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A POLYNOMIAL REALIZATION OF THE HOPF ALGEBRA OF

UNIFORM BLOCK PERMUTATIONS.

RÉMI MAURICE

Abstract. We provide a polynomial realization of the Hopf algebra UBP of uniform block
permutations defined by Aguiar and Orellana [J. Alg. Combin. 28 (2008), 115-138]. We
describe an embedding of the dual of the Hopf algebra WQSym into UBP, and as a
consequence, obtain a polynomial realization of it.
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1. Introduction

For several years, Hopf algebras based on combinatorial objects have been thoroughly inves-
tigated. Examples include the Malvenuto-Reutenauer Hopf algebra FQSym whose bases are
indexed by permutations [1,3,8], the Loday-Ronco Hopf algebra PBT whose bases are indexed
by planar binary trees, [6], the Hopf algebra of free symmetric functions FSym whose bases
are indexed by standard Young tableaux [3, 12].

The product and the coproduct, which define the structure of a combinatorial Hopf algebra,
are, in general, rules of composition and decomposition given by combinatorial algorithms such
as the shuffle and the deconcatenation of permutations, as in FQSym [3], of packed words,
as in WQSym [10] or of parking functions, as in PQSym [11]. These can also be given by
the disjoint union and the admissible cuts of rooted trees, as in the Connes-Kreimer Hopf
algebra, [2], or by concatenation and subgraphs/contractions of graphs [9].

Computing with these structures can be difficult, and polynomial realizations can bring up
important simplifications.
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The idea is to encode the combinatorial objects by polynomials, in such a way that the
product of the combinatorial Hopf algebra become the ordinary product of polynomials, and
that the coproduct be given by the disjoint union of alphabets, endowed with some extra
structure such as an order relation. This can be done, e.g., for FQSym [3], WQSym [10],
PQSym [11], Connes-Kreimer [5] and the one of diagrams [4].

In this paper, we realize the Hopf algebra UBP of uniform block permutations introduced
by Aguiar and Orellana [7]. We begin by recalling the preliminary notions on uniform block
permutations in Section 2. We recall, in Section 3, the Hopf algebra structure of uniform block
permutations, we translate this structure via some decomposition of uniform block permutations
into pairs consisting of a permutation and a set partition, and we describe the dual structure.
Using polynomial realizations of Hopf algebras based on permutations and set partitions, we
realize this algebra in terms of noncommutative polynomials in infinitely many bi-letters in
Section 4. Finally, we obtain the Hopf algebra WQSym as a quotient of UBP and its dual as
a subalgebra of UBP∗.

2. Notations and background

We denote by [n] the set {1, 2, · · · , n}. All algebras will be on some field K of characteristic
zero.

2.1. Words. Let A := {a1 < a2 < · · · } be a totally ordered infinite alphabet and A∗ the free
monoid generated by A. For a word w ∈ A∗, we denote by |w| the length of w. The empty
word (of length 0) is denoted by ε. The alphabet Alph(w) of w is the set of letters occuring in
w.

We say that (i, j) is an inversion of w if i < j and wi > wj .

For u, v ∈ A∗, the shuffle product is recursively defined by

(2.1) u v :=







u if v = ε

v if u = ε

u1(u
′ v) + v1(u v′) otherwise

where u = u1u
′ and v = v1v

′ with u1, v1 ∈ A and u′, v′ ∈ A∗.

We shall need the following expression of the shuffle:

Proposition 2.1. For all u, v ∈ A∗ and for all 0 ≤ k ≤ |u|+ |v|:

(2.2) u v =
∑

i+j=k
0≤i≤|u|
0≤j≤|v|

(u1 · · ·ui v1 · · · vj) · (ui+1 · · ·u|u| vj+1 · · · v|v|)

Proof. We may assume that Alph (u) and Alph (v) are disjoint. The proof proceeds by induction
on the length of the prefix in u v.

Let k be an integer such that 0 ≤ k ≤ |u| + |v|. Then the set of all prefixes of length k of
u v is equal to the set of words of the product u′ v′ with u′ (resp. v′) is a prefix of u (resp.
v) and |u′|+ |v′| = k. �

More conceptually, if δ(w) =
∑

uv=w u⊗v is the deconcatenation coproduct, and µ : u⊗ v 7→ uv

the concatenation product, then δ is a morphism for . Define a projection by πk,l(u⊗v) = u⊗v
if |u| = k and |v| = l, and πk,l(u⊗ v) = 0 otherwise. Obviously, πk,l ◦ δ(w) = w if k + l = |w|.
The proposition is equivalent to µ ◦ πk,n−k ◦ δ(u v) = µ ◦ πk,n−k(δ(u) δ(v)) = u v.
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Example 2.2.

a1a2a3 a1a3 =a1a2a3a1a3 + 2a1a2a1a3a3 + 4a1a1a2a3a3 + 2a1a1a3a2a3 + a1a3a1a2a3

=a1(a2a3 a1a3) + a1(a1a2a3 a3)

=a1a2(a3 a1a3) + 2a1a1(a2a3 a3) + a1a3a1a2a3

=a1a2a3a1a3 + 2(a1a2 a1)a3a3 + (a1 a1a3)a2a3

=(a1a2a3 a1)a3 + (a1a2 a1a3)a3.

2.2. Permutations. We denote by Sn the set of permutations of size n and we set S =
∪n≥0Sn. The shifted shuffle product is defined by

(2.3) σ1 σ2 = σ1 σ2[|σ1|]

where σ[k] is the word obtained by adding k to each letter of σ.

Example 2.3.

12 21 =12 43

=1243 + 1423 + 4123 + 1432 + 4132 + 4312.

The standardization is a process that associates a permutation with a word. The standardized
of w is defined as the permutation having the same inversions as w.

Example 2.4.

std(a2a3a2a1a6a1a4) = 3541726.

The convolution product ∗ is defined by

(2.4) σ1 ∗ σ2 =
∑

w=u·v∈S

std(u)=σ1

std(v)=σ2

w.

Example 2.5.

12 ∗ 21 = 1243 + 1342 + 1432 + 2341 + 2431 + 3421.

2.3. The Hopf algebra of set partitions. We denote by Pn the set of set partitions of [n]
and we set P = ∪n≥0Pn. Given a collection of disjoint sets of integers, we denote by std(E)
the standardized of E obtained by numbering each integer a in E by one plus the number of
integers in E smaller than a.

Example 2.6.

std
({

{1, 6}, {9, 13}, {3, 5, 12}
})

=
{

{1, 4}, {5, 7}, {2, 3, 6}
}

.

The K-vector space spanned by the set partitions P can be endowed with a Hopf algebra
structure. The product, denoted by ×, is obtained by the shifted union of two set partitions
and the coproduct is defined for a set partition A = {A1, · · · , Ak} by

(2.5) ∆(A) =
∑

H⊂{1,2,··· ,k}

std
(

⋃

i∈H

{

Ai
})

⊗ std
(

⋃

1 ≤ i ≤ k
i 6∈ H

{

Ai
})

.

Example 2.7.
{

{1, 3}, {2}, {4}
}

×
{

{1}, {2, 3}
}

=
{

{1, 3}, {2}, {4}, {5}, {6, 7}
}

,

and, by setting A =
{

{1, 3}, {2, 5}, {4}
}

,

∆(A) =
{

{}
}

⊗A+
{

{1, 2}
}

⊗
{

{1, 3}, {2}
}

+
{

{1, 2}
}

⊗
{

{1, 2}, {3}
}

+
{

{1}
}

⊗
{

{1, 3}, {2, 4}
}

+
{

{1, 3}, {2, 4}
}

⊗
{

{1}
}

+
{

{1, 2}, {3}
}

⊗
{

{1, 2}
}

+
{

{1, 3}, {2}
}

⊗
{

{1, 2}
}

+A⊗
{

{}
}

.
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This algebra admits a polynomial realization [7]. Let B be a noncommutative alphabet and
let A be a set partition. We say that a word w ∈ B∗ is A-compatible if

(2.6) (∀A ∈ A)(∀i, j ∈ A) wi = wj .

In other words, if i and j are in the same block in A, then wi = wj . We define

(2.7) PA(B) =
∑

w∈B∗

w is A−compatible

w.

Example 2.8.

P{{1}} =
∑

i

bi

P{{1,2}} =
∑

i

bibi, P{{1},{2}} =
∑

i,j

bibj

P{{1,2,3}} =
∑

i

bibibi, P{{1,2},{3}} =
∑

i,j

bibibj , P{{1},{2},{3}} =
∑

i,j,k

bibjbk.

Proposition 2.9. The polynomials PA(B) provide a realization of the Hopf algebra based on
set partitions P. That is to say, given two set partitions A and B

(2.8) PA · PB = PA×B .

Let B′ be an alphabet isomorphic to the alphabet B. If we allow B and B′ to commute and
identify T (B)U(B′) with T ⊗ U ,

(2.9) ∆(PA) = PA(B +B′)

where B +B′ denotes the disjoint union of B and B′.

Example 2.10.

P{{1,3},{2},{4}}(B) · P{{1},{2,3}}(B) =
∑

i,j,k

bibjbibk
∑

i,j

bibjbj

=
∑

i,j,k,l,m

bibjbibkblbmbm

=P{{1,3},{2},{4},{5},{6,7}}(B)

We set A1 = {1, 3}, A2 = {2, 5}, A3 = {4}, and A =
{

A1, A2, A3

}

:

PA(B +B′) =
∑

i,j,k

bibjbibkbj +
∑

i,j,k

b′ibjb
′
ibkbj +

∑

i,j,k

bib
′
jbibkb

′
j +

∑

i,j,k

bibjbib
′
kbj

+
∑

i,j,k

b′ib
′
jb

′
ibkb

′
j +

∑

i,j,k

b′ibjb
′
ib

′
kbj +

∑

i,j,k

bib
′
jbib

′
kb

′
j +

∑

i,j,k

b′ib
′
jb

′
ib

′
kb

′
j

=PA(B) + P{A2,A3}(B)P{A1}(B
′) + P{A1,A3}(B)P{A2}(B

′)

+ P{A1,A2}(B)P{A3}(B
′) + P{A3}(B)P{A1,A2}(B

′)

+ P{A2}(B)P{A1,A3}(B
′) + P{A1}(B)P{A2,A3}(B

′) + PA(B
′).

2.4. The Hopf algebras FQSym and FQSym∗. The Hopf algebra of free quasi-symmetric
functions [3] is the K-vector space generated by the family {Fσ}σ∈S

(2.10) Fσ :=
∑

w: std(w)=σ−1

w.

The product rule is

(2.11) Fσ1 · Fσ2 :=
∑

τ∈σ1 σ2

Fτ ,
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and the coproduct is defined by

(2.12) ∆(Fσ) := Fσ(A⊕B) =
∑

u·v=σ

Fstd(u) ⊗ Fstd(v),

where A⊕B is the ordinal sum of two mutually commuting totally ordered alphabets.

This is a polynomial realization of the Malvenuto-Reutenauer Hopf algebra K[S] [8].

The Hopf algebra FQSym is self-dual and the dual basis of Fσ is Gσ where Gσ = Fσ−1 .
The convolution product of two permutations is obtained by the product of two polynomials

(2.13) Gσ1 ·Gσ2 =
∑

τ∈σ1∗σ2

Gτ .

3. Uniform block permutations

3.1. Definitions.

Definition 3.1. A uniform block permutation of size n is a bijection between two set partitions
of [n] that maps each block to a block of the same cardinality.

Let us denote by UBPn the set of uniform block permutations of size n and by UBP the set
∪n≥0UBPn. We will represent a uniform block permutation in the form of an array with two
rows. Let A = {A1, A2, · · · , Ak} and A′ = {A′

1, A
′
2, · · · , A

′
k} be two set partitions of the same

size. We denote the uniform block permutation f : A −→ A′ for which the image of Ai is A
′
i

by
(

A1 A2 · · · Ak
A′

1 A′
2 · · · A′

k

)

.

Example 3.2. Here are all uniform block permutations of size 1 and 2:

n = 1

(

1
1

)

n = 2

(

12
12

)

,

(

1 2
1 2

)

,

(

1 2
2 1

)

.

In the case where the set partitions consist of singletons (i.e., A =
{

{1}, · · · , {n}
}

), we find
the permutations of size n.

Definition 3.3. Let f and g be two uniform block permutations. The concatenation of f and
g, denoted by f × g, is the uniform block permutation obtained by adding the size of f to all
entries of g and concatenating the result to f .

Example 3.4.
(

13 2
23 1

)

×

(

13 2 46 5
46 2 15 3

)

=

(

13 2 46 5 79 8
23 1 79 5 48 6

)

.

Definition 3.5. Let f and g be two uniform block permutations of the same size n, f : A −→ A′

and g : B −→ B′. The composition g◦f : C −→ C′ of f and g is defined by the following process.
The blocks C of the set partition C are the subsets of [n] which are minimal for the two properties

(1) C is a union of blocks of A
(2) f(C) is a union of blocks Bi of B.

The image of C is the union of images g(Bi).

Note that if f is a permutation, then the set partition C′ is B′, and if g is a permutation, then
the set partition C is A.
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Example 3.6.
(

125 346
236 145

)

◦

(

1 2 3 4 5 6
5 4 2 6 3 1

)

=

(

136 245
236 145

)

,

(

15 2 3 4 6
46 2 1 5 3

)

◦

(

14 2 36 5
23 1 45 6

)

=

(

14 236 5
12 456 3

)

.

3.2. Decompositions. The data of a permutation and a set partition is enough to describe a
uniform block permutation. Given a uniform block permutation f : A −→ A′ of size n, there
is a permutation σ in Sn such that

(3.1) A′ =
⋃

H∈A

{

⋃

x∈H

{σ(x)}
}

.

Conversely, a set partition of the set [n] and a permutation of Sn determine a uniform block
permutation of size n. Any uniform block permutation can thus be decomposed (non-uniquely)
as

(3.2) f = σ ◦ IdA = IdA′ ◦ σ.

The first equality expresses the fact that one can group the images σi whose indices are in the
same block in A, the second expresses the fact that one can group the images σi whose values
are in the same block in A′.

Example 3.7.
(

13 2 458 67
27 3 146 58

)

=

(

1 2 3 4 5 6 7 8
2 3 7 1 4 5 8 6

)

◦

(

13 2 458 67
13 2 458 67

)

=

(

146 27 3 58
146 27 3 58

)

◦

(

1 2 3 4 5 6 7 8
2 3 7 1 4 5 8 6

)

.

3.3. Algebraic structures. In [7], Aguiar and Orellana introduced a Hopf algebra whose basis
is the set of uniform block permutations. It will be denoted by UBP in the sequel.

3.3.1. UBP. The product is defined as follows.

Definition 3.8. Let f and g be two uniform block permutations of respective sizes m and n.
The convolution, denoted by f ∗ g, is the sum of all uniform block permutations of the form

(3.3)

(

1 2 · · · m+ n

σ1 σ2 · · · σm+n

)

◦ (f × g)

where

std(σ1 · · ·σm) = 12 · · ·m and std(σm+1 · · ·σm+n) = 12 · · ·n

i.e., σ appears in 12 · · ·m ∗ 12 · · ·n.

Example 3.9.
(

1
1

)

∗

(

12
12

)

=

[(

1 2 3
1 2 3

)

+

(

1 2 3
2 1 3

)

+

(

1 2 3
3 1 2

)]

◦

(

1 23
1 23

)

=

(

1 23
1 23

)

+

(

1 23
2 13

)

+

(

1 23
3 12

)

.

This product can be rewritten in terms of the decomposition of uniform block permutations.
Given f : A −→ A′ and g : B −→ B′ two uniform block permutations, f = σ ◦ IdA and
g = τ ◦ IdB, we have

(3.4) f ∗ g = (σ ∗ τ) ◦ IdA×B.



A POLYNOMIAL REALIZATION OF THE HOPF ALGEBRA OF UNIFORM BLOCK PERMUTATIONS. 7

Example 3.10.

(

1
1

)

∗

(

12
12

)

=1 ◦ Id{
{1}

} ∗ 12 ◦ Id{
{1,2}

}

=(1 ∗ 12) ◦ Id{
{1},{2,3}

}

=(123 + 213 + 312) ◦ Id{
{1},{2,3}

}

=

(

1 23
1 23

)

+

(

1 23
2 13

)

+

(

1 23
3 12

)

Let KUBPn be the K-vector space spanned by UBPn and

(3.5) UBP =
⊕

n≥0

KUBPn.

We shall denote by {Gf ; f ∈ UBP} the basis of UBP. We endow UBP with the product ·
defined, for uniform block permutations f and g, by

(3.6) Gf ·Gg =
∑

h∈f∗g

Gh.

Given a set partition C, we set

C|{1,··· ,i} =
{

H ∈ C;H ⊂ [i]
}

C|{i+1,··· ,n} =std
(

C − C|{1,··· ,i}
)

.(3.7)

Let B(C) be the set of integers i such that

(3.8) {1, 2, · · · , n} = C|{1,··· ,i} × C|{i+1,··· ,n}.

Example 3.11. Let C =
{

{1, 3}, {2}, {4, 6, 7}, {5}
}

. Then,

C{1,··· ,2} =
{

{2}
}

C{3,··· ,7} =
{

{1, 3, 4}, {2}
}

C{1,··· ,3} =
{

{1, 3}, {2}
}

C{4,··· ,7} =
{

{1, 3, 4}, {2}
}

B(C) = {0, 3, 7}

Definition 3.12. Let f be a uniform block permutation of size n, f : A −→ A′. By Lemma
(2.2) in [7], i is in B(A′) if and only if there exists a unique permutation σ in Sn appearing in
the convolution product 12 · · · i ∗ 12 · · ·n− i and unique uniform block permutations f(i) of size
i and f ′(n−i) of size n− i such that

(3.9) f = (f(i) × f ′(n−i)) ◦

(

1 2 · · · n

(σ−1)1 (σ−1)2 · · · (σ−1)n

)

The coproduct is then

(3.10) ∆(Gf ) :=
∑

i∈B(A′)

Gf(i) ⊗Gf ′
(n−i)

.

Example 3.13.

∆G(

1 24 3
1 23 4

) =1⊗G(

1 24 3
1 23 4

) +G(

1
1

) ⊗G(

13 2
12 3

)

+G(

1 23
1 23

) ⊗G(

1
1

) +G(

1 24 3
1 23 4

) ⊗ 1
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since
(

1 24 3
1 23 4

)

=

[

( )

×

(

1 24 3
1 23 4

)]

◦

(

1 2 3 4
1 2 3 4

)

=

[(

1
1

)

×

(

13 2
12 3

)]

◦

(

1 2 3 4
1 2 3 4

)

=

[(

1 23
1 23

)

×

(

1
1

)]

◦

(

1 2 3 4
1 2 4 3

)

=

[(

1 24 3
1 23 4

)

×
( )

]

◦

(

1 2 3 4
1 2 3 4

)

.

This coproduct can also be rewritten using the decomposition of uniform block permutations.
Given f : A −→ A′ and a decomposition f = IdA′ ◦ σ, we have

(3.11) ∆(Gf ) =
∑

i∈B(A′)

Gf|{1,··· ,i} ⊗Gf|{i+1,··· ,n}

where

f|{1,··· ,i} =IdA′
|{1,··· ,i}

◦ σ|{1,··· ,i}(3.12)

f|{i+1,··· ,n} =IdA′
|{i+1,··· ,n}

◦ std(σ|{i+1,··· ,n}).(3.13)

Example 3.14. We set A =
{

{1}, {2, 3}, {4}
}

:

∆G(

1 24 3
1 23 4

) =∆GIdA◦1243

=1⊗GIdA◦1243 +GId{{1}}◦1 ⊗GId{{1,2},{3}}◦132

+GId{{1},{2,3}}◦123 ⊗GId{{1}}◦1 +GIdA◦1243 ⊗ 1

=1⊗G(

1 24 3
1 23 4

) +G(

1
1

) ⊗G(

13 2
12 3

)

+G(

1 23
1 23

) ⊗G(

1
1

) +G(

1 24 3
1 23 4

) ⊗ 1.

3.3.2. UBP∗. It is proved in [7] that UBP is a self-dual Hopf algebra. We can describe the
dual structure. Let Ff be the basis of UBP∗ dual to Gf .

The product and coproduct are, for f : A −→ A′ and g : B −→ B′ two uniform block
permutations with decompositions f = IdA′ ◦ σ and g = IdB′ ◦ τ

(3.14) Ff · Fg =
∑

h∈f g

Fh

where

(3.15) f g = IdA′×B′ ◦ (σ τ)

and, for f : A −→ A′, with f = σ ◦ IdA

(3.16) ∆Ff =
∑

i∈B(A)

Ff1···fi ⊗ Ffi+1···fn

where

f1 · · · fi =std(σ1 · · ·σi) ◦ IdA|{1,··· ,i}

fi+1 · · · fn =std(σi+1 · · ·σn) ◦ IdA|{i+1,··· ,n}
.

(3.17)

Example 3.15.

F(

1
1

) · F(

12
12

) =F(

1 23
1 23

) + F(

2 13
1 23

) + F(

3 12
1 23

)



A POLYNOMIAL REALIZATION OF THE HOPF ALGEBRA OF UNIFORM BLOCK PERMUTATIONS. 9

We set A =
{

{1}, {2, 4}, {3}
}

. Then, we have

∆F(

1 24 3
1 23 4

) =∆F1243◦IdA

=1⊗ F1243◦IdA + F1◦Id{{1}} ⊗ F132◦Id{{1,3},{2}} + F1243◦IdA ⊗ 1

=1⊗ F(

1 24 3
1 23 4

) + F(

1
1

) ⊗ F(

13 2
12 3

) + F(

1 24 3
1 23 4

) ⊗ 1

Setting Gf = Ff−1 , we can identify UBP and UBP∗. If 〈 , 〉 denotes the scalar product
such that 〈Gf ,Fg〉 = δfg, we have

〈∆Gf ,Fg ⊗ Fh〉 =〈Gf ,Fg · Fh〉(3.18)

〈Gf ·Gg,Fh〉 =〈Gf ⊗Gg,∆Fh〉,(3.19)

which shows that UBP is indeed self-dual.

4. Polynomial realization

Given two alphabets B =
{

bi; 0 ≤ i
}

and C = {ci; 0 ≤ i}, with C totally ordered, we consider

an alphabet A =
{

(

bi
cj

)

; 0 ≤ i, j
}

of bi-letters endowed with two relations

• for all i and k,

(

bi
cj

)

�

(

bk
cl

)

if and only if cj ≤ cl,

• for all j and l,

(

bi
cj

)

≡

(

bk
cl

)

if and only if bi = bk.

The product of two biwords is the concatenation

(4.1)

(

u1
v1

)

·

(

u2
v2

)

=

(

u1 · u2
v1 · v2

)

.

We extend the definition of the standardization to biwords. Let w =

(

u

v

)

be a biword. The

standardized of w is the permutation std(v).

Example 4.1.

std

[(

b1b1b3b1b2
c2c3c2c1c6

)]

= 24315.

For any uniform block permutation f : A −→ A′, we denote by ξf the minimum permutation
(for the lexicographic order) such that

f = ξf ◦ IdA.

We say that a biword w is f -compatible, and we write w ⊢ f , if

- std(w) = ξf

and

- if i and j are in the same block in A, then the bi-letters wi and wj satisfy wi ≡ wj .

We define

(4.2) Gf (A) =
∑

w:w⊢f

w.

Example 4.2. Let f =

(

13 256 4
15 234 6

)

. The permutation σ = 125634 is the minimum

permutation associated with f and we have

Gf (A) =
∑

i,j,k
std(c1c2···c6)=σ

(

bibjbibkbjbj
c1c2c3c4c5c6

)

.
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Theorem 4.3. The polynomials Gf (A) provide a realization of the Hopf algebra UBP. That
is,

(4.3) Gf (A) ·Gg(A) =
∑

h∈f∗g

Gh(A)

and

(4.4) Gf (A+A′) = ∆(Gf ),

where A+A′ is defined as follows. A′ is an alphabet isomorphic to A such that, for any bi-letter
w′ of A′ and for any bi-letter w of A, we have

w � w′.

Then, A+A′ denotes the disjoint union of A and A′ endowed with the relations � and ≡. As
usual, we allow the bi-letters of A and A′ to commute and identify P (A)Q(A′) with P ⊗Q.

Proof. Let us first prove that

Gf (A) ·Gg(A) =
∑

h∈f∗g

Gh(A).

Writing f = ξf ◦ IdA and g = ξg ◦ IdB, we have

Gf (A) ·Gg(A) =
∑

w:w⊢f

w
∑

w:w⊢g

w

=
∑

u1∈B
∗,v1∈C

∗

u1 is A-compatible
std(v1)=ξf

(

u1
v1

)

∑

u2∈B
∗,v2∈C

∗

u2 is B-compatible
std(v2)=ξg

(

u2
v2

)

=
∑

σ∈ξf∗ξg

∑

u∈B∗,v∈C∗

u is A×B-compatible
std(v)=σ

(

u

v

)

.

But, given two decompositions f = σ ◦ IdA and g = τ ◦ IdB, if σ (resp. τ) is the minimum
permutation associated with f (resp. g), then each permutation ν occuring in the product σ ∗ τ
is the minimum permutation associated with ν ◦ IdA×B.

Let us now show the second point. Let w be a biword occuring in Gf (A+A′). Let i be the

number of bi-letters of w from the alphabet A and let

(

u1u2 · · ·ui
v1v2 · · · vi

)

∈ A∗ be the sub-biword

of w on these letters. Then

std(v1v2 · · · vi) = (ξf )|{1,2,··· ,i}

and

u1u2 · · ·ui is std(A′
|{ξ−1

f
(1),ξ−1

f
(2),··· ,ξ−1

f
(i)}

)-compatible.

This partition and the permutation (ξf )|{1,2,··· ,i} define a uniform block permutation g whose

minimum permutation is (ξf )|{1,2,··· ,i}. Hence, the biword

(

u1u2 · · ·ui
v1v2 · · · vi

)

is a term appearing

in Gg(A). Similarly, the biword w defined on the alphabet A′ appears in Gh(A
′) for some

uniform block permutation h. By construction, Gg ⊗Gh is a term appearing in ∆(Gf ).

Conversely, let P ⊗ Q be a term occuring in ∆(Gf ). Let w =

(

u

v

)

be the biword in

P (A) Q(A′) such that std(w) = ξf . The biword u is A′
|{ξ−1

f
(1),ξ−1

f
(2),··· ,ξ−1

f
(n)}

-compatible.

Thus u is A-compatible and w appears in Gf (A+A′).
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It remains to show that the family Gf (A) is independent. To this aim, we need an order
relation on the set partitions of [n]. Let A = {A1, · · · , Ak} and B = {B1, · · · , Bl} be two set
partitions. We say that B is finer than A, and we write A � B, if and only if

(∀1 ≤ i ≤ k) (∃H ⊂ {1, · · · , l}), Ai =
⋃

j∈H

Bj .

Let u ∈ B∗ be a word. We set

(4.5) P(u) =
⋃

a∈Alph(u)

{

{i;ui = a}
}

.

For example,

P(121212) ={{1, 3, 5}, {2, 4, 6}} P(12 · · ·n) ={{1}, {2}, · · · , {n}}.

We define on the set of biwords the following relation. Given two biwords w1, w2 ∈ A∗, w1 =
(

u1
v1

)

and w2 =

(

u2
v2

)

:

w1 E w2 ⇐⇒ P(u1) � P(u2) and std(v1) = std(v2).

Let f be a uniform block permutation. We denote by wf a maximal f -compatible biword for
the relation E. We define

(4.6) G̃f (A) =
∑

w∈A∗

std(w)=ξf
P(wf )=P(w)

w.

The family
{

G̃f (A)
}

f
is independent since any biword w =

(

u

v

)

appearing in G̃f (A) allows

to reconstruct f :

(4.7) f = std(v) ◦ IdP(u).

But

Gf (A) =
∑

w∈A∗:wEwf

w

=
∑

B∈P:B�P(wf )

∑

w∈A∗

P(w)=B
std(w)=ξf

w.

The partition B ∈ P and the permutation ξf ∈ S define a uniform block permutation g. Thus,
we have

G̃g(A) =
∑

w∈A∗

P(w)=B
std(w)=ξf

w.

Hence

Gf (A) =
∑

B�P(wf )
g=ξf◦IdB

G̃g(A).

Since the family
{

G̃g(A)
}

is independent, so is the family
{

Gf (A)
}

. �
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Example 4.4.

G(

1
1

)(A) ·G(

1
1

)(A) =
∑

b∈B
c∈C

(

b

c

)2

=
∑

b1,b2∈B
c1,c2∈C

(

b1b2
c1c2

)

=
∑

b1,b2∈B
c1,c2∈C:c1≤c2

(

b1b2
c1c2

)

+
∑

b1,b2∈B
c1,c2∈C:c1>c2

(

b1b2
c1c2

)

=G(

1 2
1 2

)(A) +G(

1 2
2 1

)(A).

G(

12
12

)(A) ·G(

1
1

)(A) =
∑

b∈B
std(v)=12

(

bb

v

)

∑

b∈B
c∈C

(

b

c

)

=
∑

i1,i2
std(v1)=12
std(v2)=1

(

bi1bi1bi2
v1v2

)

=
∑

i1,i2
c1≤c2≤c3

(

bi1bi1bi2
c1c2c3

)

+
∑

i1,i2
c1≤c3<c2

(

bi1bi1bi2
c1c2c3

)

+
∑

i1,i2
c3<c1≤c2

(

bi1bi1bi2
c1c2c3

)

=G(

12 3
12 3

) +G(

12 3
13 2

) +G(

12 3
23 1

).

G(

13 24
13 24

)(A+A′) =
∑

i,j
c1≤c2≤c3≤c4

(

bibjbibj
c1c2c3c4

)

+
∑

i,j

c′1≤c
′
2≤c

′
3≤c

′
4

(

b′ib
′
jb

′
ib

′
j

c′1c
′
2c

′
3c

′
4

)

=G(

13 24
13 24

)(A) +G(

13 24
13 24

)(A′).

We set τ = 2431.

G(

13 2 4
23 4 1

)(A+A′) =
∑

i,j,k
std(c1c2c3c4)=τ

(

bibjbibk
c1c2c3c4

)

+
∑

i,j,k

std(c′1c
′
2c

′
3c4)=τ

(

b′ib
′
jb

′
ibk

c′1c
′
2c

′
3c4

)

+
∑

i,j,k

std(c1c
′
2c3c4)=τ

(

bib
′
jbibk

c1c
′
2c3c4

)

+
∑

i,j,k

std(c′1c
′
2c

′
3c

′
4)=τ

(

b′ib
′
jb

′
ib

′
k

c′1c
′
2c

′
3c

′
4

)

=G(

13 2 4
23 4 1

)(A) +G(

1
1

)(A) ·G(

13 2
12 3

)(A′)

+G(

12 3
23 1

)(A) ·G(

1
1

)(A′) +G(

13 2 4
23 4 1

)(A′).

5. Packed words

We recall the definitions of packed words and of the Hopf algebra WQSym (see, e.g., [10]).
Let A := {a1 < a2 < · · · } be a totally ordered infinite alphabet. The packed word pack(w)
associated with a word w ∈ A∗ is the word u obtained by the following process. If b1 < b2 <

· · · < br are the letters occuring in w, u is the image of w by the homomorphism bi −→ ai. A
word w is said to be packed if pack(w) is w.

Example 5.1.

pack(51735514) =41524413 pack(772335) =441223.

5.1. The combinatorial Hopf algebra WQSym∗.
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5.1.1. WQSym∗. The Hopf algebra WQSym∗ is the K-vector space generated by packed
words endowed with the shifted shuffle product and the coproduct given by, using notations
in [5]

M∗
u ·M

∗
v :=

∑

w∈u v[max (u)]

M∗
w,(5.1)

∆(M∗
w) :=

∑

u·v=w

M∗
pack(u) ⊗M∗

pack(v).(5.2)

Let ψ be the map that associates with a uniform block permutation f = IdA′ ◦ σ of size n a
word w of length n constructed by packing the word u obtained by the following process. The
ith letter ui of u is the minimum of the letters σj which are in the same block of A as σi.

Example 5.2.

ψ(Id{{1,2}} ◦ 12) =11 ψ(Id{{1},{2,3}} ◦ 231) =221

ψ(Id{{1,2},{3,4}} ◦ 1324) =1212 ψ(Id{{1,5},{2},{3},{4}} ◦ 23415) =23411

The map ψ induces a linear map from the vector space UBP∗ spanned by uniform block
permutations to the one spanned by packed words WQSym∗ defined by:

(5.3) Ψ :
UBP∗ −→ WQSym∗

Ff 7−→ M∗
ψ(f)

Example 5.3.

Ψ
(

F(

12
12

)

)

=M∗
11 Ψ

(

F(

12 3
23 1

)

)

=M∗
221

Ψ
(

F(

13 24
12 34

)

)

=M∗
1212 Ψ

(

F(

1 2 3 45
2 3 4 15

)

)

=M∗
23411

Proposition 5.4. Let f and g be two uniform block permutations. Then

(5.4) Ψ(Ff · Fg) = Ψ(Ff ) ·Ψ(Fg).

Proof. Let M∗
w be a term in the left-hand side of (5.4) and M∗

w = Ψ(Fh) for some uniform
block permutation h in the product f g. The ith letter of w is obtained from a permutation
σ and comes from a subset E of A × B containing σi. But, if wi is less than the number of
blocks in A, then E is contained in A. So the word extracted from w whose values are less
than the number of blocks in A is Ψ(Ff ). Similarly, the packed word extracted from w whose
values are strictly greater than the number of blocks in A is Ψ(Fg). Hence, each term in the
left-hand side of (5.4) is in the right-hand side.

Since the number of terms and the multiplicities are the same, we have equality. �

Example 5.5.

Ψ
(

F(

12 3
13 2

) · F(

1 2
1 2

)

)

=M∗
11234 +M∗

11324 +M∗
11342 +M∗

13124 +M∗
13142

+M∗
13412 +M∗

31124 +M∗
31142 +M∗

31412 +M∗
34112

=M∗
112 ·M

∗
12

=Ψ
(

F(

12 3
13 2

)

)

·Ψ
(

F(

1 2
1 2

)

)

.
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The map Ψ cannot be a morphism of coalgebras as shown in the example

Ψ⊗Ψ ◦∆
(

F(

12 3
23 1

)

)

=Ψ⊗Ψ
(

1⊗ F(

12 3
23 1

) + F(

12
12

) ⊗ F(

1
1

) + F(

12 3
23 1

) ⊗ 1
)

=1⊗M∗
221 +M∗

11 ⊗M∗
1 +M∗

221 ⊗ 1

6=1⊗M∗
221 +M∗

1 ⊗M∗
21 +M∗

11 ⊗M∗
1 +M∗

221 ⊗ 1

6=∆(M∗
221).

The idea is that the coproduct on packed words deconcatenates the word in all suffixes and
prefixes, whereas the coproduct on uniform block permutations preserves the blocks. This
suggests to define an another coproduct

∆′(M∗
w) :=

∑

u·v=w
Alph(u)∩Alph(v)=∅

M∗
pack(u) ⊗M∗

pack(v).

Example 5.6.

∆′(M∗
221) =1⊗M∗

221 +M∗
11 ⊗M∗

1 +M∗
221 ⊗ 1

∆′(M∗
331412) =1⊗M∗

331412 +M∗
11 ⊗M∗

1312 +M∗
22131 ⊗M∗

1 +M∗
331412 ⊗ 1

5.1.2. WQSym∗′. We introduce then a combinatorial Hopf algebra based on packed words,
endowed with the product · and with the coproduct ∆′, which will be denoted by WQSym∗′.

Indeed, the coproduct ∆′ is coassociative and, by (2.2), is compatible with the shifted shuffle.
Indeed, let u and v be two packed words of respective length m and n. Let w be a packed word
in the product u v. We shall denote by I(w) the set

{

0 ≤ i ≤ m+ n; Alph(w1 · · ·wi) ∩Alph(wi+1 · · ·wm+n) = ∅
}

.

Since the letters appearing in u and v[|max (u)|] are distinct, if k is in I(w), then there exists
i in I(u) and j in I(v) whose sum is k. Hence

∆′(Mu ·Mv) =
∑

w∈u v
k∈I(w)

Mpack(w1···wk) ⊗Mpack(wk+1···wm+n)

=
∑

0≤k≤m+n
w∈u v:k∈I(w)

Mpack(w1···wk) ⊗Mpack(wk+1···wm+n)

=
∑

0≤k≤m+n
i∈I(u),j∈I(v):i+j=k

w∈u1···ui v1[m]···vj [m]

w′∈ui+1···um vj+1[m]···vn[m]

Mpack(w) ⊗Mpack(w′)

=∆′(Mu) ·∆
′(Mv).

This Hopf algebra WQSym∗′ is isomorphic to WQSym∗. This will be shown later. To this
end, we introduce the following relation on packed words which will allow us to construct an
isomorphism.

We denote, given a packed word u and an integer 1 ≤ i < max (u), by f(u, i) the packed
word v defined by

vj :=

{

uj − 1 if uj > i

uj otherwise

Example 5.7.

f(121, 1) = 111 f(3122, 2) = 2111

f(11122344, 2) = 11122233 f(42315, 1) = 31214
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We extend the definition of iterated images by f by setting, given a packed word u and a subset
I = {i1 > i2 > · · · > ik} of [max (u)]:

f(u, I) :=

{

u if I = ∅
f(· · · f(u, i1), · · · , ik) otherwise.

We consider the relation, denoted by �, on packed words of the same size with the cover
relation, given two packed words u and v:

(5.5) u � v ⇐⇒

{

std(u) = std(v)
there exists i such that u = f(v, i)

Example 5.8. Here is the Hasse diagram of packed words of size 3:

111

122112

123

121

132

212

213

221

231

211

312

321

Let Γ defined by

Γ :
WQSym∗ −→ WQSym∗′

M∗
w 7−→

∑

u�w

M∗
u

.

Example 5.9. The image of a permutation is a permutation, the image of a word of length n
consisting only of 1s is the sum of all non-decreasing packed words of length n and

Γ(M∗
2441235) = M∗

2441235 +M∗
2551346 +M∗

2451236 +M∗
2561347.

Proposition 5.10. The linear map Γ is an isomorphism of Hopf algebras from WQSym∗ to
WQSym∗′.

Proof. To show that Γ is a morphism of algebras, that is

(5.6) Γ(M∗
w ·M∗

w′) = Γ(M∗
w) · Γ(M

∗
w′),

we shall show that every packed word in the left-hand side of (5.6) is in the right-hand side.
Since these sums are multiplicity free, it suffices to show the equality of the underlying sets.
Consider two packed words w and w′. Let u � w and u′ � w′. Then the set u u′ is equal to
the set of the packed words v � w w′ such that

v|{1,··· ,max (u)} =u pack(v|{max (u)+1,··· ,max (v)}) =u
′.(5.7)

Thus, the set Γ(M∗
w) · Γ(M

∗
w′) is equal to Γ(M∗

w ·M∗
w′).

Let us now prove that Γ is a morphism of coalgebras, that is to say

(5.8) Γ⊗ Γ ◦∆(M∗
w) = ∆′ ◦ Γ(M∗

w).

To do this, we shall show that every packed word in the left-hand side of (5.8) is in the right-
hand side and conversely. We shall conclude with an argument of multiplicity.

We consider a packed word w. We set

E1 :=
⋃

u·v=w

{u′ ⊗ v′;u′ � pack(u), v′ � pack(v)},

E2 :=
⋃

w′�w
u·v=w′

Alph(u)∩Alph(v)=∅

{u′ ⊗ v′; pack(u) = u′, pack(v) = v′}
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so that

Γ⊗ Γ ◦∆(M∗
w) =

∑

u′⊗v′∈E1

M∗
u′ ⊗M∗

v′

∆′ ◦ Γ(M∗
w) =

∑

u′⊗v′∈E2

M∗
u′ ⊗M∗

v′ .

Show E2 ⊂ E1. Define F (w, n) as the word u given by ui = wi if wi ≤ n and ui = wi − 1
otherwise. Let u′ ⊗ v′ in E2. There exists w � w′ and w′ = u · v with pack(u) = u′ and
pack(v) = v′. Then there exists I such that

w = f(w′, I) = F (w′, I) = F (u, I) · F (v, I).

But, there exists I1 and I2 (roughly, I1 and I2 are a relabelling of I caused by the packing)
such that

pack(F (u, I)) =f(pack(u), I1) pack(F (v, I)) =f(pack(v), I2).

In particular, pack(F (u, I)) � u′ and pack(F (v, I)) � v′. Hence, u′ ⊗ v′ is in E1.

Show E1 ⊂ E2. Let u′ ⊗ v′ in E2. There exists two words u and v such that w = u · v and
u′ � pack(u), v′ � pack(v). It remains to be seen that there exists two words U and V such
that

• pack(U) = u′, pack(V ) = v′,
• Alph(U) ∩Alph(V ) = ∅,
• U · V � w.

We illustrate the algorithm step by step to find U and V on the following example. Let
u = 311434141, v = 22441144 and w = u · v. Let u′ = 411546263 and v′ = 23451156 be two
packed words such that pack(u) � u′ and pack(v) � v′.
The first step is to have two words U ′ and V ′ such that

• pack(u) = pack(U ′) � u′, pack(v) = pack(V ′) � v′,
• Alph(U ′) ∩Alph(V ′) = ∅,
• U ′ · V ′ � w.

This is iteratively obtained by the following process. Given a word u and an integer i, let g(u, i)
be the word v defined by

vj =

{

uj + 1 if uj ≥ i

uj otherwise
.

If i is a letter occuring in Alph(u) ∩ Alph(v), then we consider the words ũ = g(u, i + 1) and
ṽ = g(v, i) and repeat this process with these words ũ and ṽ. At the end of the process, we have
two words U ′ and V ′ satisfying the desired properties since g does not modify the packing. For
example:

u · v = 311434141 · 22441144
i = 1 : ũ · ṽ = 411545151 · 33552255
i = 5 : U ′ · V ′ = 411545151 · 33662266

The second step, from the words U ′ and V ′, is to have the words U ′′ and V ′′ such that

• pack(U ′′) = u′, pack(v) = pack(V ′′) � v′,
• Alph(U ′′) ∩Alph(V ′′) = ∅,
• U ′′ · V ′′ � w.

This is iteratively obtained by the following process. Since pack(U ′) � u′, there exists I such
that f(pack(U ′), I) = u′. If I is empty, then pack(U ′) = u′. Otherwise, let i ∈ I. By
incrementing the letters i occuring in g(U ′, i+ 1) at the position j such that u′j 6= i, we obtain
a word ũ satisfying pack(U ′) ≺ pack(ũ) � u′. We set ṽ = g(V ′, i). We repeat this process with
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these words ũ and ṽ. At the end of the process, we have two words U ′′ and V ′′ satisfying the
desired properties since g does not modify the packing. For example:

U ′ · V ′ = 411545151 · 33662266
i = 1 : ũ · ṽ = 511656262 · 44773377
i = 2 : ũ · ṽ = 611767273 · 55884488
i = 7 : U ′′ · V ′′ = 611768283 · 55994499

u′ · v′ = 411546263 · 23451156

The third step is similar to the second step. From the words U ′′ and V ′′, we obtain the words
U and V satisfying the desired properties by referring the act on the word U ′ (resp. V ′) in the
second step to V ′′ (resp. U ′′). For example:

U ′′ · V ′′ = 611768283 · 55994499
i = 5 : ũ · ṽ = 711879293 · 56AA44AA
i = A : ũ · ṽ = 711879293 · 56AB44BB
i = B : U · V = 711879293 · 56AB44BC

u′ · v′ = 411546263 · 23451156

where A, B and C respectively means the integer 10, 11 and 12. This proves the equality
E1 = E2.

Since both members of the equality (5.8) are multiplicity free, we have equality.

Finally, by the Möbius inversion, Γ is an isomorphism. The inverse, denoting by µ the
Möbius function, is given by:

Γ−1 :
WQSym∗′ −→ WQSym∗

M∗
w 7−→

∑

u�w

µ(std(u), u) M∗
u
.

�

Example 5.11.

Γ(M∗
11 ·M

∗
1) =Γ(M∗

112 +M∗
121 +M∗

211)

=M∗
112 +M∗

123 +M∗
121 +M∗

132 +M∗
311 +M∗

312

=M∗
11 ·M

∗
1 +M∗

12 ·M
∗
1

=Γ(M∗
11) · Γ(M

∗
1)

Γ⊗ Γ(∆(M∗
121)) =M∗

121 ⊗ 1 +M∗
132 ⊗ 1 +M∗

12 ⊗M∗
1 +M∗

1 ⊗M∗
21 + 1⊗M∗

121 + 1⊗M∗
132

=∆′(M∗
121) + ∆′(M∗

132)

=∆′(Γ(M∗
121)).

Γ−1(M∗
111) =M∗

111 −M∗
112 −M∗

122 +M∗
123

Γ−1(M∗
421234) =M∗

421234 −M∗
521345 −M∗

421235 +M∗
521346

We can now return to the main result of this section, the linear map Ψ, defined in (5.3), is
a surjective Hopf algebra morphism from UBP∗ to WQSym∗.

Proposition 5.12. The map Ψ is a surjective Hopf algebra morphism from UBP∗ to WQSym∗′.

Proof. That Ψ is a morphism of algebras follows from Proposition 5.4.

Let us show that Ψ is a morphism of coalgebras, that is

(5.9) Ψ⊗Ψ ◦∆(Ff ) = ∆′ ◦Ψ(Ff ).

Let f be a uniform block permutation of size n, f : A −→ A′ and let w be the word defined by

wi = min ({(ξf )j ; ∃A ∈ A containing i and j}).
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Let us write w as the concatenation u · v and pack(w) as the concatenation u′ · v′ such that u
and u′ are of the same length. The sets of letters in u and v are disjoint if and only if |u| is in
I(A). Moreover, by definition of w, we have

Ψ(Ff1···f|u|
) =M∗

pack(u) = M∗
pack(u′)

Ψ(Ff|u|+1···fn) =M∗
pack(v) = M∗

pack(v′).

Hence

∆′(Ψ(Ff )) =
∑

u′·v′=pack(w)
Alph(u′)∩Alph(v′)=∅

M∗
pack(u′) ⊗M∗

pack(v′)

=
∑

i∈I(A)

Ψ(Ff1···fi)⊗Ψ(Ffi+1···fn)

=Ψ⊗Ψ ◦∆(Ff ).

Finally, let us prove that Ψ is surjective. Let w be a packed word. We denote by P(w) the
set partition of the set {1, · · · , n}

P(w) =
⋃

0≤i≤max (w)

{

{

j;wj = i
}

}

.

Then, the image, for the uniform block permutation f = std(w) ◦ IdP(w), of Ff is M∗
w. �

Example 5.13.

Ψ
(

F(

12
12

) · F(

1
1

)

)

=Ψ
(

F(

12 3
12 3

) + F(

13 2
12 3

) + F(

23 1
12 3

)

)

=M∗
112 +M∗

121 +M∗
211

=M∗
11 ·M

∗
1

=Ψ
(

F(

12
12

)

)

·Ψ
(

F(

1
1

)

)

.

We set f =

(

1 24 3 5
5 12 3 4

)

.

Ψ⊗Ψ ◦∆(Ff ) =1⊗Ψ(Ff ) + Ψ
(

F(

1
1

)

)

⊗Ψ
(

F(

13 2 4
12 3 4

)

)

+Ψ
(

F(

1 24 3
4 12 3

)

)

⊗Ψ
(

F(

1
1

)

)

+Ψ(Ff )⊗ 1

=1⊗M∗
41213 +M∗

1 ⊗M∗
1213 +M∗

3121 ⊗M∗
1 +M∗

41213 ⊗ 1

=∆′(M∗
41213)

=∆′(Ψ(Ff )).

5.2. WQSym. The Hopf algebra WQSym is the K-vector space spanned by packed words
endowed with the convolution product and the coproduct given by

Mu ·Mv =
∑

w=u′·v′

pack(u′)=u
pack(v′)=v

Mw,(5.10)

∆(Mu) =
∑

0≤k≤max (u)

Mu|{1,··· ,k}
⊗Mpack(u|{k+1,··· ,max (u)})(5.11)
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The dual WQSym′ of WQSym∗′ is the Hopf algebra endowed with the product

(5.12) Mu ·
′Mv =

∑

w=u′·v′

pack(u′)=u
pack(v′)=v

Alph(u′)∩Alph(v′)=∅

Mw

for any packed words u and v, and with the coproduct ∆. Indeed, if we denote by w ∈ WQSym∗

the dual basis to w ∈ WQSym, since the deconcatenation coproduct ∆′ is multiplicity free,
we have, by duality

(5.13) Mu ·
′Mv =

∑

w:u⊗v∈∆′(w)

Mw.

This is equivalent to Equation (5.12). The Hopf algebra WQSym∗′ and WQSym∗ are iso-
morphic, Proposition 5.10, so is for WQSym′ and WQSym. We can explicitly give this
isomorphism. The map Γ induces a dual map. This is

Γ∗ :
WQSym′ −→ WQSym

Mw 7−→
∑

u�w

Mu.

Indeed, if we denote by M∗
w ∈ WQSym∗ the dual basis to Mw ∈ WQSym, since Γ(M∗

w) is a
linear form, Γ(M∗

w)(u) = 1 if u � w, 0 otherwise, so is for Mw ◦ Γ∗. For example,

Γ∗(M1212334) = M1212334 +M1212223 +M1212333 +M1212222.

Proposition 5.14. The map

Φ : WQSym′ −→ UBP

Mw 7−→
∑

f :Ψ(f)=w

Gf

is an injective morphism of Hopf algebras.

Proof. The map Φ is the dual to Ψ. Since Ψ(Ff )(Mw) = 1 if Ψ(f) = Mw, Ψ(Ff )(Mw) = 0
otherwise. Hence, Ff ◦ Φ(Mw) = 1 if Ψ(f) = Mw and Ff ◦ Φ(Mw) = 0 otherwise. �

Example 5.15.

Φ(M121 ·
′M1) =Φ(M1213 +M1312 +M2321)

=
(

G(

13 2 4
12 3 4

) +G(

13 2 4
13 2 4

) +G(

13 2 4
14 2 3

) +G(

13 2 4
12 4 3

)

)

+
(

G(

13 2 4
13 4 2

) +G(

13 2 4
14 3 2

) +G(

13 2 4
23 4 1

) +G(

13 2 4
24 3 1

)

)

=
(

G(

13 2
12 3

) +G(

13 2
13 2

)

)

·G(

1
1

)

=Φ(M121) · Φ(M1).
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Φ⊗ Φ(∆(M2131)) =Φ⊗ Φ(1⊗M2131 +M11 ⊗M12 +M211 ⊗M1 +M2131 ⊗ 1)

=1⊗
(

G(

1 24 3
2 13 4

) +G(

1 24 3
3 12 4

) +G(

1 24 3
2 14 3

)

)

+G(

12
12

) ⊗G(

1 2
1 2

) +
(

G(

1 23
2 13

) +G(

1 23
3 12

)

)

⊗G(

1
1

)

+
(

G(

1 24 3
2 13 4

) +G(

1 24 3
3 12 4

) +G(

1 24 3
2 14 3

)

)

⊗ 1

=∆
(

G(

1 24 3
2 13 4

) +G(

1 24 3
3 12 4

) +G(

1 24 3
2 14 3

)

)

=∆(Φ(M2131)).
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