Patrick Dehornoy 
  
COXETER-LIKE GROUPS FOR GROUPS OF SET-THEORETIC SOLUTIONS OF THE YANG-BAXTER EQUATION

We attach with every finite, involutive, nondegenerate set-theoretic solution of the Yang-Baxter equation a finite group that plays for the associated structure group the role that a finite Coxeter group plays for the associated Artin-Tits group.

Introduction

A set-theoretic solution of the Yang-Baxter equation (YBE) is a pair (X, R) where R is a bijection from X 2 to itself satisfying R 12 R 23 R 12 = R 23 R 12 R 23 , in which R ij : X 3 → X 3 corresponds to R acting in positions i and j. Set-theoretic solutions of YBE provide particular solutions of the (quantum) Yang-Baxter equation, and received some attention in recent years.

A set-theoretic solution (X, R) of YBE is called involutive forR 2 = id, and nondegenerate if, writing R(x, y) = (R 1 (x, y), R 2 (x, y)), the maps y → R 1 (x, y) and x → R 2 (x, y) are one-to-one. In this case, the group (resp. monoid) presented by X | {xy = z, t | x, y, z, t ∈ X and R(x, y) = (z, t)} is called the structure group (resp. structure monoid ) of (X, R) [START_REF] Etingof | Set-theoretical solutions to the quantum Yang-Baxter equation[END_REF].

Such structure groups happen to admit a number of alternative definitions and make an interesting family. Among others, every structure group is a Garside group [START_REF] Chouraqui | Garside groups and Yang-Baxter equations[END_REF], meaning that there exists a pair (M, ∆) such that M is a cancellative monoid in which left-divisibility-defined by g h ⇔ ∃h ′ ∈M (h = gh ′ )-is a lattice, ∆ is a Garside element in M -meaning that the left-and right-divisors coincide, are finite in number, and generate M -and G is a group of fractions for M [START_REF] Dehornoy | Groupes de Garside[END_REF].

In the case of Artin's braid group B n , the seminal example of a Garside group, the Garside structure (B + n , ∆ n ) is connected with the exact sequence 1 → P n → B n → S n → 1, where P n is the pure braid group: B + n is the monoid of positive braids, the lattice made by the divisors of ∆ n in B + n is isomorphic to the weak order on S n . A presentation of S n is obtained by adding n -1 relations σ 2 i = 1 to the standard presentation of B n , and the germ derived from S n and the transpositions σ i , meaning the substructure of S n where multiplication is restricted to the cases when lengths add, generates B + n [4] and its Cayley graph is the Hasse diagram of the divisors of ∆ n . The results extend to all types in the Cartan classification, connecting spherical Artin-Tits groups with the associated finite Coxeter group.

As Garside groups extend spherical type Artin-Tits groups in many respects, it is natural to ask: Question 1.1. Assume that G is a Garside group, with Garside structure (M, ∆). Does there exist a finite quotient W of G such that W provides a Garside germ 1 for M and the Cayley graph of W with respect to the atoms of M is isomorphic to the lattice of divisors of ∆ in M ?

In other words, does every Garside group admit some Coxeter-like group? The general question remains open. The aim of this note is to establish a positive answer for structure groups of set-theoretic solutions of YBE. We attach with every such solution a number called its class and establish: Theorem 1.2. Assume that G (resp. M ) is the structure group (resp. monoid) of an involutive, nondegenerate solution (X, R) of YBE with X of size n and class p. Then there exist a Garside element ∆ in M and a finite group W of order p n entering a short exact sequence 1 → Z n → G → W → 1 such that (W, X) provides a germ for M whose Cayley graph is the Hasse diagram of the divisors of ∆ in M . A presentation of W is obtained by adding n relations w x = 1 to that of G, with w x an explicit length p word beginning with x.

Theorem 1.2 extends the results of [START_REF] Chouraqui | Finite quotients of groups of I-type[END_REF], in which solutions of class 2 are addressed by a different method. Our approach relies on the connection with the right-cyclic law of [START_REF] Rump | A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation[END_REF] and on the existence of an I-structure [6] [7] which enables one to carry to arbitrary structure monoids results that are trivial in the case of Z n .

The class of a finite RC-quasigroup

The first step consists in switching from solutions of YBE to RC-quasigroups. Definition 2.1. An RC-system is a pair (X, ⋆) with ⋆ a binary operation on X that obeys the RC-law (x⋆y)⋆(x⋆ z) = (y ⋆x)⋆(y ⋆z). An RC-quasigroup is an RCsystem in which the maps y → x⋆y are bijections. An RC-quasigroup is bijective if the map (x, y) → (x⋆y, y ⋆x) from X 2 to X 2 is bijective. The associated group (resp. monoid ) is presented by X | {x(x⋆y) = y(y ⋆x) | x, y ∈ X} .

As proved in [START_REF] Rump | A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation[END_REF], if (X, R) is an involutive, nondegenerate set-theoretic solution of YBE, then defining x⋆y to be the (unique) z satisfying R 1 (x, z) = y makes X into a bijective RC-quasigroup and the group and monoid associated with (X, ⋆) coincide with those of (X, R). Conversely, every bijective RC-quasigroup (X, ⋆) comes associated with a set-theoretic solution of YBE. Thus investigating structure groups of set-theoretic solutions of YBE and groups of bijective RC-quasigroups are equivalent tasks.

Definition 2.2. Inductively define Π 1 (x 1 ) = x 1 and (1) Π n (x 1 , ..., x n ) = Π n-1 (x 1 , ..., x n-1 )⋆Π n-1 (x 1 , ..., x n-2 , x n ).
An RC-quasigroup (X, ⋆) is said to be of class p if Π p+1 (x, ..., x, y) = y holds for all x, y in X.

Lemma 2.3. Every finite RC-quasigroup is of class p for some p.

Proof. Let (X, ⋆) be a finite RC-quasigroup. First, (X, ⋆) must be bijective, that is, the map Ψ : (x, y) → (x⋆ y, y ⋆x) is bijective on X 2 [START_REF] Rump | A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation[END_REF] (or [START_REF] Jespers | Noetherian semigroup algebras[END_REF] for a different argument). Now, consider the map Φ : (x, y)

→ (x⋆ x, x⋆y) on X 2 . Assume (x, y) = (x ′ , y ′ ). For x = x ′ , Ψ(x, x) = Ψ(x ′ , x ′ ) implies x⋆x = x ′ ⋆x ′ ; for x = x ′ ,
we have y = y ′ , whence x⋆ y = x⋆y ′ since left-translations are injective; so Φ(x, y) = Φ(x ′ , y ′ ) always holds. So Φ is injective, hence bijective on X 2 , and Φ p+1 = id holds for some p ≥ 1. An induction gives Φ r (x, y) = (Π r (x, ..., x, x), Π r (x, ..., x, y)). So Φ p+1 = id implies Π p+1 (x, ..., x, y) = y for all x, y, that is, (X, ⋆) is of class p.

Using the I-structure

From now on, assume that M (resp. G) is the structure group of some finite RC-quasigroup (X, ⋆) of size n and class p. The form of the defining relations of M implies that the Cayley graph of M with respect to X is an n-dimensional lattice. It was proved in [START_REF] Gateva-Ivanova | Semigroups of I-type[END_REF] that M admits a (right) I-structure, defined to be a bijection ν :

N n → M satisfying ν(1) = 1 and {ν(ux) | x ∈ X} = {ν(u)x | x ∈ X} for every u in N n , that is, equivalently, ν(ux) = ν(u)π(u)(x) for some permutation π(u) of X.
The monoid M is then called of right-I-type. Our point is that the I-structure (which is unique) is connected with ⋆. Without loss of generality, we shall assume that X is the standard basis of N n and that ν(x) = x holds for x in X. Lemma 3.1. For all x 1 , ..., x r in X, we have ν(

x 1 •••x r ) = Σ r (x 1 , ..., x r ), with Σ r inductively defined by Σ 1 (x 1 ) = x 1 and Σ r (x 1 , ..., x r ) = Σ r-1 (x 1 , , ..., x r-1 ) • Π r (x 1 , ..., x r ).
Proof. The result can be established directly by developing a convenient RC-calculus and proving that Σ r (x 1 , ..., x r ) satisfies all properties required for an I-structure. A shorter proof is to start from the existence of the I-structure ν and just connect it with the values of Σ r . As established in [START_REF] Gateva-Ivanova | Semigroups of I-type[END_REF] (see also [START_REF] Jespers | Noetherian semigroup algebras[END_REF]Chapter 8, Lemma 8.2.2]), the following inductive relations are satisfied for all u, v in N n :

(2)

ν(uv) = ν(u) ν(π(u)[v]) and π(uv) = π(π(u)[v]) • π(u)
where π[u] is the result of applying π to u componentwise.

We then use induction on r. For r = 1, the result is obvious. Assume r = 2 and

x 1 = x 2 . By definition, we have ν(x 1 x 2 ) = x 1 π(x 1 )(x 2 ) = ν(x 2 x 1 ) = x 2 π(x 2 )(x 1 )
. This shows that ν(x 1 x 2 ) must be the right-lcm (least common right-multiple) of x 1 and x 2 in M . On the other hand, x 1 (x 1 ⋆x 2 ) = x 2 (x 2 ⋆x 1 ) holds in M by definition, and this must also represent the right-lcm of x 1 and x 2 . By uniqueness of the rightlcm and left-cancellativity, we deduce π(x 1 )(x 2 ) = x 1 ⋆x 2 . Next, for x 1 = x 2 , the value of π(x 1 )(x 2 ), as well as that of x 1 ⋆x 2 , must be the unique element of X that is not of the form π(x 1 )(x) or x 1 ⋆x with x = x 1 , respectively. This forces π(x 1 )(x 2 ) = x 1 ⋆x 2 in this case as well, implying ν(x 1 x 2 ) = x 1 (x 1 ⋆x 2 ) = Σ 2 (x 1 , x 2 ) in every case. Assume now r ≥ 3. We find

ν(x 1 •••x r ) = x 1 ν(π(x 1 )[x 2 •••x r ]) = x 1 ν((x 1 ⋆x 2 )•••(x 1 ⋆x r )) = x 1 Σ r-1 (x 1 ⋆x 2 , ..., x 1 ⋆x r ) = Σ r (x 1 , x 2 , ..., x r ),
the first equality by (2), the second by the case r = 2, the third by the induction hypothesis, and the last one by expanding the terms. Lemma 3.2. For x ∈ X and r ≥ 0, let x [r] = ν(x r ). For all x ∈ X and u ∈ N n , we have ν(x p u) = x [p] ν(u) in M . In particular, we have π(x p ) = id and, for all x, y in X, the elements x [p] and y [p] commute in M .

Proof. Let y 1 •••y q be a decomposition of u in terms of elements of X. By Lemma 3.1, we have ν(x p u) = Σ p+q (x, ..., x, y 1 , ..., y q ) = Σ p (x, ..., x)Σ q (Π p+1 (x, ..., x, y 1 ), ..., Π p+1 (x, , ..., x, y q )) = Σ p (x, ..., x)Σ q (y 1 , ..., y q ) = ν(x p )ν(y

1 •••y q ) = x [p] ν(u),
in which the second equality comes from expanding the terms and the third one from the assumption that M is of class p. Applying with u = y in X and merging with ν(x p y) = ν(x p ) π(x p )(y), we deduce π(x p ) = id. On the other hand, applying with u = y [p] , we find x [p] y [p] = ν(x p y p ) = ν(y p x p ) = y [p] x [p] . Lemma 3.3. Assume p ≥ 2 and define ∆ = ν( x∈X x p-1 ). Then ∆ is a Garside element in M , and its family of divisors is ν({0, ..., p-1} n ), which has p n elements. Moreover ∆ p is central in M .

Proof. The map ν is compatible with : for all u, v in N n , we have u v in N n if and only if ν(u) ν(v) holds in M . Indeed, by [START_REF] Chouraqui | Finite quotients of groups of I-type[END_REF]

, v = ux with x in X implies ν(v) = ν(u)π(u)(x), whence ν(u) ν(v) in M . Conversely, for ν(v) = ν(u)x with x in X, as π(u) is bijective, we have π(u)(y) = x for some y in X, whence ν(uy) = ν(u)π(u)(y) = ν(u)x = ν(v), and v = uy since ν is injective, that is, u v in N n .
Hence the left-divisors of ∆ in M are the image under ν of the p n divisors of δ p-1 in N n , with δ = x∈X x. For right-divisors, the maps π(u) are bijective, so every right-divisor of ∆ must be a left-divisor of ∆. Then the duality map g → h for gh = ∆ is a bijection from the left-to the right-divisors of ∆. So the left-and right-divisors of ∆ coincide, and they are p n in number. Since every element of X divides ∆, the latter is a Garside element in M . Finally, by Lemma 3.1, ∆ p is the product of the elements x [p] repeated p -1 times; as σ[δ] = δ holds for every permutation σ, we deduce x∆ p = ∆ p x for every x.

For u ∈ N n and x ∈ X, write |u| x for the (well-defined) number of x in an X-decomposition of u. Lemma 3.4. For u, u ′ in N n , say that u ≡ p u ′ holds if, for every x in X, we have |u| x = |u ′ | x mod p, and, for g, g ′ in M , say that g ≡ g ′ holds for ν -1 (g) ≡ p ν -1 (g ′ ).

Then ≡ is an equivalence relation on M that is compatible with left-and rightmultiplication.

Proof. As ν is bijective, carrying the equivalence relation ≡ p of N n to M yields an equivalence relation. Assume ν(u) ≡ ν(u ′ ). Without loss of generality, we may assume u ′ = ux p = x p u with x in X. Applying (2) and Lemma 3.2, we deduce π(u) = π(u ′ ) and, therefore, ν(u)π(u)(y) = ν(uy) ≡ ν(u ′ y) = ν(u ′ )π(u)(y). As π(u)(y) takes every value in X when y varies, ≡ is compatible with rightmultiplication by X. On the other hand, u ≡ p u ′ implies σ[u] ≡ p σ[u ′ ] for every permutation σ in S X , so we obtain yν(u) = ν(yπ(y) -1 [u]) ≡ ν(yπ(y) -1 [u ′ ]) = yν(u ′ ), and ≡ is compatible with left-multiplication by X. Lemma 3.5. For g = ∆ pe h, g ′ = ∆ pe ′ h ′ in G with h, h ′ ∈ M , say that g ≡ g ′ holds if h ≡ h ′ does. Then ≡ is a congruence on G with p n classes, and the kernel of G → G/≡ is the Abelian subgroup of G generated by the elements x [p] with x ∈ X.

Proof. As ∆ is a Garside element in M , every element of G admits a (non-unique) expression ∆ pe h with e ∈ Z and h ∈ M . Assume g = ∆ pe h = ∆ pe1 h 1 with e > e 1 . As M is left-cancellative, we find h 1 = ∆ p(e-e1) h, whence h 1 ≡ h. So, for every h ′ in M , we have h ≡ h ′ ⇔ h 1 ≡ h ′ and ≡ is well-defined on G. That ≡ is compatible with multiplication on G follows from the compatibility on M and the fact that ∆ p lies in the centre of G. Next, by definition, every element of G is ≡-equivalent to some element of M , so the number of ≡-classes in G equals the number of ≡-classes in M , hence the number p n of ≡ p -classes in N n . Finally, u ≡ p x p u holds for all x in X and u in N n . This, together with Lemma 3.1, implies x [p] ≡ 1. Conversely, assume g ≡ 1 in M . By definition, ν -1 (g) lies in the ≡ p -class of 1, hence one can go from ν -1 (g) to 1 by multiplying or dividing by elements x p with x ∈ X. By Lemma 3.1 again, this means that one can go from g to 1 by multiplying or dividing by elements x [p] with x ∈ X. In other words, the latter elements generate the kernel of the projection of G to G/≡. Now Theorem 1.2 readily follows. Indeed, define W to be the finite quotientgroup G/≡. We saw that the kernel of the projection of G onto W is the free Abelian group generated by the n elements x [p] with x ∈ X, thus giving an exact sequence 1 → Z n → G → W → 1. A presentation of W is obtained by adding to the presentation of G in Definition 2.1 the n relations x [p] = 1, that is, x(x⋆ x)((x⋆ x)⋆(x⋆ x))... = 1. By construction, the Hasse diagram of the lattice made of the p n divisors of ∆ is the image under ν of the sublattice of N n made of the p n divisors of δ in N n , whereas the Cayley graph of the germ derived from (W, X)-that is, W equipped with the partial product obtained by restricting to the cases when the X-lengths add-is the image under ν of the Cayley graph of the germ derived from the quotient-group Z n /≡ p : the (obvious) equality in the case of N n implies the equality in the case of M .

An example

For an RC-quasigroup of class 1, that is, satisfying x⋆ y = y for all x, y, the group G is a free Abelian group, the group W is trivial, and the short exact sequence of Theorem 1.2 reduces to 1 → Z n → G → 1.

Class 2, that is, when (x⋆x)⋆ (x⋆y) = y holds for all x, y, is addressed in [START_REF] Chouraqui | Finite quotients of groups of I-type[END_REF] (with no connection with RC-quasigroups). The element ∆ is the right-lcm of X, it has 2 n divisors which are the right-lcms of subsets of X, and the group W is the order 2 n quotient of G obtained by adding the relations x(x⋆ x) = 1. 
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 3251 Figure 1. An example in class 3: here W has 3 3 = 27 elements, and its Cayley graph is a cube with edges of length 3 -1.

the presentation a, b, c | ac = b 2 , ba = c 2 , cb = a 2 , abc = 1 . The lattice Div(∆) has 27 elements, its diagram is the cube shown on the right. The latter is also the Cayley graph of the germ derived from (W, X).