity and vorticity on an arbitrary direction,” J.

Phys. A: Math. Gen submitted (2012)

18Marc Buffat, Lionel Le Penven, and Anne Cadiou, “An efficient spectral method based on

19



an orthogonal decomposition of the velocity for transition analysis in wall bounded flow,”

Computers & Fluids 42, 62–72 (March 2011)

19Alexandre Joel Chorin and Jerrold E. Marsden, A mathematical introduction to fluid mech-

anics (Springer, 2000)

20F. Pasquarelli, A. Quarteroni, and G. Sacchi-Landriani, “Spectral approximations of the

Stokes problem by divergence-free functions,” Journal of Scientific Computing 2, 1995–

2026 (1987)

21R. C. Di Prima and G. J. Habetler, “A completeness theorem for non-selfadjoint eigenvalue

problems in hydrodynamic stability,” Archive for Rational Mechanics and Analysis 34,

218–227 (1969)

22Leslie M. Mack, “A numerical study of the temporal eigenvalue spectrum of the Blasius

boundary layer,” J. Fluid Mech. 73, 497–520 (1976)

23Thomas M. Fischer, “A spectral Galerkin approximation of the orr-sommerfeid eigenvalue

problem in a semi-infinite domain,” Numer. Math. 66, 159–179 (1993)

24Robert G. Jacobs and Paul A. Durbin, “Shear sheltering and the continuous spectrum of

the orr-sommerfeld equation,” Phys. Fluids 10 (8), 2006–2011 (1998)

25P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge University Press, 2004)

26Philipp Schlatter, Luca Brandt, H. C. de Lange, and Dan S. Henningson, “On streak

breakdown in bypass transition,” Physics of Fluids 20, 101205 (2008)

20


