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The Josephson effect describes the flow of supercurrent in a weak link, such as a 

tunnel junction, nanowire, or molecule, between two superconductors1. It is the basis for 

a variety of circuits and devices, with applications ranging from medicine2 to quantum 

information3. Currently, experiments using Josephson circuits that behave like artificial 

atoms4 are revolutionizing the way we probe and exploit the laws of quantum physics5,6. 

Microscopically, the supercurrent is carried by Andreev pair states, which are localized 

at the weak link. These states come in doublets and have energies inside the 

superconducting gap7-10. Existing Josephson circuits are based on properties of just the 

ground state of each doublet and so far the excited states have not been directly detected. 

Here we establish their existence through spectroscopic measurements of 
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superconducting atomic contacts. The spectra, which depend on the atomic 

configuration and on the phase difference between the superconductors, are in complete 

agreement with theory. Andreev doublets could be exploited to encode information in 

novel types of superconducting qubits 11-13. 

A bulk, isolated Bardeen-Cooper-Schrieffer (BCS) superconductor can be described by a 

spectrum having a gap around the Fermi energy of 2Δ, which is the minimum energy 

necessary to excite a pair14. In the presence of a short weak link, the superconducting phase δ 

can be easily twisted, leading to a local modification of the spectrum and the creation of new 

states inside the gap. These Andreev Bound States have energies AE , with EA given by 

  21 sin / 2AE      
(1) 

for a weak link which has a single conduction channel of transmission probability τ 

(Figure 1a). Since AE   , these bound states cannot propagate into the bulk superconductor 

and are localized at the weak link on a distance of order ξ, the superconducting coherence 

length. The ground Andreev pair state   has energy -EA and the lowest possible pair 

excitation of the system, requiring an energy 2EA, is a transition to the excited Andreev pair 

state   at +EA. The phase dependence of AE gives rise to opposite supercurrents for the 

two states,   02 / /AE    , with h/2e the flux quantum.  

Current Josephson circuits are primarily based on tunnel Josephson junctions, which have 

many conduction channels with small transmissions (τ≪1). In this limit, the ground state 

energy -EA in each channel is proportional to –cos δ. Summing over all channels one recovers 

the standard Josephson coupling energy –EJ cos δ and the sinusoidal current-phase relation 
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predicted by Josephson1. For channels of arbitrary transmissions, the ground state − has been 

probed through measurements of the current-phase relation in superconducting atomic 

contacts15. Excitations created by the addition or removal of an electron from the state   

have been observed in superconducting atomic contacts16 and quantum dots connected to 

superconductors17,18. The continuum of Andreev states that form in SNS structures has also 

been probed19,20. Thermal occupation of the excited states was invoked to explain the 

temperature dependence of the supercurrent10. However, the excited Andreev pair state   

has not been directly detected. Here we present spectroscopic evidence of excited Andreev 

pair states in superconducting atomic contacts, a simple system that allows direct quantitative 

comparison with theoretical predictions. 

The principle of our experiment is described in Figure 1b. An atomic contact obtained 

using a microfabricated, mechanically-controllable break junction21 is placed in parallel with 

a tunnel Josephson junction to form a SQUID. A second tunnel junction, the “spectrometer”, 

is used as an on-chip broadband microwave source and detector22-24. It is coupled to the 

SQUID through an on-chip capacitor (∼30 pF). The superconducting material for the 

junctions and atomic contact is aluminum (Δ≃180 μeV) (see Methods for fabrication details). 

A micrograph of the sample is shown in Figure 1d. Both the spectrometer and the SQUID can 

be voltage-biased separately through on-chip LC filters (see Supplementary Figures 1&2). 

The transmissions of the conduction channels of the atomic contact are determined by fitting 

the current-voltage characteristic of the SQUID with the theory of multiple Andreev 

reflections25 (see Supplementary Figure 3). The SQUID geometry also allows phase biasing 

the atomic contact by applying a magnetic flux  through the loop. Since the sum of the 
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Josephson inductance of the SQUID tunnel junction (∼310 pH) and the inductance of the 

SQUID loop (∼20 pH) is much smaller than the typical atomic contact inductance (∼3 nH), 

the phase difference across the atomic contact is  

When biased at a voltage VJ the spectrometer undergoes Josephson oscillations and acts as 

a microwave current source at frequency J=2eVJ/h. Microwave photons emitted by the 

spectrometer are absorbed by the environment which subsequently relaxes. The dissipated 

power P requires a dc current IJ to be supplied by the biasing circuit to satisfy power 

conservation P=IJVJ. Microscopically, this dc current is a result of inelastic Cooper-pair 

tunneling: each time a photon is absorbed, a Cooper pair tunnels across the spectrometer 

insulating barrier26,27, as in Figure 1c. In the sub-gap current-voltage IJ(VJ) characteristic of 

the spectrometer junction, a transition of energy E is revealed as a dc current peak at 2eVJ=E 

with height IJ=2e(E), where Γ(E) is the photon absorption rate. Classically, this rate is 

related to the real part of the impedance seen by the spectrometer. The on-chip coupling 

capacitor and LC filtering are designed to keep the absorption rate due to the external 

environment low. Transitions such as the Andreev excitation      at the energy 

 2 2 ,J AeV E    can be distinguished by their dependence on both the flux and the contact 

configuration. 

Figure 2 shows the current-voltage characteristic IJ(VJ) of the spectrometer for atomic 

contact AC2 (see below) at two values of the reduced flux . Several current peaks are visible 

below the voltage Δ/e≃180 μV, which corresponds to the maximum excitation energy of 

interest for the Andreev transition, 2 2JeV   . Parts of the spectra change by as much as 

200 pA as a function of reduced flux , revealing excitation of modes associated with the 



5 

SQUID. Specifically, when going from  =1.15π (black line) to  =π (red line), a prominent 

peak develops at a voltage bias VJ=20 μV and a peak at ∼90 μV broadens. Peaks which do not 

depend on the flux bias or the contact configuration, for example around VJ=150 μV, are 

interpreted as resonances in the external electromagnetic environment and form a background 

which is subtracted from the IVs (see section 2.2 of Supplementary information). In Figure 2b 

there are no data in the two grey regions ( 50 VJV µ and 9 VJV µ ) because the spectrometer 

voltage biasing is not stable (see Methods). The measured current decreases about an order of 

magnitude as the bias voltage is increased and passes through the zone of instability at 

50 VJV µ . 

Spectra measured for the three different atomic contacts AC1, AC2 and AC3 are shown in 

Figures 3a-c. In each spectrum, the current IJ through the spectrometer junction is plotted with 

the common color scale of Figure 3c. The vertical axes give the energy of photons emitted by 

the spectrometer in units of the bias voltage, hJ=2eVJ. The corresponding frequencies range 

from 0 to 85 GHz. The horizontal axes give the applied reduced flux  ≈δ. There are no data 

in the grey regions where biasing is unstable. The contrast becomes fainter as the energy 

increases, except for a narrow band around 1.8Δ. The most remarkable features are the V-

shaped transitions which fan out from =π towards higher energies. AC3, which is a many-

atom contact with about 20 conduction channels (Figure 3c), has a multitude of well resolved 

V-shaped transitions. These transitions, which depend sensitively on the channel 

transmissions i as well as , are the Andreev transitions. To confirm this, we plot with red 

lines in Figures 4b (AC1) and 4d (AC2) the expected positions 2EA1 and 2EA2 of the Andreev 

transitions using Eq. 1 for the two highest transmission channels in each contact: AC1 
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(transmissions 0.942, 0.26) and AC2 (transmissions 0.985, 0.37) (see Supplementary 

Figure 3). The lines match the observed transitions.  

In addition to the Andreev transitions, there is a much brighter spectroscopic line 

(IJ >1 nA, color scale red) common to all contacts which is located at 0.51Δ and hardly varies 

with flux for AC1 and AC2 but dips to 0.4Δ at  ∼π for AC3. It corresponds to the large peak 

at VJ=45 μV in Figure 2, whose upper half falls in the region of instability. We identify it as 

the excitation of the plasma mode of the SQUID. This oscillator mode formed by the SQUID 

Josephson inductance LS() and its parallel capacitance CS resonates at frequency 

 
1

2 22GHzp S SL C 


   (0.51Δ/h). The capacitance 280fFSC  is the sum of the 

SQUID and spectrometer capacitances. LS() results from the parallel combination of three 

inductive elements: the atomic contact, the SQUID Josephson junction, and an on-chip 

inductor on the biasing line (see Supplementary Figure 1). The flux dependence of LS() is 

negligible for the asymmetric SQUIDs (cases AC1, AC2) but results in a 0.1Δ amplitude 

modulation (4 GHz) of the plasma frequency for the large atomic-contact SQUID (case AC3). 

The energy hp associated with the plasma frequency p for AC1 and AC2 is plotted in 

Figures 4b and 4d, respectively, as blue lines, and concurs with the experimental data. The 

abrupt decrease in spectrometer signal above the plasma frequency (Figure 2b) is due to the 

shunting of emitted microwaves by the capacitance CS. 

The combination of the Andreev and plasma degrees of freedom leads to a double ladder 

energy diagram as shown in Figure 4a. The states are labeled by ,n , where σ=± accounts 

for the Andreev pair state and n is the plasmon number. The data are well explained by 
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considering transitions only from the initial state ,0 . The Andreev transition 

 ,0 ,0    at 2 2J AeV E  is indicated by the red arrow and the plasma transition 

 ,0 ,1    at 2 J peV h  by the blue arrow. 

In the spectrum of each contact, there is another resonance near 1.02Δ which is similar in 

shape to the plasma transition but at twice the energy and of smaller amplitude (∼100 pA). 

This corresponds to the second harmonic of the plasma transition, 2 2J peV h  (Figures 4b 

and 4d, blue dashed line), in which each Cooper pair tunneling through the spectrometer emits 

two photons of energy ph . This two-photon plasma transition ,0 ,2    is represented by 

the blue dashed arrow in the energy ladder, Figure 4a. It is also possible to simultaneously 

excite the Andreev transition and the plasma mode (Figure 4a, purple dashed arrow). This type 

of transition ,0 ,1   , at 2 2J A peV E h  , is observed in the spectra, Figures 4b and 

4d, as a replica of the Andreev transition, shifted up by the plasma energy (purple dashed 

line).These transitions agree with the data everywhere except where two such two-photon 

processes coincide, near =π and 2 1.02JeV   . There one observes a level repulsion 

(Figure 3a) or an avoided crossing (Figure 3b) depending on the relative position of the 

undressed states. In the spectra the region of instability obscures the hybridization effects at 

energy 2 J peV h  but line traces slightly below confirm their existence (see Supplementary 

Information). 

The experimental spectra are well described by a model based on the Andreev 

Hamiltonian11 (see Section 2.3 of Supplementary Information). The eigenenergies of the 

SQUID Hamiltonian are determined by perturbation analysis and numerical diagonalisation. 
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The resulting transition energies are shown as black lines in Figure 4c and 4e. Only crossings 

of transition lines involving the same number of photons show significant hybridisation, in 

good agreement with the data. The rich structure predicted in the top part of the spectrum is 

not visible in the experiment because of the shunting by the SQUID capacitor. A quantitative 

description of the intensity and width of the transitions would require taking into account the 

coupling to the detector and the sources of dissipation. 

Our results show that in addition to the phase difference, each conduction channel of a 

Josephson weak link possesses an internal degree of freedom similar to a spin-half. This 

Andreev pseudo-spin is unique as a microscopic degree of freedom intrinsically coupled to a 

superconducting circuit and whose energy is tunable over a wide range. Theoretical proposals 

for an Andreev qubit are based either directly on this pseudo-spin11 or on the actual spin of 

quasiparticles trapped in the Andreev levels12,13,16. Their implementation requires reducing 

external sources of decoherence, something that could be achieved, in the circuit QED 

approach, by integrating a superconducting atomic contact in a high quality resonator28,29. 

Finally, in hybrid systems where spin-orbit and Zeeman interactions are also present, Andreev 

levels give rise to Majorana states whose detection is currently the subject of intense study30. 

Methods 

The sample is mounted in a bending mechanism (see Supplementary Figure 2d) anchored to 

the mixing chamber of a dilution refrigerator at 30 mK and housed inside a superconducting 

shield to reduce magnetic interference. Two SMA launchers connect it to the biasing and 

measuring lines which are heavily filtered. An electrically shielded small superconducting coil 
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located directly above the sample is used to apply magnetic flux. A pusher actuated by a room 

temperature dc motor bends the sample and modifies the atomic contact configuration. The 

atomic contacts, tunnel junctions, and on-chip filters (alumina dielectric) are fabricated by 

electron-beam lithography and evaporation. Tunnel junctions are formed by double-angle 

evaporation and oxidation and have a bare plasma frequency of 14 GHz. Measurements of the 

SQUID and spectrometer current-voltage characteristics are made at low frequency 

(10−100 Hz) with room-temperature amplification. When the differential conductance of the 

spectrometer is smaller than -1/Rb, such as on the negative-slope side of the first plasma peak, 

biasing is unstable. This results in the absence of data in the grey regions above the plasma 

transition in Figures 2 and 3. At low voltages, there is another instability due to retrapping to 

the zero-voltage state. The peaks in the IVs which do not depend on the flux are subtracted 

from the measured spectra in the region VJ>50 μV as described in section 2.2 of 

Supplementary information. The theoretical spectra of Figure 4c and 4e are obtained by 

numerical diagonalisation of the Hamiltonian describing both the Andreev states and the 

plasma mode, which are coupled because they share the phase across the SQUID Josephson 

junction(see Supplementary information, section 2.3).  
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Figure 1. Principle of spectroscopy of the Andreev transition. a, Phase (δ) dependence of 

the Andreev levels with energies EA in a short transport channel of transmission τ. Energy Δ 

is the superconducting gap. b, Simplified schematic of the setup. A voltage-biased Josephson 

junction (yellow checked box, critical current 48 nA) is used as a spectrometer: it acts both as 

a microwave source and a detector. The ac Josephson current (at frequency J=2eVJ/h set by 

the voltage VJ across the junction), is coupled through capacitor Σ to a SQUID formed by an 

atomic point contact (magenta triangles) and an ancillary Josephson junction (critical current 

1 μA, 20 times larger than the typical critical current of a one-atom aluminum contact). 

Magnetic flux  threading the loop imposes a phase  across contact and 

determines the Andreev transition frequency of panel a. c, The absorption of a photon at this 

frequency is accompanied by the transfer of a Cooper pair through the spectrometer. d, 

Micrograph of the sample (at an angle of 45°) with spectrometer, suspended bridge to obtain 

the atomic contacts and SQUID Josephson junction. 
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Figure 2. IJ(VJ) characteristic of the spectrometer coupled to SQUID with atomic contact 

AC2. a, Large scale. b, Zoom of the sub-gap current for two values of the reduced flux . The 

grey regions at 9 VJV µ  and on the right-hand side of the peak at 50 VJV µ  are not 

accessible because the biasing is unstable. Parts of the spectra that change with  reveal 

energy absorption by the SQUID. 

 

 

Figure 3. Absorption spectra for 3 atomic contacts: a, AC1 (transmissions 0.942, 0.26,...); 

b, AC2 (transmissions 0.985, 0.37,...); c, AC3 (more than 20 channels). The color encodes the 

current IJ through the spectrometer, as a function of the reduced flux  and of the bias voltage 

VJ. The right axis gives the spectrometer frequency J associated with VJ. 
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Figure 4. Interpretation of the absorption spectra. a, Energy spectrum schematics for a 

single channel: each state is labeled ,n  or ,n  for the Andreev pair in the ground (−) or 

excited (+) state and n photons in the plasma mode. b,d, predicted transitions for contacts 

AC1 and AC2. Red lines: transition energies 2EA predicted from the channel transmissions 

(Eq. 1); blue lines: excitation energy for the plasma mode hp; blue dashed line: 2-photon 

plasma mode process 2hp; purple dashed line: 2-photon process 2EA+ hp exciting both the 

Andreev and plasma transitions. c,e, Transition lines for contacts AC1 and AC2 calculated by 

diagonalisation of the full Hamiltonian, superimposed on the data.  


