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Absolute Stability of Chaotic Asynchronous
Multi-Interactions Schemes for Solving ODE

P. Redou1, L. Gaubert1, G. Desmeulles1, P-A. Béal2, C. Le Gal2 and V.
Rodin3

Abstract: Multi Interaction Systems, used in the context of Virtual Reality, are
dedicated to real-time interactive simulations. They open the way to the in virtuo
experimentation, especially useful in the domain of biochemical kinetics. To this
purpose, chaotic and asynchronous scheduling of autonomous processes is based
upon desynchronization of phenomena involved in the system. It permits inter-
activity, especially the capability to add or remove phenomena in the course of a
simulation. It provides methods of resolution of ordinary differential systems and
partial derivative equations. Proofs of convergence for these methods have been es-
tablished, but the problem of absolute stability, although it is crucial when consid-
ering multiscale or stiff problems, has not yet been treated. The aim of this article
is to present absolute stability conditions for chaotic and asynchronous schemes.
We give criteria so as to predict instability thresholds, and study in details the sig-
nificant example of a damped spring-mass system. Our results, which make use
of random matrices products theory, stress the point that the desynchronization of
phenomena, and a random scheduling of their activations, can lead to instability.

Keywords: Chaotic asynchronous scheduling, Multi-interaction systems, Ordi-
nary differential systems, Absolute stability, Random matrices products.

1 Introduction

Multi Interaction Systems (MIS) (Desmeulles, Bonneaud, Redou, Rodin, and Tis-
seau, 2009) were introduced in the context of Virtual Reality. The purpose was
precisely to provide medical researchers with a simulator dedicated to virtual ex-
perimentation and satisfying four essential points :
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2 UEB, LISYC- EA 3883, CervVal.
3 UEB, UBO, LISYC- EA 3883.
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• the ability to interact with the simulated system in the course of the simula-
tion, without stopping it, by adding or removing interactions or constituents
in the system, so as to be as close as possible from the in vitro experimenta-
tion.

• the possibility for a computer-illiterates to achieve this interactive simulation
of biochemical reactions without knowing anything about programmation or
numerical methods for solving differential systems.

• the capacity to take into account widely different time and space scales for
simulated phenomena.

• the property of the simulator to give as precise results as possible, particularly
when solving differential or partial derivative systems.

Figure 1: In Virtuo simulation of atherosclerosis using a MIS.

Such a challenge implies to consider different levels of description (Fitzgerald,
Goldbeck-Wood, Kung, Petersen, Subramanian, Wescott, and Source, 2008) : quan-
tum scale, molecular scale, mesoscale..., and interfacing these different levels is
an additional and not negligible difficulty (Chirputkar, Qian, and Source, 2008).
Thereby, the challenge was to create a virtual reality simulator for what was called
in virtuo experimentation (Tisseau, 2001), that is, to summarize, in silico computa-
tions in the conditions of in vitro experiments. For this purpose, the MIS paradigm
proposed to reify interactions into the system instead of constituents, with the main
and basical advantage to provide modularity, i.e. adding or removing interactions
in course of simulation. Thus, a MIS can be seen as a collection of autonomous
processes-interactions-, each acting on a collection of variables-constituents, and
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carrying its own time step. This radical change in perspective has made feasi-
ble the constraints, outlined above, of in virtuo experimentation. It also led to
the choice of a new kind of simulation algorithms, based upon random scheduling
of interactions inside the system: chaotic asynchronous scheduling (Desmeulles,
Bonneaud, Redou, Rodin, and Tisseau, 2009; Redou, Kerdélo, Le Gal, Querrec,
Rodin, Abgrall, and Tisseau, 2005; Redou, Desmeulles, Abgrall, Rodin, and Tis-
seau, 2007). The principle is to consider each (physical, biological) phenomenon
acting on the system -i.e. an interaction between constituents- as autonomous. The
simulation engine evolves interactions asynchronously (one after the other, into cy-
cles) and chaotically (the order of interventions changes randomly from one cycle
to the other). This scheduling was chosen in order to avoid the typical inflexibility
of synchronous systems, as well as bias in numerical results.

From a formal point of view, chaotic asynchronous scheduling provides methods
of resolution of ordinary differential equations or systems (say, to simplify, ODE)
(Redou, Kerdélo, Le Gal, Querrec, Rodin, Abgrall, and Tisseau, 2005), as well as
methods for partial derivative equations (Redou, Desmeulles, Abgrall, Rodin, and
Tisseau, 2007). The present work deals with the case of numerical resolution of
ODE. Let us give the principle of chaotic asynchronous scheduling in this context:
if one wants to solve the cauchy problem

Y ′(t) = ( f1 + · · ·+ fp)(t,Y (t)), Y (t0) = Y0 (1)

the principle is to consider functions fi as autonomous agents, what is necessary
when desynchronizing the different phenomena represented by each of these func-
tions. Considering a numerical method for solving (1), the matching chaotic asyn-
chronous method will be given by successive applications of the chosen method,
one for each function. These resolutions take place during the same time step, and
the order of resolutions, that is, the order of interventions of functions/phenomena
fi, changes randomly at each time step. Details about this process are given in
section 3.

This desynchronization eases a modular and incremental building of the numerical
model. This is especially usefull when building biochemical models, since the
modeller usually selects, subjectively, the reactions which are most likeky involved,
and runs the model. If results are not correct enough, the model is incremented
with other reactions, etc., until a satisfying model is obtained. Modularity makes
this process natural and doesn’t require to stop the simulation to modify the code
of equations.

Furthermore, chaotic asynchronous simulation provides a means to bear with non-
determinism, which occurs most of the time in chaotic systems because of causal-
ity between phenomena at the beginning of the experiment, at a very small scale
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(Devaney, 2003). Introducing random causality inside a computation time step fa-
cilitates the construction of simulators able to report a non-determinist behavior.

Many applications have been achieved in different domains, though, as said above,
biochemical kinetics is a natural application context for chaotic and asynchronous
scheduling: a classical example is given by cancer, since chromosomic instabil-
ity (Hanahan and Weinberg, 2000) implies on a regular basis modifications or cre-
ations of new reactions (Bos, 1989). In this context, an application of this schedul-
ing to computer simulation of multiple myeloma was recently achieved (Rodin,
Querrec, Ballet, Bataille, Desmeulles, Abgrall, and Tisseau, 2009). Notice that it
is also used for simulation of MAPK pathway (Querrec, Rodin, Abgrall, Kerdelo,
and Tisseau, 2003), and simulation of the extrinsic pathway of blood coagulation
(Lu, Broze, and Krishnaswamy, 2004). In an other context, chaotic asynchronous
scheduling is used for simulation of sea states, which is typically multi-model and
multi-scale (Le Gal, Parenthoen, Béal, and Tisseau, 2007).

Proofs of convergence for these methods have been established (Redou, Kerdélo,
Le Gal, Querrec, Rodin, Abgrall, and Tisseau, 2005), (Redou, Desmeulles, Ab-
grall, Rodin, and Tisseau, 2007), but the problem of absolute stability (Ascher and
Petzold, 1998) has not yet been treated, despite its importance: indeed, the region
of absolute stability can be seen as the set of values of the time step outside which
the distance between the exact solution and the approximate gets out of control.
Thus, when simulating multiscale problems, one has to find a compromise between
precision and a realistic time simulation, and this choice can not be made without
knowing the region of absolute stability. Another important case where this knowl-
edge is crucial is given by stiff problems (Hairer, Norsett, and Wanner, 1996), with
brutal variations of the solution of an ODE. The aim of this article is to present ab-
solute stability conditions for chaotic and asynchronous schemes. We give general
results, based upon the theory of products of random matrices, and stress the point
that in certain circumstances, these schemes may impose strong conditions on the
time step, mainly when opposing forces are at work in the system. A significative
illustration is the case of a damped spring-mass system where the different physical
phenomena are desynchronized.

In section 2, we remind the reader of the problem of absolute stability of methods
for solving ODEs, so as properties of classical explicit and implicit schemes. In
section 3, we describe how desynchronization of phenomena leads to define asyn-
chronous and chaotic asynchronous schemes. We also recall results of convergence
for these methods. Sections 4 and 5 expose the main results of this paper : we study
absolute stability for asynchronous and chaotic asychronous schemes, in a general
context, providing conditions on integration steps. Finally, section 6 exposes the
practical example of a damped spring-mass system, where the three phenomena
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involved are not considered as synchronous. In this case, we show that absolute
stability conditions can be drastical.

2 Absolute stability issues

In this section, we simply remind the reader of absolute stability issues Hairer,
Norsett, and Wanner (1983, 1996), so as classical cases.

2.1 Definitions

We consider the following differential system (classically named test equation)

X ′(t) = A ·X(t) (2)

where A is a square matrix with distinct eigenvalues all lying in the negative half-
plane Re(z) < 0. Its general solution is

X(t) = exp(tA) ·X(0)

One has, under these conditions,

lim
t→∞

X(t) =~0

that is, the solution tends towards its stationary point.

Consider the one dimensional case y′ = λy, Re(λ ) < 0, and assume that, with the
given method, yn approximates the exact solution y(tn) at time tn. The region of
absolute stability for a method is the set of values of the time step h and of λ for
which

lim
n→∞

yn =~0

is verified. This definition is illustrated in the following section, but one can con-
sider absolute stability as the capability of a method to bare brutal variations of the
solution, even with large time steps. This is of great interest when dealing with
real-time multiscale simulations, what induces the choice of optimal time steps.

In the multidimensional case given by equation (2), it is easy to see that a necessary
condition for the absolute stability of a method is that hλ be in the stability region
of this method for each eigenvalue λ of A and h the largest time step.
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2.2 Examples of classical Euler methods

Let us recall classical results about simple methods, before exposing what regards
asynchronous schemes. The most simple method for the resolution of (2) is the
Euler algorithm. It is given by

Xn = Xn−1 +hA ·Xn−1 (3)

Considering the one dimensional case, one easily gets the absolute stability region
: this is the open disk defined by {z = hA ∈ C : |1+ z|< 1}.
Let us consider the simple example A = −λ , λ ∈ R+. Equation (2) is simply
X ′(t) = −λX(t), and its solution is X(t) = e−λ tX(0). Applying explicit Euler
scheme, one obtains Xn = (1− λh)nX0, and the absolute stability condition is
|1− λh| < 1, that is, h < 2/λ . Figure 2 shows different approximations of the
solution with λ = 6, i.e. 2/λ = 1/3.

Figure 2: An application of Euler scheme for the test-equation y′=−6y with differ-
ent values of the time step. The absolute stability threshold h = 1/3 is highlighted.

In the general multidimensional case, equation (3) gives

Xn = (I +hA)n ·X0 (4)

where I is the identity matrix. Therefore (see section 4), the absolute stability
condition is here

ρ(I +hA) < 1
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with ρ(M) the spectral radius of M.

A more efficient algorithm, regarding absolute stability, is given by the Implicit
Euler method

Xn = Xn−1 +hA ·Xn (5)

Here, one easily gets the fact that the absolute stability region is the whole complex
plane. Indeed, for the one dimensional test-equation

X ′(t) = −λX(t), one gets with implicit Euler method Xn = 1
(1+λh)n X0, so that

limn→∞ Xn = 0 ∀h, and absolute stability is guaranteed. Figure 3 shows different
approximations, for the same example and the same values of the time step as in
figure 2.

Figure 3: An application of Implicit Euler scheme for the test-equation y′ = −6y
with the same values of the time step as in figure 2.

In the general multidimensional case, equation (3) gives

Xn = (I−hA)−n ·X0

and the absolute stability condition is here

ρ((I−hA)−1) < 1

3 Asynchronous and chaotic asynchronous schemes

Chaotic asynchronous schemes were presented in Redou, Kerdélo, Le Gal, Quer-
rec, Rodin, Abgrall, and Tisseau (2005) and Redou, Desmeulles, Abgrall, Rodin,
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and Tisseau (2007), where their general definition and convergence properties were
detailed. For the sake of simplicity, and because we deal with absolute stability,
we will simply remind the reader of the principle of asynchronous and chaotic
asynchronous scheduling, when applied to test-equation (2). The example of ex-
plicit Euler scheme, though simple, will enable us to stress the difference between
asynchronous and chaotic asynchronous schemes, so as problems posed by “poor"
properties of the spectral radius.

Here is the principle: we consider equation (2) and assume that matrix A is written

A =
m

∑
i=1

Ai (6)

As regards applications in the domain of interactive real-time simulations, each Ai

is the matricial representation of a distinct phenomenon. Each of these phenom-
ena will be activated at specific moments. In the asynchronous case one defines
a scheduling that will be repeated all along the simulation. In the chaotic asyn-
chronous case, this order of phenomena activations changes randomly at each cy-
cle.
The next sections describe in details these simulation methods.

3.1 Asynchronous Euler schemes

Consider a fixed permutation σ ∈ Sm, where Sm is the symmetric group of permu-
tations of m elements. This permutation is used at each time step, and characterizes
the scheduling of Ai’s interventions in cycles. We recall that this “desynchroniza-
tion” mainly makes it easy to add or remove phenomena in the course of a running
simulation, without stopping it.

The principle is to execute the same algorithm (here explicit Euler) successively
with each phenomenon involved, according to the order of interventions fixed by
the permutation σ . On one time step, the execution of asynchronous explicit Euler
algorithm gives :

X∗1 = Xn−1 +hAσ(1) ·Xn−1

X∗2 = X∗1 +hAσ(2) ·X∗1

...
Xn = X∗(m−1) +hAσ(m) ·X∗(m−1)

Thus, one gets

Xn =
m

∏
i=1

(I +hAσ(i)) ·Xn−1 ⇐⇒ Xn =

(
m

∏
i=1

(I +hAσ(i))

)n

·X0 (7)
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We stress again the point that the same permutation σ is used here on each time
step.
In a similar way, asynchronous scheme applied to implicit Euler algorithm leads to
:

Xn =

(
m

∏
i=1

(
I−hAσ(m−i+1)

)−1

)n

·X0 (8)

3.2 Chaotic asynchronous explicit Euler scheme

The fundamental difference between asynchronous and chaotic asynchronous schemes
is that a new permutation is chosen at each time step for the scheduling of phenom-
ena. During time step n, the order of interventions of phenomena involved makes
matrices intervene the following way : Aσn(1),Aσn(2), . . . , Aσn(m), where σn is the
permutation of m operators Ai which is involved at time n.

For this time step, chaotic asynchronous Euler algorithm gives :

X∗1 = Xn−1 +hAσn(1) ·Xn−1

X∗2 = X∗1 +hAσn(2) ·X∗1

...
Xn = X∗(m−1) +hAσn(m) ·X∗(m−1)

Thus, one gets

Xn =
m

∏
i=1

(I +hAσn(i)) ·Xn−1

that is

Xn =
n

∏
k=1

m

∏
i=1

(I +hAσk(i)) ·X0

Here again, this chaotic asynchronous scheme may be applied to implicit Euler
algorithm and leads to

Xn =
n

∏
k=1

m

∏
i=1

(I−hAσk(m−i+1))
−1 ·X0

As an introduction to the kind of problems that arise when using these methods,
the next part deals exclusively with the asynchronous case. The chaotic case will
be even more difficult to handle, because it involves stochastic processes.
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4 Issues and results about asynchronous Euler schemes

In the following, we denote by ρ(M) the spectral radius of a matrix M. We will
make use of the following fundamental property:

Theorem 4.1. Quarteroni, Sacco, and Saleri (2000) Let M a matrix in Cn×n.

lim
n→∞

Mn = 0 ⇐⇒ ρ(M) < 1

4.1 Stability regions

Considering equation (4), theorem 4.1 implies that the absolute stability condition
for explicit Euler scheme is given by

ρ(I +hA) < 1 (9)

The same way, considering equation (7), the absolute stability condition for asyn-
chronous explicit Euler scheme is given by

ρ

(
m

∏
i=1

(I +hAσ(i))

)
< 1

with σ the fixed permutation chosen at the beginning of the execution. An obvious
remark is that this condition is not as easy to check as (9), and may induce complex
computations (our damped mass-spring example will exhibit this complexity). This
is the reason why it is important to provide absolute stability conditions for these
asynchronous schemes. This is what we present in the following.

Moreover, since any permutation may be initially chosen and then used during
the whole simulation, we get the trivial following criteria for explicit and implicit
asynchronous Euler schemes:

Proposition 4.2. 1. The absolute stability domain for asynchronous explicit Eu-
ler scheme, when resolving X ′ = A ·X = (∑m

i=1 Ai) ·X, is given by the set

SA =

{
h ∈ R+ : ∀σ ∈ Sm, ρ

(
m

∏
i=1

(I +hAσ(i))

)
< 1

}
(10)

2. The absolute stability domain for asynchronous implicit Euler scheme, when
resolving

X ′ = A ·X = (∑m
i=1 Ai) ·X, is given by the set

SA =

{
h ∈ R+ : ∀σ ∈ Sm, ρ

(
m

∏
i=1

(I−hAσ(m−i+1))
−1

)
< 1

}
(11)
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In section 6, a detailed example will show that these criteria may induce complex
conditions on time steps, when applied to concrete cases. But even the most simple
case of a one dimensional equation leads to non trivial conditions, the following
example may be instructive.

4.2 Examples of stability regions in one dimension

In this section we illustrate the non triviality of absolute stability conditions for
asynchronous schemes, even in elementary cases. We want to show that the condi-
tions of absolute stability for asynchronous schemes, in both cases of explicit and
implicit Euler, are uneasy to handle in general. Even in the simple case of one
differential equation, where all Ai are real numbers and commute, conditions (10)
and (11) are |∏m

i=1(1+hAi)|< 1 and |∏m
i=1

1
1−hAi

|< 1, so that a general condition
on h is not easy to extract. For instance, one can consider the special case where
m = 2 and A1,A2 are real numbers, here denoted −λ1 and −λ2: we assume in the
following λ1 +λ2 > 0, so that the problem

x′(t) =−(λ1 +λ2)x(t), λ1 +λ2 > 0 (12)

remains stiff.

In the case of the explicit Euler scheme, the absolute stability condition for (12) is
|(1−λ1h)(1−λ2h)|< 1. A direct study leads to the following alternative:

Proposition 4.3. • If λ1λ2 > 0, the absolute stability condition for (12) is

h ∈

]
0;

λ1 +λ2−
√

(λ1 +λ2)2−8λ1λ2

2λ1λ2

[

∪

]
λ1 +λ2 +

√
(λ1 +λ2)2−8λ1λ2

2λ1λ2
;
λ1 +λ2

λ1λ2

[

• If λ1λ2 < 0, the absolute stability condition for (12) is

h ∈

]
0;

λ1 +λ2−
√

(λ1 +λ2)2−8λ1λ2

2λ1λ2

[

On the other hand, the absolute stability condition for the implicit scheme (5) is∣∣∣ 1
(1+hλ1)(1+hλ2)

∣∣∣< 1 what leads to another alternative:

Proposition 4.4. • If λ1λ2 > 0, the absolute stability condition for (12) is triv-
ial, so that the method is absolutely stable.



22 Copyright © 2010 Tech Science Press CMES, vol.70, no.1, pp.11-40, 2010

• If λ1λ2 < 0, the absolute stability condition for (12) is

h ∈
]

0;
λ1 +λ2

−λ1λ2

[
∪

]
λ1 +λ2 +

√
(λ1 +λ2)2−8λ1λ2

−2λ1λ2
;+∞

[

For example, let us consider the case λ1 = −3, λ2 = 11, so that λ = λ1 + λ2 = 8.
Therefore our problem is the stiff one :

x′ =−8x =−(−3+11)x

Absolute stability conditions are in this case :

• classical synchronous Euler : h < 2
8 = 0.25

• explicit asynchronous Euler: h < 0.1531

• implicit asynchronous Euler :

h ∈ ]0;0.2424[∪ ]0.3956;+∞[ (13)

One can check these results with different simulations.

This simple example suggests that the exact absolute stability region of a gen-
eral asynchronous scheme may be really complex. Nevertheless, we can prove
an easier-to-apply (but less precise) criterion for the explicit case.

4.3 Criterion of absolute stability (explicit scheme)

Proposition 4.5. Consider the decomposition A = ∑
m
i=1 Ai where A ∈L (Cn). Let

P be the passage matrix into a base where A is triangular, and the norm defined by

‖v‖A = ‖P−1v‖1

Let M = maxi ‖Ai‖A, and Pm(X) the polynomial defined by

Pm(X) = (X +1)m−1−mX. Then, the absolute stability region for Euler chaotic
asynchronous scheme, with the desynchronization considered, contains the set

SA = {h > 0 : 0 < ρ(In +hA) < 1−Pm(hM)}.

Proof. If we denote M‖.‖ = maxi ‖Ai‖ for a norm ‖.‖, we get∥∥∥∥∥ m

∏
i=1

(In +hAσ (i))

∥∥∥∥∥≤ ‖In +hA‖+Pm(hM‖.‖)
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Considering the norm ‖v‖A = ‖P−1v‖1 it is easy to see that ρ(In +hA) = ‖In +hA‖A.

Therefore, one has∥∥∥∥∥ m

∏
i=1

(In +hAσ (i))

∥∥∥∥∥≤ ρ(In +hA)+Pm(hMA)

Finally, it suffices to extract the condition on hM from the relation

0 < ρ(In +hA) < 1−Pm(hMA)

We will see an illustration of this criterion in section 6. But for now, in the next
section, we study the chaotic asynchronous case.

5 Chaotic asynchronous Euler schemes

This section presents our main results about absolute stability of chaotic asyn-
chronous schemes. We recall that the fundamental difference between asynchronous
and chaotic asynchronous schemes is the fact that, in the latter case, a new permu-
tation is chosen at each time step for the scheduling of phenomena. This leads to
radically different properties of stability, as detailed below.

Let us first recall that the execution of chaotic asynchronous Euler schemes, when
solving equation (2) with the decomposition (6), leads to the following formulas,
where σk is the permutation used at step k, k ≤ n:

• For chaotic asynchronous explicit Euler scheme,

Xn =
n

∏
k=1

m

∏
i=1

(I +hAσk(i)) ·X0

• For chaotic asynchronous implicit Euler scheme,

Xn =
n

∏
k=1

m

∏
i=1

(I−hAσk(m−i+1))
−1 ·X0

In this section, we prove a general criterion which ensures that the upper Lyapunov
exponent associated with a distribution on GL(d,R) is negative. Then we apply
this criterion to the absolute stability of chaotic asynchronous methods.
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5.1 Negative upper Lyapunov exponent

Let us start with some common notations and definitions (see Bougerol and Lacroix
(1985) for a detailed theory about the products of random matrices).

Definition 5.1. If (Bi)i≥1 is a sequence of i.i.d random matrices, we write βn the
product Bn. · · · .B1. If ln+ ‖B1‖ is integrable, then the following limit exists and is
called upper Lyapunov exponent of the sequence (or equivalentely of the distribu-
tion associated to the sequence):

lim
n

1
n

E [ln‖βn‖] = γ

Definition 5.2. If µ is a probability measure on GL(d,R), Gµ is the smallest closed
subgroup of GL(d,R) that contains the support of µ .

Definition 5.3. A subset S of GL(d,R) is said to be irreducible if there is no proper
subspace V ⊂ Rd such that M(V ) = V for all M ∈ S.

We will use the following lemma:

Lemma 5.4. Let {Bn,n ≥ 1} be a sequence of independent random matrices of
GL(d,R) with common distribution µ , and βn = Bn. · · · .B1. We suppose that:

1. Gµ is irreducible.

2. ln+ ‖B1‖+ ln+
∥∥B−1

1

∥∥ is integrable

Then

lim
n

1
n

sup
‖x‖=1

E [ln‖βn · x‖] = γ

Proof. First of all, let us check that the sequence

an = sup
‖x‖=1

E [ln‖βn · x‖]

is subadditive. For any integer n and m one has

E [ln‖βn+m.x‖] = E [ln‖Bn+m · · ·Bn+1Bn · · ·B1 · x‖]

= E
[

ln
∥∥∥∥Bn+m · · ·Bn+1

Bn · · ·B·x
‖Bn · · ·B1 · x‖

∥∥∥∥]+E [ln‖Bn . . .B1 · x‖]
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As
Bn · · ·B1 · x
‖Bn · · ·B1 · x‖

is unitary, considering the upper bounds on ‖x‖= 1 leads to

an+m ≤ an +am

Thereby, the sequence an
n converges: we denote γ ′ its limit.

Since Gµ is irreducible and E
[
ln+ ‖B1‖

]
is finite, we know that, for any x 6= 0 (see

Bougerol and Lacroix (1985) p.72):

lim
n

1
n

ln‖βn · x‖= γ almost surely.

Now, an easy computation shows that

1
n
|ln‖βn · x‖| ≤

1
n

n

∑
i=1

(
ln+ ‖Bi‖+ ln+∥∥B−1

i

∥∥)
From the law of large numbers, the right hand side converges in L1, thereby, it is
uniformly integrable. Thus, the left hand side is also uniformly integrable, and as
it converges almost surely to γ , it converges as well in L1:

lim
n

1
n

E [ln‖βn.x‖] = γ (14)

And since
1
n

E [ln‖βn · x‖]≤
an

n
, one has

γ ≤ γ
′

On the other hand, one has

sup
‖x‖=1

E [ln‖βn · x‖]≤ E

[
sup
‖x‖=1

ln‖βn · x‖
]

= E [ln‖βn‖]

The right hand side, by definition, converges to γ , so that γ ′ ≤ γ , which ends the
proof.

From this lemma, one can deduce the following result based on the negativity of
the upper Lyapunov exponent:

Proposition 5.5. Let {Bn,n ≥ 1} be a sequence of independent random matrices
of GL(d,R) with common distribution µ that satisfies

1. Gµ is irreducible.
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2. ln+ ‖B1‖+ ln+
∥∥B−1

1

∥∥ is integrable

If there exists an integer m such that

sup
‖x‖=1

E [ln‖βm · x‖] < 0

Then, for any x

lim
n

βn · x = 0 almost surely.

Proof. From lemma 5.4, we know that

lim
n

1
n

sup
‖x‖=1

E [ln‖βn · x‖] = γ

But, as an = sup
‖x‖=1

E [ln‖βn · x‖] is a subadditive sequence, we know that

lim
n

an

n
= inf

m

am

m

Our hypothesis ensures that inf
m

am

m
< 0, so that γ < 0. But, as in lemma 5.4, we

know that for any x 6= 0

lim
n

1
n

ln‖βn · x‖= γ almost surely.

This suffices to deduce the result.

5.2 Absolute stability of chaotic asynchronous schemes

In this section we will simply apply proposition 5.5 to chaotic asynchronous schemes.
In this particular context, assumptions of this proposition are generally satisfied, so
that the following criterion is relevant.

Definition 5.6. In the following proposition, a matrix is said to be associated with
a chaotic asynchronous method if it is a random product of matrices intervening
at each time step: for instance, matrices associated with chaotic asynchronous
explicit euler scheme for the resolution of X ′ = (∑m

i=1 Ai) ·X will be the following
products:

Bk =
m

∏
i=1

(I +hAσk(i)), σk ∈ Sm

Of course, our problem regards the limit of products of such associated matrices.
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Proposition 5.7. Let B = {B1, . . . ,BN} ⊂GL(d,R) be the matrices associated with
a chaotic asynchronous method applied to a linear equation. We suppose that B is
irreducible, then, if there exists an integer m such that

sup
‖x‖=1

∏
1≤,i1,··· ,im≤N

‖Bi1 · · ·Bim · x‖< 1

Then the method is almost surely absolutely stable.

Proof. First, it is easy to check that if B is irreducible, then Gµ is also irreducible
(where µ is the uniform distribution on B).

Since the matrices are equidistributed, one has:

sup
‖x‖=1

E [ln‖βm · x‖] = sup
‖x‖=1

1
Nm ∑

1≤,i1,...,im≤N
ln‖Bi1 · · ·Bim · x‖

= sup
‖x‖=1

1
Nm ln

(
∏

1≤,i1,...,im≤N
‖Bi1 · · ·Bim · x‖

)

=
1

Nm ln

(
sup
‖x‖=1

∏
1≤,i1,...,im≤N

‖Bi1 · · ·Bim · x‖
)

Our hypothesis insures that

sup
‖x‖=1

E [ln‖βm · x‖] < 0

Since we have only a finite number of matrices, the condition of integrability of
ln+ ‖B1‖+ ln+

∥∥B−1
1

∥∥ is satisfied. Thus we may apply proposition 5.5 and con-
clude.

With quite simple calculus this criterion can indicate, depending on the value of h,
that a chaotic asynchronous method is stable. Nevertheless in some cases, the crite-
ria is not applicable because the sequence of functions ∏1≤,i1,··· ,im≤N ‖Bi1 · · ·Bim · x‖
converges only almost everywhere. We could have improved the criterion to handle
this fact, and produce a result like the following one :

Proposition 5.8. Let Sd = {x ∈ Rd ,‖x‖ = 1}. If there exists an integer m and a
subset N ⊂ Sd of null measure such that

sup
x∈S−N

∏
1≤,i1,··· ,im≤N

‖Bi1 · · ·Bim · x‖< 1

Then the method is almost surely absolutely stable.
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But such a proposition would be useless in practice. Even in the case of a negative
Liapunov exponent, the quantity ∏1≤,i1,··· ,im≤N ‖Bi1 · · ·Bim · x‖ may grow to infinity
on a set of null measure (this is precisely the case of system S1 in section 6.5).
In these cases, the estimation of Lyapunov exponent may become the only way to
compute stability conditions.

The next section is devoted to examples and illustrations of all the previous results
and observations.

6 Applications and illustrations

The damped mass-spring system is a particular case of desynchronisation of one
single differential equation, this is why we first describe this general case.

6.1 Desynchronization of one single differential equation

The case of one single linear differential equation with order m is given by:

x(m)(t)−
m−1

∑
i=0

aix(i)(t) = 0 (15)

This equation can be written as a linear differential system: with the notations
zi = x(i), 0≤ i≤ m−1, one gets the system

z0
z1
...

zm−1


′

=


0 1 0 . . .

0 0
. . . 0

0 . . . 0 1
a0 a1 . . . am−1

 ·


z0
z1
...

zm−1


what can be denoted, with obvious notations,

Z′ = A ·Z.

Consider the elementary matrices Ei j, 1 ≤ i, j ≤ m. Assume that coefficients ai

each characterize a distinct phenomenon: we can associate to ai the matrix

Pi = aiEm,i+1

and introduce an “integration phenomenon" given by the matrix

Int =
m−1

∑
i=1

Ei,i+1
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With these notations, one easyly gets

A = Int+
m−1

∑
i=0

Pi

Therefore, one can apply an asynchronous scheme (chaotic or not), where the
Pis and the integration phenomenon are desynchronized. Our main example of
a damped mass-spring system will illustrate this process.

6.2 Damped mass-spring system

In sections 4 and 5, we have exposed absolute stability conditions for asynchronous
and chaotic asynchronous schemes. In the following, we propose an illustration of
these results in the case of a second order linear differential equation, with drastic
absolute stability conditions when physical phenomena involved are desynchro-
nized. We volunteerly consider a typical case of antagonist phenomena leading to a
more significative unstability when they are desynchronized. Indeed, we consider
the case of a damped spring-mass system, that can be represented by the following
equation

x′′ =−g− k
m

x− γ

m
x′ (16)

where :

• g is the gravity field

• m is the mass of the object

• k is the elasticity constant of the spring

• γ is the damp coefficient

All along this section, we will carry simple computations in order to illustrate our
problems. We will consider two cases of such systems, defined by the following
parameters :

(γ,k,m) = (1,4,1) referred as (S1) (17)

and

(γ,k,m) = (8,1,1) referred as (S2) (18)

But for now, we will try to explore our system in the general case. According to
our theoretical study, we will first deal with the asynchronous case, before dealing
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with the chaotic asynchronous one. This example will clearly expose how chaotic
schemes, though they are a bit more precise than non chaotic ones, may suffer from
great instability.

Using the notations

x1 = x, x2 = x′

equation (16) can be written as the system

[
x1
x2

]′
=
[

0 1
−k/m −γ/m

]
·
[

x1
x2

]
+
[

0
−g

]
The simple change of variables

X =
[

x1
x2

]
+
[

0 1
−k/m −γ/m

]−1

·
[

0
−g

]
leads to the equivalent system

X ′ =
[

0 1
−k/m −γ/m

]
·X

In the following, we use the notations:

A =
[

0 1
−k/m −γ/m

]
, A1 =

[
0 1
0 0

]

A2 =
[

0 0
−k/m 0

]
, A3 =

[
0 0
0 −γ/m

]
so that A = A1 +A2 +A3.

Our study of absolute stability implies that the eigenvalues of A both be in the
negative half-plane. Since these eigenvalues are

λ± =
−γ±

√
γ2−4mk

2m

a direct computation shows that Re(λ±) < 0 ⇐⇒ (k,γ) ∈ (R∗+)2

Before exposing results for asynchronous schemes, we first recall classical results
as regards equation (16) in the case of classical Euler schemes.
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6.3 Classical Euler schemes

First, in the explicit Euler case, the absolute stability condition is here ρ(I +hA) ∈
[0;1[, and is equivalent to |1+hλ±|< 1. Therefore, we get the conditions :

• If γ2−4mk ≥ 0,

h <
4m

γ +
√

γ2−4mk
.

• If γ2−4mk ≤ 0,

h <
γ

k
.

In the case of system (S1) the condition is h < 0.25 and for (S2) one gets
h < 8−2

√
15∼ 0.254

In the implicit case, the absolute stability condition is ρ((I− hA)−1) < 1. Never-
theless, this condition is trivial, since we have seen that implicit Euler method is
absolutely stable, with no condition on the time step. This can obviously be verified
by considering eigenvalues of (I−hA)−1.

6.4 Absolute stability conditions for asynchronous Euler schemes

Now we turn to asynchronous methods and we will show how conditions (10) and
(11), though simple, can lead to difficult computations, even on our elementary
example.

6.4.1 Asynchronous explicit Euler

We prove the following result :

Proposition 6.1. Conditions of absolute stability for asynchronous explicit Euler
scheme for the damped mass-spring system are the following :

• If 2γ2− k < 0,

h <− γ

m
+

√
γ2

m2 +4
m
k

(19)

• If 2γ2− k ≥ 0,

h <
m
γ

(20)
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Proof. Absolute stability condition is here

∀σ ∈ S3, ρ((I +hAσ(1))(I +hAσ(2))(I +hAσ(3))) < 1.

Straightforward computations lead to the following results:

• The matrices (I +hA1)(I +hA2)(I +hA3), (I +hA2)(I +hA3)(I +hA1), (I +
hA3)(I +hA1)(I +hA2) have the same eigenvalues, that is,

ζ± =
1

2m

(
2m−hγ−h2k±

√
−4mh2k +h2γ2 +2h3γk +h4k2

)
Denote P(h) =−4mh2k +h2γ2 +2h3γk +h4k2.

If P(h) < 0, that is, if h ∈]0;− γ

k +2
√m

k [, one gets |ζ±|2 = 1−h γ

m < 1.

If P(h) > 0, that is, if h >− γ

k +2
√m

k , the condition ζ+ < 1 is always satisfied

and the condition ζ− >−1 implies h <− γ

m +
√

γ2

m2 +4 m
k .

• The matrices (I +hA1)(I +hA3)(I +hA2), (I +hA2)(I +hA1)(I +hA3), (I +
hA3)(I +hA2)(I +hA1) have the same eigenvalues, that is,

λ± =
1

2m2

(
2m2−mhγ−mh2k +h3

γk±
√

φ(h)
)

with

φ(h) = −4m3h2k +6m2h3γ k +m2h2γ2−2mh4γ2k +m2h4k2

−2mh5k2γ +h6γ2k2

We first replace γ

m by γ and k
m by k, then denote X = h

√
k
m and α = γ√

k

Therefore, we get

λ± = 1− α

2
X− X2

2
+

α

2
X3± X

2

√
Q(X)

with

Q(X) = α
2−4+6αX +(1−2α

2)X2−2αX3 +α
2X4

One has Q(X) = α2
∏

4
j=1(X− x j), with

x1 =
1−2α +

√
1+4α

2α
x2 =

1−2α−
√

1+4α

2α

x3 =
1+2α +

√
1−4α

2α
x4 =

1+2α−
√

1−4α

2α
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Remark that x2 and x1 are always real and (x3,x4)∈R ⇐⇒ α < 1/4. In this
case, one has x2 < 0 < x4 < x3 < x1.

It suffices now to consider the sign of Q(X) according to the values of X , and
compute that :

-If Q(X) < 0, one has |λ±|2 = 1−αX < 1.

-If Q(X) > 0, the strongest condition is given by λ+ < 1, which is satisfied if
and only if X < 1

α
. This value is to be taken in account only in the case

1
α

<− γ

m
+

√
γ2

m2 +4
m
k
⇐⇒ α >

1√
2
⇐⇒ 2γ

2− k > 0

Once again we will illustrate these results with our two systems (S1) and (S2). In the
first case, the condition is h <

√
2−1∼ 0.4142, and in the second case h < 0.125.

Moreover, we computed the criterion given in section 4.5. The following table
summarizes all these results :

System Classic Asynchronous Criterion
S1 0.25 0.414 0.084
S2 0.254 0.125 0.061

Table 1: Comparison of stability conditions on h for explicit methods. The first col-
umn shows the stability conditions for the classic explicit method, the second col-
umn shows the exact conditions in the asynchronous case and the third one shows
the condition based on the proposition 4.5.

One can notice that in the case of system (S1), asynchronous explicit Euler scheme
gives better results than the classical scheme. Moreover, the criterion given in
proposition 4.5 is quite easy to use, but gives strong majorations.

6.4.2 Asynchronous implicit Euler

We prove the following result :

Proposition 6.2. A sufficient condition for absolute stability of asynchronous im-
plicit euler scheme, in the case of a damped spring-mass system, is

h <
τ√
k

(21)
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with τ the biggest real positive root of the polynomial

∆(X) = αX3 +X2−2αX−4, α =
γ√
mk

Remark : A good approximation of h < τ is given by

h <
m
2γ

(
−1+2

γ√
mk

+
√

1+4
γ√
mk

)
Proof. A sufficient condition for absolute stability is here

∀σ ∈ S3, ρ((I−hAσ(1))
−1(I−hAσ(2))

−1(I−hAσ(3))
−1) < 1.

• Once again, we compute that three of the six matrices ∏
3
i=1(I− hAσ(i))−1

have the same eigenvalues, which are

ν± = 1/2
2m+hγ−h2k±

√
−4mh2k +h2γ2−2h3γ k +h4k2

m+hγ

For these matrices, direct computations give

|ν±|< 1 ⇐⇒ h ∈ [0,χ[, χ =
γ

k
+

√
γ2

k2 +4
m
k

• The three other matrices all have the two eigenvalues

η± =
2m2 +mhγ−mh2k−h3γ k±

√
ψ(h)

2(m+hγ)m

with

ψ(h) = −4m3h2k−6m2h3γ k +m2h2γ2−2mh4γ2k +m2h4k2

+2mh5k2γ +h6γ2k2

Once again, we first replace γ

m by γ and k
m by k, then denote X = h

√
k
m and

α = γ√
k
. Remark that with these notations one has

h < χ ⇐⇒ X < α +
√

4+α2

and

η± =
2+αx−X2−αX3±X

√
R(X)

2(1+αX)
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with

R(X) = α
2X4 +2αX3 +(1−2α

2)X2−6αX +α
2−4

Consider the following real roots of R(X) :

x1 =
−1+2α +

√
1+4α

2α

x2 =
−1+2α−

√
1+4α

2α

Thus :

– If X ∈ [x2,x1] one has R(X) < 0 and |η±|< 1 without condition.

– If X ∈ R+ \ [x2,x1], the condition η+ < 1 is always satisfied, and

η− >−1 ⇐⇒ X
√

R(X) < 4+3αX−X2−αX3

This leads to two conditions :

1. δ1(X) < 0, with

δ1(X) =−4−3αX +X2 +αX3

2. δ2(X) < 0, with

δ2(X) = α(X + 1
α
)(αX3 +X2−2αX−4)

The condition on δ1 is weaker than the one on δ2, so that these
conditions lead to h ∈ [0,x2]∪ [x1,τ[, where τ < χ and τ is the
biggest real positive root of δ2.

There is no need to explore our systems (S1) and (S2) according to implicit asyn-
chronous method. Indeed, implicit Euler scheme is absolutely stable, but from the
previous result, we know that asynchronous implicit Euler scheme is not stable (for
any value of h). This illustrates clearly the loss of performance of this method.
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6.5 Absolute stability of chaotic asynchronous Euler schemes

We finally illustrate our theoretical results for the damped spring-mass system with
our systems (S1) and (S2). First, we illustrate the complex behavior of the Lya-
punov exponent, and the fact that it need not be better from explicit scheme to
implicit ones. In each of the cases exposed on figures 4 and 5, we compute nu-
merically (using approximations of invariant measures) the Lyapunov exponents in
function of the time step.

Figure 4: comparison of chaotic asynchronous explicit and implicit Euler, system
S1

These two figures show that the behavior of the upper Lyapunov exponent does
not make implicit chaotic schemes more stable than the explicit ones, unlike in the
classical Euler schemes. Any case may occur.

To end with, we computed the values of the different criteria from proposition 5.7,
for different values of m. Table 2 summarizes the calculus.
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Figure 5: comparison of chaotic asynchronous explicit and implicit Euler, system
S2

System, scheme Lyapunov exp. Crit. with m = 2 Crit. with m = 3
S1 explicit 0.728 — —
S1 implicit 0.652 — —
S2 explicit 0.227 0.208 0.217
S2 implicit 1.341 1.257 1.285

Table 2: Stability conditions. The first column correspond to conditions on h com-
puted from the estimation of Lyapunov exponent, the second and third ones give
conditions from the application of the proposition 5.7 with m = 2 and m = 3.

This table shows that system S1 is an example of a situation where proposition 5.7
does not apply, as the sequence sup‖x‖=1 ∏1≤,i1,··· ,im≤N ‖Bi1 · · ·Bim · x‖ does not con-
verge quickly enough. On the other hand, with system S2, one can easily compute
conditions on h without estimating the Lyapunov exponent.

These simple examples exhibit the fact that a systematic application of chaotic
asynchronous methods leads to quite unpredictable systems, as regards their abso-
lute stability.
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7 Conclusion and proposition

Chaotic asynchronous schemes for resolving ordinary differential systems have
shown their interest in the context of real time interactive simulation of multi in-
teraction systems, especially when dealing with biochemical kinetics. Their main
advantage is the capability that is given to the user to add or remove interactions,
e.g. chemical reactions or forces, in the course of a simulation. Nevertheless, even-
though proofs of convergence for such schemes have been established, the present
work highlights the fact that absolute stability conditions may be difficult to sat-
isfy, when antagonist phenomena are desynchronized: antagonist forces can lead
to force the choice of tiny time steps, making impossible the aim of real-time sim-
ulation. An illustration is given by the case of a mass-spring system. Therefore,
a compromise has to be found between a total desynchronization of phenomena,
which leads to instability, and synchronization, which prevents from in virtuo ex-
perimentation.

We propose, in this perspective, to adapt splitting methods Mclachlan and Quispel
(2002) in order to keep the capacity of interacting by adding or removing phenom-
ena. Indeed, splitting methods seem to be relevant when the phenomena involved in
a simulated system have to be considered as autonomous: as in the case of chaotic
asynchronous schemes, the resolution of a system y′ = (A+B)y is replaced by suc-
cessive resolutions of systems y′ = Ay and y′ = By. The use of different time steps
for each of the subsystems permits to simulate multiscale systems. This is also pos-
sible with chaotic asynchronous schemes, but splitting methods have the advantage
of absolute stability, by the use of particular scheduling of integrations of each sub-
system, each of which being solved by an absolutely stable method. Nevertheless,
the choice of splitting methods makes it impossible to add or remove phenomena
in the course of a simulation, without stopping the simulation and rewriting algo-
rithms with the new set of phenomena involved.

We have recently developed algorithms that can be seen as an hybridation between
chaotic asynchronous schemes and splitting methods: a future work will expose
these methods and achieve their theoretical study.
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