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A POLYNOMIAL REALIZATION OF THE HOPF ALGEBRA OF
UNIFORM BLOCK PERMUTATIONS.

REMI MAURICE

ABSTRACT. We provide a polynomial realization of the Hopf algebra UBP of uniform block
permutations defined by Aguiar and Orellana [J. Alg. Combin. 28 (2008), 115-138]. We
describe an embedding of the dual of the Hopf algebra WQSym into UBP, and as a
consequence, obtain a polynomial realization of it.
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1. INTRODUCTION

For several years, Hopf algebras based on combinatorial objects have been thoroughly inves-
tigated. Examples include the Malvenuto-Reutenauer Hopf algebra FQSym whose bases are
indexed by permutations [1,3,8], the Loday-Ronco Hopf algebra PBT whose bases are indexed
by planar binary trees, [6], the Hopf algebra of free symmetric functions FSym whose bases
are indexed by standard Young tableaux [3,12].

The product and the coproduct, which define the structure of a combinatorial Hopf algebra,
are, in general, rules of composition and decomposition given by combinatorial algorithms such
as the shuffle and the deconcatenation of permutations, as in FQSym [3], of packed words,
as in WQSym [10] or of parking functions, as in PQSym [11]. These can also be given by
the disjoint union and the admissible cuts of rooted trees, as in the Connes-Kreimer Hopf
algebra, [2], or by concatenation and subgraphs/contractions of graphs [9].

Computing with these structures can be difficult, and polynomial realizations can bring up
important simplifications.

2000 Mathematics Subject Classification. Primary 05C05, Secondary 16W30.
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2 REMI MAURICE

The idea is to encode the combinatorial objects by polynomials, in such a way that the
product of the combinatorial Hopf algebra become the ordinary product of polynomials, and
that the coproduct be given by the disjoint union of alphabets, endowed with some extra
structure such as an order relation. This can be done, e.g., for FQSym [3], WQSym [10],
PQSym [11], Connes-Kreimer [5] and the one of diagrams [4].

In this paper, we realize the Hopf algebra UBP of uniform block permutations introduced
by Aguiar and Orellana [7]. We begin by recalling the preliminary notions on uniform block
permutations in Section 2. We recall, in Section 3, the Hopf algebra structure of uniform block
permutations, we translate this structure via some decomposition of uniform block permutations
into pairs consisting of a permutation and a set partition, and we describe the dual structure.
Using polynomial realizations of Hopf algebras based on permutations and set partitions, we
realize this algebra in terms of noncommutative polynomials in infinitely many bi-letters in
Section 4. Finally, we obtain the Hopf algebra WQSym as a quotient of UBP and its dual as
a subalgebra of UBP™.

2. NOTATIONS AND BACKGROUND

We denote by [n] the set {1,2,---,n}. All algebras will be on some field K of characteristic
Z€r0.

2.1. Words. Let A := {a; < az < ---} be a totally ordered infinite alphabet and A* the free
monoid generated by A. For a word w € A*, we denote by |w| the length of w. The empty
word (of length 0) is denoted by e. The alphabet Alph(w) of w is the set of letters occuring in
w.

We say that (4, j) is an inversion of w if ¢ < j and w; > w;.
For u,v € A*, the shuffle product w is recursively defined by
u ifo=e¢

(2.1) UWwv =1 v ifu=e
up(u wo) + v (uwv')  otherwise

where u = uqu’ and v = v1v" with uy,v; € 4 and ', v’ € A*.
We shall need the following expression of the shuffle:

Proposition 2.1. For all u,v € A* and for all 0 < k < |u| + |v]|:

(2.2) Uwv = Z (ug - wg vy - vg) - (Wigr -+ Upy WV 41 -+ V)y))
iti=k
0<i<|ul
0<j<|v]

Proof. We may assume that Alph (u) and Alph (v) are disjoint. The proof proceeds by induction
on the length of the prefix in u ww.

Let k be an integer such that 0 < k < |u| + |v|. Then the set of all prefixes of length k of
www is equal to the set of words of the product v’ wv’ with u’ (resp. v') is a prefix of u (resp.
v) and |u/| 4 |[V'| = k. O

More conceptually, if 6(w) = >, _,, u®v is the deconcatenation coproduct, and p : u ® v — uv
the concatenation product, then J is a morphism for w. Define a projection by 7y ; (u®v) = u®uv
if |u| = k and |v| =1, and g, (u ® v) = 0 otherwise. Obviously, m;; 0 d(w) = w if k+1 = |w|.
The proposition is equivalent to o Tg p— 0 6(uwv) = o Tk p—r(0(u) Wo(v)) = uww.
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Example 2.2.

a1a203 Wa1az =a1a2a3a1a3 + 2ai1asa1a3a3 + 4araiasazaz + 2a1a1a3a2a03 + a1a3a102a3

:al(agag Lualag) —+ al(alagag I_I_Iag)
=ajaz(az wayas) + 2a1a;1(azaz was) + ajasaiazas
=aia0a3a1a3 + 2(@10,2 I_I_lal)agag + (a1 I_I_lalag)agag

:(alagag I_I_lal)ag + (alag I_I_ICL1a3)Cl3.

2.2. Permutations. We denote by &,, the set of permutations of size n and we set & =
Un>065,. The shifted shuffle product @ is defined by

(2.3)

g1 I__I_IO'2 =01 I_I_IO'QHUll]

where o[k] is the word obtained by adding k to each letter of o.

Example 2.3.

12@21 =12 w43
=1243 + 1423 + 4123 + 1432 4 4132 4 4312.

The standardization is a process that associates a permutation with a word. The standardized
of w is defined as the permutation having the same inversions as w.

Example 2.4.

std(asasasaiasaiay) = 3541726.

The convolution product * is defined by

(2.4) 01 %09 = g w.
w=uveS
std(u)=01
std(v)=o02

Example 2.5.

12 %21 = 1243 4 1342 + 1432 + 2341 + 2431 + 3421.

2.3. The Hopf algebra of set partitions. We denote by P, the set of set partitions of [n]
and we set P = U,>oP,. Given a collection of disjoint sets of integers, we denote by std(€)
the standardized of £ obtained by numbering each integer a in £ by one plus the number of
integers in £ smaller than a.

Example 2.6.

std ({{1,6},{9,13},{3,5,12} }) = {{1,4},{5,7},{2,3,6} }.

The K-vector space spanned by the set partitions P can be endowed with a Hopf algebra
structure. The product, denoted by X, is obtained by the shifted union of two set partitions
and the coproduct is defined for a set partition A = {A;,---, Ax} by

(25) A= > sd(J{ahesd( | {a})
HC{1,2,,k} icH 1<i<k
ig H
Example 2.7.

{{1,35, (20 {43} x {{1}.{2,3}} = {{1,3}. {2}, {4}, {5}. {6, 7} },

and, by setting A = {{1,3},{2,5},{4}},

AA) ={{} @A+ {{1.2}} o {13}, (2}} + {{1,2}} @ {{1,2}, {3}
+{ e {13} {24} + {13} {2.4}} @ {{1}}
+{{1.2}, 31} @ {{1.2}} + {{1.3}, {21} @ {{1.2}} + A= {{}}.
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This algebra admits a polynomial realization [7]. Let B be a noncommutative alphabet and
let A be a set partition. We say that a word w € B* is A-compatible if

(2.6) (VA S A)(V’L,] S A) w; = Wj.
In other words, if 4 and j are in the same block in A, then w; = w;. We define
(2.7) PA(B) = > w.

weB*

w is A—compatible

Prayy = Zb

P2y = Zb bi,  Prayqeyy = Zb b,

1,J

Prigayy = Zb bibi,  Pr{i2yqs1y = Zb bibj,  Pray.(2pqsy) = bibjbs.

2,7 1,9,k

Example 2.8.

Proposition 2.9. The polynomials PA(B) provide a realization of the Hopf algebra based on
set partitions P. That is to say, given two set partitions A and B

(2.8) Py -Pg=Paxp.

Let B’ be an alphabet isomorphic to the alphabet B. If we allow B and B’ to commute and
identify T(B)U(B') with T @ U,

(2.9) A(Py) = P4(B+ B')
where B + B’ denotes the disjoint union of B and B’'.
Example 2.10.

Py1y.(23.(433 (B) - Pray g2y (B) = D bibsbi kab b;b;
1,5,k

Z blb] bzbk bl anbm

i,7,k,l,m
=P({1,3},{2},{4}.{5}.{6,7}} (B)
We set Al = {1 3} A2 = {2 5} A3 = {4} and .A = {Al,AQ,Ag}f

(B + B) Z bibsbibb; + > bibibibib; + Y bibibibgb + > bibibibib;

0,5,k 0,5,k 0,5,k .5,k
> BBbb; + > bibibibib; + Z bib;bibi b, + Z b, bbb
i.5,k .5,k i,5,k 1,5,k

=PA(B) + Ppa, 453 (B)Pra,y(B') + Pra,, a5y (B)Pragy (B')
+ Pra, 4,3 (B)Pagy(B') + Ppagy(B)Pra,, a,1(B)
+ Pagy (B)Ppay a5y (B') + Ppa,y (B)Pray, 451 (B') + Pa(B').

2.4. The Hopf algebras FQSym and FQSym”. The Hopf algebra of free quasi-symmetric
functions [3] is the K-vector space generated by the family {F,},ca

(2.10) F, = Z w.
w: std(w)=0c—1

The product rule is
(2.11) F, -
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and the coproduct is defined by
(212) A(FU) = FU(A D B) = Z Fstd(u) & Fstd(v)a
where A @ B is the ordinal sum of two mutually commuting totally ordered alphabets.

This is a polynomial realization of the Malvenuto-Reutenauer Hopf algebra K[&] [8].

The Hopf algebra FQSym is self-dual and the dual basis of F, is G, where G, = F,-1.
The convolution product of two permutations is obtained by the product of two polynomials

(2.13) Go, -Gy = Y G

TEO1*02

3. UNIFORM BLOCK PERMUTATIONS

3.1. Definitions.

Definition 3.1. A uniform block permutation of size n is a bijection between two set partitions
of [n] that maps each block to a block of the same cardinality.

Let us denote by UBP,, the set of uniform block permutations of size n and by UBP the set
Un>oUUBP,,. We will represent a uniform block permutation in the form of an array with two
rows. Let A = {4y, A4y, -+, Ax} and A" = {A], A}, , A} } be two set partitions of the same
size. We denote the uniform block permutation f : A — A’ for which the image of A; is A}

by
Ay | Ay | oo | Ag
Example 3.2. Here are all uniform block permutations of size 1 and 2:
1
n=1 1
_, (12 12 12

"= 12 ) \1f2 ) \z2|1 )

In the case where the set partitions consist of singletons (i.e., A = {{1},---,{n}}), we find

the permutations of size n.

Definition 3.3. Let f and g be two uniform block permutations. The concatenation of f and
g, denoted by f x g, is the uniform block permutation obtained by adding the size of f to all
entries of g and concatenating the result to f.

Example 3.4.
13 |2 o 13121465\ ([ 13|2(46|5|79|8
23 |1 46 (21513 /) \ 231 |79 |5|48|6 /)~

Definition 3.5. Let f and g be two uniform block permutations of the same sizen, f : A — A’
and g : B — B’. The composition go f : C — C" of f and g is defined by the following process.
The blocks C' of the set partition C are the subsets of [n] which are minimal for the two properties

(1) C is a union of blocks of A
(2) f(C) is a union of blocks B; of B.

The image of C is the union of images g(B;).

Note that if f is a permutation, then the set partition C’ is B, and if g is a permutation, then
the set partition C is A.
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Example 3.6.
125 | 346 o 11213456\ [ 136|245
236 | 145 51412631 ) \ 236|145 )’

1512 |13|41|6 . 14121365\ [ 14|236|5
46121153 23111456 ) \ 12456 |3 /-
3.2. Decompositions. The data of a permutation and a set partition is enough to describe a

uniform block permutation. Given a uniform block permutation f : A — A’ of size n, there
is a permutation o in &,, such that

(3.1) A= {Uten}.
HeA xz€H

Conversely, a set partition of the set [n] and a permutation of &,, determine a uniform block
permutation of size n. Any uniform block permutation can thus be decomposed (non-uniquely)
as

(32) f:O'OId_A:Id_A/OO'.

The first equality expresses the fact that one can group the images o; whose indices are in the
same block in A, the second expresses the fact that one can group the images o; whose values
are in the same block in A’.

Example 3.7.

516 |7
8

1312|458 |67 \ (1|2 8 . 13| 2| 458 | 67
2713|146 |58 /] \ 23 415 6 13| 2 | 458 | 67
[ 146 58 . 11213[4|5]6|7]|8
T\ 146 58 213|714 |5(8]6 /)
3.3. Algebraic structures. In [7], Aguiar and Orellana introduced a Hopf algebra whose basis
is the set of uniform block permutations. It will be denoted by UBP in the sequel.

314
7)1
2713
2713

3.3.1. UBP. The product is defined as follows.

Definition 3.8. Let f and g be two uniform block permutations of respective sizes m and n.
The convolution, denoted by f * g, is the sum of all uniform block permutations of the form

(3.3) ( L2 m+n>0(f><g)

01 g2 Om+4n

where
std(o1 -+ om) =12---m and std(oms1 - Oman) =121

ie., o appears in 12---mx*12---n.

Example 3.9.
1*12 123+123+1230123
1 12 1123 2113 31112 1123
1123 1123 1123
-0l ) - GlB) -Gl )
This product can be rewritten in terms of the decomposition of uniform block permutations.

Given f : A — A and g : B — B’ two uniform block permutations, f = o o Id4 and
g = 1o Idg, we have

(3.4) fxg=(ox71)oldaxn-
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Example 3.10.

(1)) et s

Z(l * 12 Old{{l} 2 3}}

=(123+ 213 +312) 0 Iy |,y

123 23 23
1) Gl GlE)

Let KUBP,, be the K-vector space spanned by UBP,, and

(3.5) UBP = (D KUBP,.

n>0
We shall denote by {Gy; f € UBP} the basis of UBP. We endow UBP with the product -
defined, for uniform block permutations f and g, by

(3.6) Gf-Gy= Y Gy

hE fxg

Given a set partition C, we set

(87)  Cq={HeCHC ]} Clistmmy =std (C = Clpa iy)-
Let B(C) be the set of integers ¢ such that
(3.8) {1,2,- . n} = Ci1, iy X Qi1 n}-
Example 3.11. Let C = {{1,3},{2},{4,6,7},{5}}. Then,
Cia, 2y ={{2}} Cis,. my ={{1,3,4},{2}}
Cir, 3y ={{1,3},{2}} Cpa,. p ={{1,3,4},{2}}
B(C) = {0,3,7}

Definition 3.12. Let f be a uniform block permutation of size n, f : A — A’. By Lemma
(2.2) in [7], i is in B(A") if and only if there exists a unique permutation o in &, appearing in
the convolution product 12---i*12---n — i and unique uniform block permutations f;) of size
1 and f(’n_i) of size n — 1 such that

_ ) / 1 2 n
& ORI (AT PRI o Pty
The coproduct is then
(3.10) A(Gy)i= Y Gy, ®Gp .
i€B(A’)

Example 3.13.

SEED) TG B TR P (e
1
1

FI RO
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Gl =lo-GIsEGEEL)
=)= (Caf5) o (al31515 )
)-GOl Gl
-Gl Ol GEER)

This coproduct can also be rewritten using the decomposition of uniform block permutations.
Given f: A — A’ and a decomposition f = Id 4 o o, we have

(3-11) (Gf Z Gle i} ®C4f|h+1
i€B(A’)

where
(312) f‘{17..,7- :IdA/ ) OJHL'“J}
(3.13) f‘{i+1’...’ } Id‘Ai{er " © Std(o"{i+1’...’n})-
Example 3.14. We set A = {{1},{2,3},{4}}:

AG< 1 ‘ ‘ 3) =AGrd 01243

112314

=1® Grao1243 + Grdayy01 ® Grag( sy (5,032
+ Grdg(1),2.3,0123 ® Grd (1,01 + Grdso12a3 ® 1

I AN O CD
3.3.2. UBP". It is proved in [7] that UBP is a self-dual Hopf algebra. We can describe the

dual structure. Let Fy be the basis of UBP* dual to Gy.

The product and coproduct are, for f : A — A" and g : B — B’ two uniform block
permutations with decompositions f = Id4 oo and g = Idg o T

(3.14) Ff-Fo= Y F,
hefllg

where

(315) fI_I__Ig:IdA/XB/O(O'LI__IT)

and, for f: A — A’, with f =0 o ldy

(3'16) AFf = Z Ffl"'f'i ®Ffi+1"'fn
1€B(A)

where

flfz :Std(O'l"'O'i) OIdAl{l,---,i}

3.17
( ) fi+1"'fn :Std(0i+l"'gn) OId.AHiJrl,...,n}'

Example 3.15.

T TR T TR
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We set A = {{1},{2,4},{3}}. Then, we have

AF(} ‘ 33 ‘ i) =AF 12430144

=1® F124301d4 + Fio1dy 1y, ® Fis2ord (1 5y 12y + F1243014, ® 1
CURAEB O TG AT

Setting Gy = F;-1, we can identify UBP and UBP”". If (, ) denotes the scalar product
such that (G¢,Fy) = ¢4, we have

(3.18) (AGy,Fg@Fp) =(Gy,Fy-Fp)
(3.19) (Gy -Gy, Fr) =(Gy ® Gy, AF ),
which shows that UBP is indeed self-dual.

4. POLYNOMIAL REALIZATION

Given two alphabets B = {bi; 0< z} and C = {¢;;0 < i}, with C totally ordered, we consider

an alphabet A = { <I;Z> ;0 <4, j} of bi-letters endowed with two relations
j

e for all 7 and k, (IC)Z) =< (ik> if and only if ¢; < ¢,
j 1

e for all j and [, (bz) = (bk) if and only if b; = by.
Cj Cy
The product of two biwords is the concatenation
() (2)- ()
U1 U2 U1 - U2
We extend the definition of the standardization to biwords. Let w = <Z> be a biword. The

standardized of w is the permutation std(v).

d Kblblbi"blb? )] = 24315.
C9C3C9C1Cgq
For any uniform block permutation f : A — A’, we denote by &; the minimum permutation
(for the lexicographic order) such that

Example 4.1.

We say that a biword w is f-compatible, and we write w - f, if
- std(w) = ¢y
and

- if 4 and j are in the same block in A, then the bi-letters w; and w; satisfy w; = w;.
We define

(4.2) Gr(A)= > w
wiwk f
13 256 | 4 . . .
Example 4.2. Let [ = 15123416 ) The permutation o = 125634 is the minimum
permutation associated with f and we have
_ bib;bibib;b;
Gy(4) = Z (010263640566 '

.5,k
std(cicace)=0
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Theorem 4.3. The polynomials G¢(A) provide a realization of the Hopf algebra UBP. That
18,

(4.3) Gf(A)-Gy(A) = > Gu(4A)
heE fxg

and

(4.4) Gy(A+A) =A(Gy),

where A+ A’ is defined as follows. A’ is an alphabet isomorphic to A such that, for any bi-letter
w' of A" and for any bi-letter w of A, we have

w=w.
Then, A+ A’ denotes the disjoint union of A and A’ endowed with the relations < and =. As
usual, we allow the bi-letters of A and A’ to commute and identify P(A) Q(A’) with P ® Q.

Proof. Let us first prove that
Gs(A)-Gy(A) = > Gu(A).
hE fxg
Writing f = &5 old4 and g = &, o Idg, we have
Gs(A) - Gy(A4) = Z w Z w

wiwk f wiwkg

> o > o
U1 U2
u1 €EB*,v1€C” uz €B™ w2€C™
uy is A-compatible ug is B-compatible

std(vi)=E¢ std(v2)=¢,4

> o (Y
ST u€B* veC*

u is AXB-compatible
std(v)=0c

But, given two decompositions f = oo Idg and g = 7o Idg, if o (resp. 7) is the minimum
permutation associated with f (resp. g), then each permutation v occuring in the product o * 7
is the minimum permutation associated with v o Id 4« 5.

Let us now show the second point. Let w be a biword occuring in G (A + A’). Let i be the
number of bi-letters of w from the alphabet A and let <Zizz . ZZ> € A* be the sub-biword
of w on these letters. Then

std(vive - v;) = (€5)1{1,2,- i}
and

!

e 1 (1,651 (2), ,5;1@‘)})

This partition and the permutation ({f)|{1,2,... ;3 define a uniform block permutation g whose

upug -+ u; is std(A -compatible.

Uiy - U
U1V2 - - - U4
in G4(A). Similarly, the biword w defined on the alphabet A’ appears in Gp(A") for some
uniform block permutation k. By construction, G, ® Gy, is a term appearing in A(Gy).

minimum permutation is ({y){1,2,... ;3. Hence, the biword is a term appearing

Conversely, let P ® @ be a term occuring in A(Gy). Let w = (Z) be the biword in

P(A) wQ(A’) such that std(w) = &;. The biword u is A
Thus u is A-compatible and w appears in G(A+ A’).

, ) .
HE7 (1,65 (@) 5 (uy"COTPALIDIC.
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It remains to show that the family G¢(A) is independent. To this aim, we need an order
relation on the set partitions of [n]. Let A = {Ay, -+, Ax} and B = {By,---, B;} be two set
partitions. We say that B is finer than A, and we write A < B, if and only if

Let u € B* be a word. We set
(4.5) P = |J {{iu=d}}.
a€Alph(u)

For example,
We define on the set of biwords the following relation. Given two biwords wi,ws € A*, wy =
() = (32)
and wy = :
V1 (%)
wy Swy <= P(ur) = Plug) and std(vy) = std(vs).

Let f be a uniform block permutation. We denote by w; a maximal f-compatible biword for
the relation <. We define

(4.6) GiA= > w
weA™
std(w)=¢&;
Plws)=P(w)

The family {Gf (A)}

f is independent since any biword w = <:j) appearing in é‘f(A) allows

to reconstruct f:
(4.7) [ =std(v) o Idp(y).

But

GiA)= > w

weA*:wdwy

-y yo

BeP:BLP(wy) weA”
P(w)=B
std(w)=Ey

The partition B € P and the permutation £y € & define a uniform block permutation g. Thus,
we have

weA™
P(w)=B
std(w)=&y

Hence

B=P(wy)
g=&ysoldp

Since the family {Gg (A)} is independent, so is the family {G(A)}. O
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Example 4.4.
2
b b1bo
Gy w=x (1) = X (1)
(1> <1> bgg ¢ bl,bggg €12
c c1,C2
bib b1b
-z, () 2, (@2)
by ,bo€B b17b2€B
c1,c2€C:c1<ca c1,c20€C:c1>c2
=G /11 2\(A)+G (A)
()7 7]
bb b\ bi, b, bi,
G(lQ)(A) G(1>(A)— > (U>Z(c>— Z ( V1
12 1 beB beB 11,02
std(v)=12 ceC std(vy)=12
std(ve)=1
_ bi1bi1bi2 bilbi1bi2 bilbilbi2
N Z <010203 * Z creacs ) T Z c102C3
11,22 11,22 11,22
c1<c2<c3 c1<c3<ca cz<c1<ca

R I A1)

b;bib;b; bLv. LY,
St 2 (i) T (4d)
c1<cp<cz<ey ¢y <ch<cy<c)
:G(13 ‘ 24)(A) + G( 13 ‘ 24>(A/)-

13 | 24 13 | 24

We set 7 = 2431.

b;b;b;b bb.blby,

Gz 2)a\(A+A)= Z (Clcjclck + Z ddce

23 | 4|1 i,5.k 1720354 3,5,k 17203

std(ciecaczes)=T7 Std(cllcécé@):T
/ ANENIN
T Y L I S L
61026364 01626304
i,k 1,9,k
std(cichegca)=T std(c]eyezcl)="

=G /1324 (A) G/, (A)'G 13 | 2 (A/)

CIHI AR ) A €119
Grigs (A)'G 1 (A/) Gz 24 (A/>-
IO GRIY

23 |1

5. PACKED WORDS

We recall the definitions of packed words and of the Hopf algebra WQSym (see, e.g., [10]).
Let A := {a1 < az < ---} be a totally ordered infinite alphabet. The packed word pack(w)
associated with a word w € A* is the word u obtained by the following process. If b < by <
-+ < b, are the letters occuring in w, u is the image of w by the homomorphism b; — a;. A
word w is said to be packed if pack(w) is w.

Example 5.1.
pack(51735514) =41524413 pack(772335) =441223.

5.1. The combinatorial Hopf algebra WQSym™.
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5.1.1. WQSym*. The Hopf algebra WQSym”* is the K-vector space generated by packed
words endowed with the shifted shuffle product and the coproduct given by, using notations

in [5]

(5.1) M - M = > M,
weu Wv[max (u)]
(52) A(M;kv) = Z M;ack(u) ® M;ack(v)'

Let ¢ be the map that associates with a uniform block permutation f = Id 4 o o of size n a
word w of length n constructed by packing the word u obtained by the following process. The
ith letter w; of u is the minimum of the letters o; which are in the same block of A as ;.

Example 5.2.

d(dgg,2yy 012) =11 Y(Idg{1y 12,8y © 231) =221
P(Id(1,2) 3,43y © 1324) =1212 Y(Idg{1,5),12},{3}.{4}} © 23415) =23411

The map v induces a linear map from the vector space UBP™ spanned by uniform block
permutations to the one spanned by packed words WQSym™ defined by:

UBP* — WQSym*

(5.3) U F; . M,
Example 5.3.
\I/(F(g>) =M, \IJ(FG;?)): 5o
V(F (g |2)) i VE( 2] a)) M

Proposition 5.4. Let f and g be two uniform block permutations. Then
(5.4) U(Fy-Fy) = U(Fy) - U(F,).

Proof. Let M be a term in the left-hand side of (5.4) and M = ¥(F},) for some uniform
block permutation h in the product f Gg. The ith letter of w is obtained from a permutation
o and comes from a subset F of A x B containing ;. But, if w; is less than the number of
blocks in A, then E is contained in A. So the word extracted from w whose values are less
than the number of blocks in A is W(F[). Similarly, the packed word extracted from w whose
values are strictly greater than the number of blocks in A is U(F). Hence, each term in the
left-hand side of (5.4) is in the right-hand side.

Since the number of terms and the multiplicities are the same, we have equality. O

Example 5.5.
‘I’<F< 12 ‘ 3 ) : F< 1 ‘ 2 )) =MT954 + M504 + M1340 + Mig104 + Miz140
13
+ Miza12 + M31194 + M31140 + M31410 + M3gq90
:Mﬁz : Tz

") )

13 | 2
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The map ¥ cannot be a morphism of coalgebras as shown in the example

revealrig ) e o) T o) s ) Y
=1 M35y, + M]; @ M] + M3, ® 1
#1 @ M5y + M7 @ M3, + Mj; @ M} + M3, ® 1
#A(My,).

The idea is that the coproduct on packed words deconcatenates the word in all suffixes and
prefixes, whereas the coproduct on uniform block permutations preserves the blocks. This
suggests to define an another coproduct

A'(My,) = Z MPock(w) © Mpaci(v)-
Alph(u)NAlph(v)=0
Example 5.6.
A'(M3,) =1 ® M3y, + Mj; @ M + M3, ® 1
A'(Mi31412) =1 ® Mig1415 + M) © Migys + M3y @ MT + Mz, ® 1

5.1.2. WQSym™'. We introduce then a combinatorial Hopf algebra based on packed words,
endowed with the product - and with the coproduct A’, which will be denoted by WQSym™’.

Indeed, the coproduct A’ is coassociative and, by (2.2), is compatible with the shifted shuffle.
Indeed, let u and v be two packed words of respective length m and n. Let w be a packed word
in the product u@mv. We shall denote by I(w) the set

{0 <@ <m+mn; Alph(ws - w;) N AIPh(wit1 -+ Wimsn) = 0}

Since the letters appearing in v and v[| max (u)|] are distinct, if k is in I(w), then there exists
iin I(u) and j in I(v) whose sum is k. Hence

A'(M, - My) = Y Mpackun i) © Mpack(uwp s —wpesn)

weu W
kel(w)
= Z Mpack(wl-nwk) & Mpack(wk+1~~-wm+n)
0<k<m+n
weu Wu:kel(w)
= Z Mpack(w) Y Mpack(w’)
0<k<m+n

icI(u),j€1(v):it+j=k
weUL - u; Wvg[m]---v;[m]
W EU41 U LIV 41 [M] vy [m]
=A'(M,) - A'(M,).
This Hopf algebra WQSym™ is isomorphic to WQSym”*. This will be shown later. To this
end, we introduce the following relation on packed words which will allow us to construct an
isomorphism.

We denote, given a packed word u and an integer 1 < ¢ < max (u), by f(u,?) the packed
word v defined by

Uj — 1 if Uj >
Uj = .
U otherwise

Example 5.7.
faz21,1) =111 f(3122,2) = 2111
f(11122344,2) = 11122233 f(42315,1) = 31214
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We extend the definition of iterated images by f by setting, given a packed word u and a subset
I={i1 >i9>---> i} of [max (u)]:
U ifI=0
flu 1) = { fC- fluyip), -+ ,ix) otherwise.
We consider the relation, denoted by =, on packed words of the same size with the cover
relation, given two packed words » and v:

std(u) = std(v)
(5.5) uzv = { there exists ¢ such that u = f(v,1)
Example 5.8. Here is the Hasse diagram of packed words of size 3:

121 212 221 211 321

111
112 1

22 132 213 231 312

\1 23/

Let T" defined by
WQSym* — WQSym"
I: M, — Z M
urw

Example 5.9. The image of a permutation is a permutation, the image of a word of length n
consisting only of 1s is the sum of all non-decreasing packed words of length n and

I'(M3441235) = M441235 + Mass13a6 + Mausi236 + Masgaar-

Proposition 5.10. The linear map T is an isomorphism of Hopf algebras from WQSym™ to
WQSym™.
Proof. To show that I' is a morphism of algebras, that is
(5.6) DM, - M;,) = D(M3,) - T(M;,.),
we shall show that every packed word in the left-hand side of (5.6) is in the right-hand side.
Since these sums are multiplicity free, it suffices to show the equality of the underlying sets.
Consider two packed words w and w’. Let u > w and u' > w’. Then the set u@u’ is equal to
the set of the packed words v = w @w’ such that
(5.7) V{1, max ()} =U PACK (V) max (u) 1, max (v)}) =t
Thus, the set T'(MY)) - I'(M:,) is equal to I'(M, - M ,).

Let us now prove that I' is a morphism of coalgebras, that is to say
(5.8) FroToAM)=A"oT(M).

To do this, we shall show that every packed word in the left-hand side of (5.8) is in the right-
hand side and conversely. We shall conclude with an argument of multiplicity.

We consider a packed word w. We set

By = |J {v @v';u’ = pack(u), v’ = pack(v)},

Ey = U {v' ®v'; pack(u) =, pack(v) = v’}
w’ =w

uv=w’
Alph(u)NAlph(v)=0
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so that

FreloAM:) = Z M}, ® M},
u' Qv eE;

AoT(M;)= Y M, aM;.
u' v’ € Eg

Show Ey C E;. Define F(w,n) as the word u given by u; = w; if w; < n and u; = w; — 1
otherwise. Let u’ ® v’ in F3. There exists w < w’ and w’ = u - v with pack(u) = u' and
pack(v) = v’. Then there exists I such that

w=f(w,I)=F' I)=F(u,I)-F(v,I).

But, there exists I; and Iy (roughly, Iy and Iy are a relabelling of I caused by the packing)
such that

pack(F(u, I)) =f(pack(u), I) pack(F (v, I)) =f(pack(v), I2).

In particular, pack(F (u,I)) < «' and pack(F(v,I)) < v'. Hence, ' ® v’ is in F.
Show E; C Es. Let ' ® v' in Ey. There exists two words u and v such that w = v - v and
u’ = pack(u), v' = pack(v). It remains to be seen that there exists two words U and V such
that
e pack(U) = v/, pack(V) =o',
e Alph(U) N Alph(V) =0,
o U.-V »w.

We illustrate the algorithm step by step to find U and V on the following example. Let
u = 311434141, v = 22441144 and w = u - v. Let v/ = 411546263 and v’ = 23451156 be two
packed words such that pack(u) < ' and pack(v) < v'.
The first step is to have two words U’ and V' such that

e pack(u) = pack(U’) < v/, pack(v) = pack(V') <o/,

e Alph(U") N Alph(V") = 0,

o U V' = w.
This is iteratively obtained by the following process. Given a word u and an integer 4, let g(u, %)
be the word v defined by

vs — Uj—l—l ifujZi
T uj  otherwise

If 4 is a letter occuring in Alph(u) N Alph(v), then we consider the words @ = g(u,i + 1) and
¥ = g(v, i) and repeat this process with these words @ and 9. At the end of the process, we have
two words U’ and V' satisfying the desired properties since g does not modify the packing. For
example:

uU-v= 311434141 - 22441144
t1=1: 4-0= 411545151 - 33552255
i=5: U -V = 411545151 - 33662266

The second step, from the words U’ and V', is to have the words U” and V" such that

e pack(U") = v/, pack(v) = pack(V") < ¢/,

e Alph(U"”) N Alph(V") =0,

o U". V" = w.
This is iteratively obtained by the following process. Since pack(U’) < u/, there exists I such
that f(pack(U’),I) = «/. If I is empty, then pack(U’) = . Otherwise, let i € I. By
incrementing the letters ¢ occuring in g(U’, i + 1) at the position j such that u; = 1, we obtain
a word @ satisfying pack(U’) < pack(a) < u'. We set v = g(V’,i). We repeat this process with
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these words @ and ©. At the end of the process, we have two words U” and V" satisfying the
desired properties since g does not modify the packing. For example:

Uu-v'= 411545151 - 33662266
i=1: U-v= 511656262 - 44773377
1=2: U-0= 611767273 - 55884488
i=7: U V= 611768283 - 55994499

411546263 - 23451156

u v =

The third step is similar to the second step. From the words U” and V", we obtain the words
U and V satisfying the desired properties by referring the act on the word U’ (resp. V') in the
second step to V" (resp. U"). For example:

u’-v'= 611768283 - 55994499
1=295: U-0= 711879293 - 56AA44AA
i=A: U-0= 711879293 - 56AB44BB
1t=B: U-V= 711879293 - 56AB44BC

u v = 411546263 - 23451156

where A, B and C respectively means the integer 10, 11 and 12. This proves the equality
E; = Es.

Since both members of the equality (5.8) are multiplicity free, we have equality.

Finally, by the M&bius inversion, I' is an isomorphism. The inverse, denoting by u the
Mobius function, is given by:

WQSym*' — WQSym*
D™ My, e > plstd(u),u) M -

urw

Example 5.11.
(M7, - M7) =['(M7;5 + Miy; + M3yy)
=M75 + Mis3 + Miy + Miz, + M3y + Mji,
=Mj; - M7 + Mj, - M7
=I'(M7;) - I'(M])
I'® F(A(Mikm)) :MT21 ®1+ MT32 ®1+ MTQ X MT + MT X M;l +1® MT21 +1® MT32
=A"(My;) + A'(Mj3,)
:A,(F(MT21))'

—1 * _ * * * *
[ (Miy;) =Mj; — Mij5 — Mig, + My
—1 * _ * * * *
7 (Mi21234) =Mioia3s — M5a1345 — Misia35 + Misi346

We can now return to the main result of this section, the linear map ¥, defined in (5.3), is
a surjective Hopf algebra morphism from UBP* to WQSym™.

/

Proposition 5.12. The map ¥V is a surjective Hopf algebra morphism from UBP* to WQSym™’.

Proof. That ¥ is a morphism of algebras follows from Proposition 5.4.

Let us show that ¥ is a morphism of coalgebras, that is
(5.9) URUoA(F,) =A"oU(Fy).
Let f be a uniform block permutation of size n, f : A — A’ and let w be the word defined by
w; = min ({(§¢);; 3A € A containing i and j}).
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Let us write w as the concatenation u - v and pack(w) as the concatenation v’ - v such that u
and v« are of the same length. The sets of letters in u and v are disjoint if and only if |u| is in
I(A). Moreover, by definition of w, we have

\I/(Ffl“'f\u\) :M;ack(u) = M;ack(u’)
\I](Ff|u\+1"'fn) :M;ack(v) = M;ack(v')'
Hence
A/(W(Ff)) = Z M;ack(u’) ® M;ack(v’)

u’ v’ =pack(w)
Alph(u/)NAlph(v’')=0

= Z \I](Ffl"'fi) ® \II(Ffi+1"'fn)
i€I(A)

Finally, let us prove that ¥ is surjective. Let w be a packed word. We denote by P(w) the
set partition of the set {1,---,n}

Plw) = U {{j;wj:i}}.

0<i:<max (w)

Then, the image, for the uniform block permutation f = std(w) o Idp(,), of Fy is M. O

Example 5.13.

") ) e ey

12 1 12 | 3 12 | 3 12 | 3
=M75 + Miy; + M3y,
:ME‘MT
:\Il(F b )\p(F ) )
() V(1)

1124135
Wesetf:<51234>.

Ve Wo A(F,) :1®\I/(Ff)+\P(F<}>)®\I!(F(£ 2] j))

+\1/(F(1 | 243>)®\1/(F<1))+\11(Ff)®1

4123 1
=1® Mjj913 + M] ® Mig3 + Mj9; @ M7 + Mjj913® 1
:A/(M21213)
=A'(U(Fy)).

5.2. WQSym. The Hopf algebra WQSym is the K-vector space spanned by packed words
endowed with the convolution product and the coproduct given by

(5.10) M, M, = Z M.,,,
p:():lf(?/.)vzu
pack(v’)=v
(5'11) A(Mu> = Z Mu|{1,---,k} ®MpaCk(u|{k+1,~-‘max(u)})

0<k<max (u)
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The dual WQSym' of WQSym™ is the Hopf algebra endowed with the product

(5.12) M, -'M, = > M.,
pack(u')=u
pack(v’)=v

Alph(u')NAlph(v’)=0

for any packed words u and v, and with the coproduct A. Indeed, if we denote by w € WQSym*
the dual basis to w € WQSym, since the deconcatenation coproduct A’ is multiplicity free,
we have, by duality

(5.13) M, -'M,= Y M,
w:uQVEA’ (w)

This is equivalent to Equation (5.12). The Hopf algebra WQSym™ and WQSym”™ are iso-
morphic, Proposition 5.10, so is for WQSym’ and WQSym. We can explicitly give this
isomorphism. The map I' induces a dual map. This is

WQSym' — WQSym
. M,, — ZMu

u=w

Indeed, if we denote by M € WQSym™ the dual basis to M, € WQSym, since I'(M})) is a

w w
linear form, I'(M} )(u) = 1 if u > w, 0 otherwise, so is for M, o I'*. For example,

I (Mi212334) = Mi212334 + Mi212223 + Mi212333 + Mi212222.
Proposition 5.14. The map

d: WQSym’ —  UBP
M, — Z Gf

F®(f)=w
s an injective morphism of Hopf algebras.
Proof. The map & is the dual to ¥. Since U(F;)(M,) = 1if ¥(f) = M,,, ¥(F;)(M,) =0
otherwise. Hence, F; o ®(M,,) =1 if ¥(f) = M,, and Fy o &(M,,) = 0 otherwise. O

Example 5.15.
D(Mi21 - 'My) =P(Mi213 + Miz12 + Masar)

A IR CIHD A CIHD R I
S ETHB A CTH A CTHEN A CTRE
=<G(13§q>)+g(1“>>“<%>

12 13 2
=0(Mi21) - &(M,).
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¢ @ ®(A(Mz131)) =0 @ ®(1 ® Mayz; + My @ Mig + Moy ® My + Mgz ® 1)

el G oG

2113 | 4 3112 | 4 2114 |3

I IR CIR R S TR TIEDALIE)
2 13 4 3 12 4 2 14 3

IRCEIDAAETH DS

2|13 4 3124 2| 143
=A(®(May31)).

R OE DA AETHAAETHY
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