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Abstract

The paper is devoted to the longitudinal dispersion of a soluble substance
released in a steady laminar flow through slit channel with heterogeneous
reaction at the outer wall. The reactive transport happens in presence of
dominant Péclet number and order one Damköhler number. In particular,
these Péclet numbers correspond to Taylor’s dispersion regime. An effec-
tive model for the enhanced diffusion in this context was derived recently .
It contains memory effects and contributions to the effective diffusion and
effective advection velocity, due to the flow and chemistry reaction regime.
In the present paper, we show through numerical simulations the efficiency
of this new model. In particular, using Taylor’s ‘historical’ parameters, we
illustrate that our derived contributions are important and that using them
is necessary in order to simulate correctly the reactive flows. We emphasize
three main points. First, we show how the effective diffusion is enhanced
by chemical effects at dispersive times. Second, our model captures an in-
termediate regime where the diffusion is anomalous and the distribution is
asymmetric. Third, we show how the chemical effects also slow down the
average speed of the front.

Keywords: Taylor’s dispersion, memory effects, enhanced diffusion,
anomalous diffusion, finite elements.
35B25, 92E20, 76F25, 65N30, 76M10.

1. Introduction

We consider the evolution of a soluble substance introduced into the
Poiseuille flow in a slit channel. In fact, this problem could be studied in
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three distinct regimes: a) diffusion-dominated mixing; b) Taylor dispersion-
mediated mixing; c) chaotic advection. We focus our analysis to regime b),
corresponding to dominant Péclet’s numbers, but smaller than a threshold
value. We also consider the transition between a) and b).

If the channel is the domain Ω∗,

Ω∗ = {(x∗, y∗) : x∗ ∈ R, |y∗| < H},

the height of the channel being denoted by H, H > 0, the equation governing
the evolution of the solute concentration c∗ is:

∂c∗

∂t∗
+ q(y∗)

∂c∗

∂x∗
−D∗ ∂

2c∗

∂(x∗)2
−D∗ ∂

2c∗

∂(y∗)2
= 0 in Ω∗, (1)

where q(z) = Q∗(1−(z/H)2) is the Poiseuille profile, Q∗ being the maximum
velocity at the axis, while D∗ is the molecular diffusion. Equation (1) is of
course completed by appropriate initial and boundary conditions. Boundary
conditions are especially important in the present work since they model
the reactions with the walls. We will turn back to this point somewhat
later. Let us first focus on equation (1) and introduce appropriate scales
to emphasize the significance of a dominant Péclet number. The obvious
transversal length scale is H. For all other quantities we use reference values
denoted by the subscript R. Setting

c =
c∗

cR
, x =

x∗

LR
, y =

y∗

H
, t =

t∗

TR
,

Q =
Q∗

QR
, D =

D∗

DR
,

where LR is the ‘observation distance’, we obtain the dimensionless equation

∂c

∂t
+
QRTR
LR

Q(1− y2)
∂c

∂x
− DRTR

L2
R

D
∂2c

∂x2
− DRTR

H2
D
∂2c

∂y2
= 0 (2)

in
Ω = R× (−1, 1).

The times scales involved in this equation are

TL= characteristic longitudinal time scale =
LR
QR

,

TT= characteristic transversal time scale =
H2

DR
.
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We define a small parameter ε by

ε =
H

LR
.

The Péclet number Pe, defined by

Pe =
LRQR
DR

,

being supposed to be dominant but before a threshold, assume there exists
0 < α < 2 such that Pe = ε−α. The lower order process of diffusion is

rescaled by
TT
TL

=
HQR
DR

ε = O(ε2−α). Choosing the dispersive time for

reference time by setting
TR = TL,

equation (2) yields:

∂cε

∂t
+Q(1− y2)

∂cε

∂x
= Dεα

∂2cε

∂x2
+Dεα−2∂

2cε

∂y2
in Ω. (3)

Clearly, there is a great anisotropy in the former equation. The dispersion is
due to this combined action of dominant convection parallel to the axis and
molecular diffusion in the radial direction. Actually, in the fundamental
papers [40] and [1], Taylor and Aris found the following one-dimensional
approximation for (1) with no-flux (Neumann) boundary conditions on the
side walls:

∂t∗c
Tay +

2Q∗

3
∂x∗c

Tay −DTay∂2
x∗c

Tay = 0 in R+. (4)

In (4), the effective axial diffusivity contains a contribution proportional
to the square of the transversal Péclet number in addition to the original
molecular diffusivity:

DTay = D∗
(
1 +

8
945

Pe2
T

)
, PeT =

Q∗H

D∗
. (5)

The solute is convected by the average velocity of the flow 〈q〉 = 2Q∗/3 and
diffuses with respect to the Taylor’s dispersion coefficient DTay.

Taylor’s paper [40] was the first one of a huge literature on the subject.
This does not allows us to give an exhaustive list of references. Let us
only mention the mostly used methods. Roughly speeking, passing from the
2D-equation (1) to the 1D-equation (4) corresponds to a vertical averaging.
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Difficulty is that the equation for the difference between physical and av-
eraged concentrations is not closed because of the dispersive source term
∂x〈qc∗〉. For its determination one should go to the next order and actu-
ally solve an infinite system of equations. Derivation of (4) is thus linked
with the choice of ‘closure scheme’. Aris [1] presented a formal derivation
of Taylor’s approximation using the method of moments. This method, fur-
ther developed by Brenner and collaborators (e.g. [7]) is still very common
nowadays. Other interesting series expansion methods are in the works [20]
[22] and [39]. Important step is to “justify” the closure of the computations
(or the truncation of the series expansion) either by orders of magnitude
arguments (e.g. [19], [41], [6]), or by homogenization techniques (e.g. [36])
or volume averaging approach (e.g. [35]; this latter approach being adapted
for complex geometries) or by a center manifold argument (e.g. [27]). Very
different approaches consist in starting from the position process of each
molecule with an appropriate description of its transition probability func-
tion (e.g. [4]). Taylor-Aris result (4) is then equivalent to the asymptotic
Gaussian nature of the process. Such a probabilistic analysis may lead to
a variety of non-local transport models (e.g. [28]). In particular, some ab-
stract assumptions on the transitions between jumps of the molecules lead
to kernel memory terms comparable to those used in the present paper,
though derived with a very different method. We finally mention derivation
of (reversible) non-parabolic models, using statistical physics, in the papers
[9, 10, 11] and [5].

The approximate models proposed in the latter references are justified
for asymptotic large times. Nethertheless it is worth mentioning that the
literature does not provide information about the induced error. Up to our
knowledge, the articles [29, 30, 14, 15] give the first derivations of Taylor’s
type models controlling the error in energy, without assuming unrealistically
regular data. More precisely, in the latter papers, the optimization of the
error estimates is a crucial step in predicting the effective coefficients.

Moreover papers [29, 30, 14, 15] focus on possible chemical effects. One
may guess of course that adsorption and desorption processes increase the
heterogeneity of the solute plume injected in the pipe and thus should in-
fluence the final dispersion phenomenon. Flow with chemistry has already
been considered in numerous works, based on the same methods than the
ones listed above, and thus without error estimates. We mention for instance
[3, 16], [23] (for a reactive mixture, but no reactions with the walls) based
on the method of moments, [32] based on the Fife and Nicholes expansion,
[38] based on [37], [33] based on closure schemes of turbulence modeling and
a volume averaging approach, [2] based on the center manifold approach.
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The present paper aims at giving numerical illustrations of the results
obtained in [15] where adsorption and desorption reactions occur on the
walls of the channel through a linear driving force model with a finite kinetics
and a linear isotherm. In [15], the authors derive rigorously an upscaled
Taylor’s type model where influence of the chemical kinetics on the dispersive
effects is explicit. The model was justified through error estimates depending
explicitly on the small parameter ε = H/LR. Presence of an initial time
boundary layer allows only a global error estimate in L2 with respect to
space and time.

In the present paper, we show through numerical simulations the effi-
ciency of the model derived in [15]. In particular, using Taylor’s original
parameters (see Section §3), we illustrate that the derived contributions are
important and that using them is necessary in order to simulate correctly
the reactive flows (see Subsection 4.1). The model derived in [15] is repro-
duced in Section §2 (see (9)-(12)). The reader will note that the chemical
reactions on the walls produce complicated memory terms. We thus aim to
emphasize three main points through our numerical simulations. First, in
Subsection 4.2, we turn to the question of anomalous diffusion. We show
how the effective diffusion is enhanced by chemical effects at dispersive times.
Furthermore the model of [15] also captures an intermediate regime where
the diffusion is anomalous and the distribution is asymmetric. Second, in
Subsection 4.3, we show how the chemical effects also slow down the average
speed of the front. Finally, in Section §5, we present numerical illustrations
of some other effective models: the case with Danckwerts boundary con-
dition in subsection 5.1, and the case of nonlinear reactions in subsection
5.2.

2. Exact and upscaled problems

Let us write the precise setting of the problem. We consider the transport
of a reactive solute by diffusion and convection by Poiseuille’s velocity in an
infinite 2D channel. The solute particles do not react among themselves.
Instead they undergo an adsorption process at the lateral boundary. For a
general discussion on the modeling of adsorption processes in porous media
we refer to [17] and [24].
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We consider the following exact model for the solute concentration c∗:

∂c∗

∂t∗
+ q(y∗)

∂c∗

∂x∗
−D∗ ∂

2c∗

∂(x∗)2
−D∗ ∂

2c∗

∂(y∗)2
= 0 in Ω∗, (6)

−D∗∂y∗c∗ =
∂c∗s
∂t∗

= k∗s
(
c∗ − c∗s

K∗e

)
on Γ∗, (7)

c∗(x∗, y∗, 0) = c∗00(x∗), c∗s(x
∗, 0) = c∗s0(x∗). (8)

The crucial difference between problem (6)-(8) and the the one originally
considered by Taylor is the boundary condition on the side walls Γ∗ =
{(x∗, y∗) : x∗ ∈ R, |y∗| = H}. Taylor assumed no-flux conditions. Here
equation (7) describes reaction at channel wall Γ∗ linking the solute concen-
tration c∗ and the adsorbed species surface concentration c∗s. The adsorption
rate constant is k∗s (homogeneous to a velocity), the linear adsorption equilib-
rium constant is K∗e (length), the constant desorption rate being character-
ized by k∗s/K

∗
e . These quantities are all positive real numbers. Equation (8)

describes initial infiltration with a mollified Dirac pulse of water containing
a solute of volume concentration c∗00 and the adsorbed species surface con-
centration c∗s0. In [15], we assume c∗00 ∈ C∞0 (R), c∗00 ≥ 0 and c∗s0 ∈ C∞0 (R),
c∗s0 ≥ 0. Following Taylor’s example (B1) (see [40], page 192), we can take
for c∗00 the mollified Dirac measure of mass M, concentrated at x = 0.

We have already explained in the Introduction how appropriate scales
have to be chosen ensuring the Péclet number in the range of the Taylor’s
dispersion regime (see the derivation of (3)). We now have to describe the
order of magnitude of the kinetics, characterized by the Damköhler number
defined below. If we introduce reference values denoted by the subscript R
in the reaction equation (7), three characteristic time scales appear,

TDe= characteristic desorption time scale =
KeR

ksR
,

TA= characteristic adsorption time scale =
csR
cRksR

,

Treact= superficial chemical reaction time scale =
H

ksR
,

with the Damköhler number defined by

Da =
LR

TAQR
.

Assuming KeR ≈ H, and the time scales TDe, TA and TL of the same order,
implies Damköhler’s number of order one (with respect to ε, that is of order
ε0). We will see below that this order one (to be compared with the order
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εα, α > 0, of the Péclet number) is sufficient to ensure that the kinetics
appear at the main scale in the upscaled model. Hence one should take care
simultaneously of the flow and of the chemical reactions.

It should be noted that transport models derived for nonreactive solutes
are often used, in conjunction with experimentally-derived correctors, to
predict the transport of reactive chemicals. Here instead we used an upscaled
model rigorously derived in [15]. In [15], the authors prove that the upscaled
problem in R+ corresponding to (6)-(8) for the basic dimensional effective
concentration ceff is the following: find ceff ∈ L2((0, T )× R) such that

∂ceff

∂t∗
+

2
3
Q∗

∂ceff

∂x∗
−D∗

(
1 +

8
945

Pe2
T

)∂2ceff

∂(x∗)2

+
k∗s
K∗e

ceff − (
k∗s
K∗e

)2

∫ t∗

0
e−k

∗
s (t∗−ξ)/K∗

e ceff (·, ξ)dξ

−1
3
PeTDaT

H

K∗e

k∗s
K∗e

(
ceff

+
∫ t∗

0
e−k

∗
s (t∗−ξ)/K∗

e

(
(
k∗s
K∗e

)2(t∗ − ξ)− 2
k∗s
K∗e

)
ceff (·, ξ)dξ

)
+

4
45

H

K∗e
PeTk∗s

{
∂xc

eff − k∗s
K∗e

∫ t∗

0
e−k

∗
s (t∗−ξ)/K∗

e ∂xc
eff (·, ξ)dξ

}
=

k∗s
K∗e

e−k
∗
s t
∗/K∗

e

{ c∗s0
K∗e

+
1
3
PeT DaT

c∗s0
K∗e

H

K∗e

( k∗s
K∗e

t∗ − 1
)}

+e−k
∗
s t
∗/K∗

e
4
45

k∗s
K∗e

H

K∗e
PeT ∂xc∗s0, (9)

ceff|t=0 = c∗00, (10)

where the transversal Péclet et Damköhler numbers, PeT and DaT are given
by

PeT =
Q∗H

D∗
and DaT =

k∗s
Q∗

.

Existence of a unique solution ceff ∈ H1(0, T ;H2(R) is proved in [15]. Then
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the dimensional effective solute and sorbed concentrations read

cefffull(x
∗, y∗, t∗) = ceff (x∗, t∗)

+HPeT∂xceff (x∗, t∗)
(1

6
y∗2

H2
− 1

12
y∗4

H4
)− 7

180
)

+(
1
6
− y∗2

2H2
)PeTDaT

H

K∗e
(ceff (x∗, t∗)− k∗s

K∗e

∫ t∗

0
e−k

∗
s (t∗−ξ)/K∗

e ceff (x∗, ξ) dξ)

−(
1
6
− 1

2
y∗2

H2
)
c∗s0
K∗e

e−k
∗
s t
∗/K∗

e PeTDaT , (11)

ceffs (x∗, t∗) = c∗s0e
−k∗s t∗/K∗

e + TLk
∗
s

∫ t∗

0
e−k

∗
s (t∗−ξ)/K∗

e cefffull(x
∗, ξ) dξ. (12)

and it gives an approximation of order O((εPeT )3/2) of c∗ and c∗s. More
precisely, the approximation is justified rigorously by the following error
estimate.

Proposition 1. Let 1 ≤ α < 2 and assume that the times scales TA, TDE
and TL are of the same order (not depending on ε). Assume that (c∗00, c

∗
s0) ∈

(C∞0 (R))2. Let ceff ∈ H1(R+;H2(R)) the solution for (9)-(10). Then we
have ∥∥∥c∗ − cefffull

∥∥∥
L2(Ω∗×(0,T ))

+
∥∥∥c∗s − ceffs

∥∥∥
L2(Γ∗×(0,T ))

≤ C((εPeT )3/2)
(
||c∗00||H3(R) + ||c∗s0||H2(R)

)
. (13)

On the one hand, in the first line of the effective equation (9), we eas-
ily recognize Taylor’s model of dispersion. On the other hand, adsorp-
tion/desorption reactions introduce complex retardation and memory terms.
Some characteristic parameters based on the data from Taylor’s article [40]
are given in the next section. Let us here mention briefly two important
Taylor’s examples, one with α = 1.614, H = 2.6 · 10−4 m, the longitudi-
nal Péclet number Pe=0.95 · 105 and PeT = 78 and the second one with
α = 1.96, H = 2.6 · 10−4 m, the longitudinal Péclet number Pe=4.14 · 106

and PeT = 173. Obviously, in Taylor’s situation, our derived contributions
are important and using them is necessary in order to simulate correctly the
reactive flows. Since we can not neglect the complex term induced in the
model by the kinetics, we give a precise description of their effects in the
present paper, through numerical simulations.
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3. Taylor’s example

All the numerical illustrations of the paper have been computed using
the package FreeFem++ [34] and the following space and time discretization:

• Discretization in time: The first order operator is discretized using
the method of characteristics. More precisely, a convection equation
of the form

∂tc+ q · ∇c = f(x, t),

being given, the one step backward convection scheme by the methods
of characteristics reads as follows

1
δt

(cn+1(x)− cn(Xn(x)) = fn(x)

where cn denotes the approximation of the solution c at time tn =
nδt, and Xn(x) is an approximation of the solution at time tn of the
ordinary differential equation

dX

dt
(t) = q(X(t), tn), X(tn+1) = x.

A Taylor’s expansion result implies that cn(x−qn(x)δt) is a first order
approximation of cn(Xn(x)). We get the one step backward convection
scheme reading:

1
δt

(
cn+1(x)− cn(x− qn(x)δt)

)
= fn(x).

Turning back to our complete problem with the diffusion term, we use
the following scheme:

1
δt

(
cn+1(x, y)− cn(x− q(y)δt, y)

)
−
(
Dx∂

2
x −Dy∂

2
y

)
cn+1(x, y) = f(x, y, nδt).

• Discretization in space: One of the characteristics of our problem is
the presence of a smeared front. In order to track it correctly, the
Lagrange P1 finite elements with adaptive mesh are used. The mesh
is adapted in the neighborhood of front after every ten time steps.

We begin our numerical illustrations by an example issued of the pioneer’s
work of Taylor [40]. This example is a reference test in view of emphasizing
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PARAMETERS VALUES

Width of the slit: H 5 · 10−3 m

Characteristic lenght: LR 0.632 m

ε = H/LR 7.9113 · 10−3

Characteristic velocity: Q∗ 3 · 10−3 m/sec

Diffusion coefficient: D∗ 2 · 10−7 m2 /sec,

Longitudinal Peclet number: Pe = LRQ
∗/D∗ = 9.48 · 103

α = log Pe/ log(1/ε) = 1.8921440

Transversal Peclet number: PeT = HQ∗/D∗ = 75

Table 1: Parameters values in Taylor’s paper

the differences between a transport without kinetical effects and a transport
under order one Damköhler number as presented in the next sections. We
compute the following set of parameters thanks to the precise description by
Taylor of his experimental setup and obtain Table 1. Note that we choose
here the critical example from [40] where α is very close to the threshold
value α∗ = 2.

For this set of parameters, we compute the vertical average of the solution
c∗ of equation (1), and we compare it with the solution cTay of (4). In order
to show that in this situation one can not neglect Taylor’s dispersive con-
tribution, we also compute the solution cmoy of a very brute approximation
by simple averaging, that is

∂t∗c
moy +

2Q∗

3
∂x∗c

moy −D∗∂2
x∗c

moy = 0 in R+. (14)

For the three equations, we choose the following initial and left boundary
conditions:

c|x=0 = 1, c|t=0 = 0.

Originally this problem is formulated in a semi-infinite channel. In our
numerical computations we have considered a finite one of length NLR, N ∈
N∗ being chosen sufficiently large for our purpose. This prevents the outflow
boundary condition to influence the tracer breakthrough at the observation
points. For instance, setting N = 4 was sufficient for our simulations. At
the outflow we have imposed a homogeneous Neumann boundary condition

∂x∗c|x=NLR
= 0.

Some results are presented in Figure 1. They show clearly the small-
ness of the error between exact and Taylor’s approximate solution and the
advantage of Taylor’s model over the model obtained by taking the simple
mean over the vertical section.
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’exactTay100’
’TAY100’

’MOY100’
’exactTay200’
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’MOY200’

’exactTay300’
’TAY300’

’MOY300’
’exactTay500’

’TAY500’
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Figure 1: Comparison between concentration from Taylors paper (’tay’) and from
the simple average (’moy’) with the vertically averaged solution of the original prob-
lem (’exactTay’), at times t∗ = 100, 200, 300, 500 sec.

Note that here, in absence of chemical reactions, we can solve explicitly
the effective problem (4) using the integral formula:

cTay(x, t) = 1− 1√
π

(
exp
( 〈q〉x
DTay

) ∫ ∞
(x+〈q〉t)/(2

√
DTayt)

e−η
2
dη

+
∫ ∞

(x−〈q〉t)/(2
√
DTayt)

e−η
2
dη
)
, 〈q〉 = 2Q∗/3.

An analogous result holds true for the solution of (14). We thus also have
used this first setting to calibrate our numerical scheme. As an illustration,
we present in Figure 2 the evolution of the variance for small times, com-
puted respectively with our numerical scheme and with the explicit solution
(definition of the variance being recalled in the beginning of Subsection 4.2
below). Obviously the numerical results meet well the analytical solution.
The detailed analysis of the variance is postponed to Subsection 4.2.

4. Numerical simulations on the effective model

This section presents the main results of the paper. We develop numerical
simulations for the effective model derived in [15] for Taylor’s dispersion
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’sig2_tay’
’sigtay’

Figure 2: Comparison between variance computed with the analytical solution
(’sig2 tay’) and with our numerical scheme (’sigtay’)

under dominant Damköhler numbers.

4.1. Comparison of the exact and effective solutions
Retardation and memory effects on the dispersive characteristics due to

the adsorption/desorption reactions appear in the effective model (9)-(12).
In the present section, we aim to show their importance. In particular the
chemistry influences directly the characteristic diffusion width. We thus
perform similar simulations to the ones presented in Section §3: we compare
now the transverse average of the solution c∗ of the real problem (6)-(8)
with the effective approximation defined by (9)-(11). We use the same set
of parameters as in Section §3 Table 1 with the ones for the reactions char-
acteristics described in Table 2. We choose k∗s = Q∗ε, K∗e = H, TA = TL.

In presence of the reactions described through (7) and Table 2, the anal-
ogous of Figure 1 is Figure 3. Clearly, there is a good agreement between
the exact and effective solutions. The small differences are essentially due to
the value of parameter ε = H/LR which is quite important in this example.
It is sufficient to divide ε by 2 (hence diminishing the term C((εPeT )3/2) in
the error estimate (13)) to drastically reduce the differences (see Figure 4).
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Figure 3: Comparison between concentration from the vertical average of the original
problem (’EXACTT’) and from the effective model (’EFFT’) at times t∗ = 100, 200,
300, 500 sec.
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Figure 4: Similar results to those of Figure 3 but computed for a value of ε divided
by 2
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PARAMETERS VALUES

Adsorption rate constant: k∗s 2.37 · 10−5 m/sec

Adsorption equilibrium constant: K∗
e 5 · 10−3 m

Longitudinal Damköhler number: Da = LR
TAQ∗ = 1

Transversal Damköhler number: DaT =
k∗s
Q∗ = 7.9113 · 10−3

Table 2: Parameters values for the kinetics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

’effref’

’effh2’

’effh3’

’effh4’

Figure 5: Comparison between the profile of the effective concentration presented
in Figure 2 when H = 5.10−3 (’effref’) and the one of the effective concentration
when H = N.10−3 (’effhN’) at time t∗ = 200 sec.

We add some numerical simulations to highlight the kinetics effects on
the solute spread in Figures 5, 6, 7.

In Figure 5, we present a reference example with the profiles obtained as
the height H varies. If H decreases, so does the transverse Péclet number
PeT and the effective diffusion coefficient: we observe a global retardation
in the spread of the front. A decrease of H also means a decrease of the
superficial chemical reaction time scale. One observes its effect at the head
of the front.

In Figure 6, we present a reference example with the profiles obtained
when the axial velocity Q∗ varies. A decrease of Q∗ means an increase of
the transverse Damköhler number DaT . The observed profiles are thus more
stiff because more slowed down by a relatively stronger adsorption rate.
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Figure 6: Comparison between the profile of the effective concentration presented
in Figure 2 when Q∗ = 3.10−3 (’EFFREF’) and the one of the effective concentration
when Q∗ = N.10−3 (’EFFQN’) at time t∗ = 200 sec.
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Figure 7 presents an example with a decrease of both Péclet and Damköh-
ler numbers. It should induce of course a net slow down of the propagation
of the front. This is confirmed by the simulations on the upscaled model
(9)-(11) presented in figure 7. Note in particular that with our choice of
parameters, the increase of LR induces a decrease of ε = DaT appearing in
(9)-(11).

4.2. Enhanced and anomalous diffusion
We recall that informations on a diffusive regime may be obtained by

computing, for a given concentration c, the first moments about the origin
Mk and the associated variance σ2, defined by

Mk(t) =
∫ +∞

−∞
xkc(x, t) dx, 0 ≤ k ≤ 2,

σ(t)2 = M2(t)M0(t)−M1(t)2.

The characteristic diffusion Dc is then such that σ(t) ∼
√
Dct. Neverthe-

less, observations have emphasized the existence of regimes where σ rather
expands as tα, α 6= 1/2 (see for instance the observations in a sand column
described in [8]). This phenomenon is referred to as anomalous diffusion.

The question of enhanced and anomalous diffusion arises naturally from
the fundamental work of Taylor [40]:

• Taylor showed that, for sufficiently large time, any point discharge of
tracer in laminar pipe Poiseuille flow evolves to a symmetric gaussian
distribution moving longitudinally with the mean speed of the flow

and with a characteristic diffusion width σ ∼
√
D∗
(

1 +
8

945
Pe2

T

)
t.

This is an enhanced diffusion compared to the original one σ ∼
√
D∗t.

• In the mean time, Taylor, in his experiments, noted that for moderate
time a distinct asymmetry was observed, in contradiction with a fickian
behavior.

By ignoring longitudinal diffusion and interactions with the pipes bound-
ary, Lighthill [26] showed that the tracer distribution spreads longitudinally
proportional to t for the moderate time. This is perhaps the first obser-
vation of anomalous diffusion in the fluids literature. Then, Chatwin [13]
generalized the Aris result for transversely uniform initial data to the full
variance temporal evolution, and computed short time asymptotic behavior
of this special case. Short times behavior is also the preoccupation of [39].
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More recently, Latini and Bernoff [25] generalized the method employed by
Lighthill to consider the anomalous spread of an initial distribution before
complete transverse mixing has occurred. The authors of [12] employ the
stochastic differential equations underlying the passive scalar equation and
the rules of conditional probability to compute, with no approximations, the
moments needed to construct the complete variance valid for all times. The
long time limit of the variance is shown to agree with Taylor’s type result.
References for reactive settings are seldom. Motivated by the study of a flow
in a catheterized artery with conductive walls, the authors of [31] considered
a similar problem in an annular pipe, but for a very simple model of reac-
tion, i.e. an instantaneous linear equilibrium. They use a Crank-Nicholson
scheme coupled with series expansion, once again formal, to approximate
the mean concentration distribution using the first four central moments.
Let us finally mention the recent work [6] which clearly describes difficul-
ties induced by the modeling of preasymptotic times and which moreover
evaluate mixing.

Difficulty is to determine the short-time limit of the domain of appli-
cability of Taylor’s type models since they are constructed to hold true at
large times. Looking for an answer through numerical simulations was done
as soon as some years after Taylor’s work (see [21]). We now show that
the effective model (9)-(11) is able to capture the three regimes of diffusion
encountered in such a problem of tracer injection in a thin pipe:

Diffusive regime Initially, diffusion dominates over advection yielding a spherically sym-
metric Gaussian dispersion cloud.

Note that in the simplest case of absence of reactions, longitudinal
displacement due to diffusion is of order O(

√
D∗t). The relative longi-

tudinal displacement of two particles is controled by O(Q∗D∗t2) due to
the parabolic shear (compare the convective displacement of a particle
at the center of the pipe with the one of a particle that has diffused of
O(
√
D∗t) in the transverse direction). This regime is then limited to

the times t � (Q∗2D∗)−1/3. In the present paper the time limitation
also depends on the kinetics.

Anomalous regime In this regime the displacement due to tracer diffusing transversely
and being sheared longitudinally dominates over the longitudinal dif-
fusion. In this regime, the variance show an anomalous diffusion and
the distribution of solute concentration is distinctly asymmetric.

As emphasized by Latini and Bernoff [25], this kind of phenomenon
appears when the majority of the tracer has not yet interacted with
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the pipes boundary. Here, in the case of reacting wall, the effects are
enhanced.

Taylor’s regime At large times, the flow is in the classical Taylor regime, for which the
tracer is homogenized transversely across the pipe and diffuses with a
Gaussian distribution longitudinally.

In the original setting of Taylor (see equations (4)-(5)), the diffusion
is enhanced by the factor 8D∗Pe2

T /945. In the present paper, there is
a greater enhancement due to the reactions.

Let us illustrate that the three latter behaviors are captured by model
(9)-(11). Due to the complex structure of the effective equation (9), the
observation of these latter phenomena is not obvious. Numerical simulations
thus become a particularly interesting tool.

To deal with large times computations, we slightly modify our set of
parameters. Tables 1, 2 are thus replaced by Table 3. The tracer is initially
injected until t0 = 4000 sec.

PARAMETERS VALUES

Width of the slit: H 10−1 m

Characteristic lenght: LR 1000 m

ε = H/LR 10−4

Characteristic velocity: Q∗ 9 · 10−4 m/sec

Diffusion coefficient: D∗ 2 · 10−7 m2 /sec,

Longitudinal Peclet number: Pe = LRQ
∗/D∗ = 4.5 · 106

α = log Pe/ log(1/ε) = 1.6633

Transversal Peclet number: PeT = HQ∗/D∗ = 450

Adsorption rate constant: k∗s 9 · 10−8 m/sec

Adsorption equilibrium constant: K∗
e 5 · 10−1 m

Longitudinal Damköhler number: Da = LR
TAQ∗ = 1

Transversal Damköhler number: DaT =
k∗s
Q∗ = 10−4

Table 3: Parameters values for the variances computations

We begin by computing the evolution of the variance associated to the
upscaled reactive problem (9)-(11). The result is presented in Figure 8.
Observation of the evolution of the variance let us detect the three different
regimes of diffusion:
• For t∗ � 2.5 · 105, the fluid obeys to the classical diffusive regime, with
the diffusion coefficient D∗ (actually, the diffusion D∗ is so small here that
it is difficult to differentiate the line of slope D∗ of the horizontal axis).
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Figure 8: Evolution of the variance (with respect to time) for the reactive problem

• Then, for 2.5 · 105 � t∗, we clearly observe a zone of anomalous regime
where σ2(t) 6∼ Ct, C ∈ R, followed by a return to a diffusive regime.

The point is to detect the transition times from anomalous to enhanced
diffusion. A method, e.g. used in [31], consists in observing eventual asym-
metry in the concentrations profiles. Some of them, computed during the
anomalous period, are presented in Figure 9. Nevertheless this method is
obviously not practicable neither confident at large times.
Observation of anomalous regime should be confirmed by the computation
of the skewness Sk, defined by

Sk(t) =
M0(t)2M3(t)− 3M0(t)M1(t)M2(t) + 2M1(t)3

σ3(t)
.

The skewness is an indicator of the symmetry of the concentration’s dis-
tribution. Results are presented in Figure 10. The negative value of the
skewness indicates an asymmetric profile with a left tail more pronounced
than the right tail (as in Figure 9). Computation of the skewness evolution
seems to be the right tool to assert that fickian behavior can only be sup-
posed for 107 sec. � t∗:
• For t∗ � 107 sec. (see Figure 11), we turn back to a diffusive regime,
actually a Taylor’s type enhanced diffusion regime: the value of the effective
diffusion is given by the slope of the tangent to the curve of the squared
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Figure 11: Evolution of the variance for the reactive problem at larger times

variance.
We note easily that Taylor’s enhanced diffusion is drastically increased

by the reactive effects by comparing the slope of the asymptotes at large
times of variance curves for reactive and Taylor’s settings (Figures 11 and
12 respectively): in Figure 11, a line of slope DTay would be hard to distinct
from an horizontal line. In Figure 8 (respectively Fig. 12) line of slop DTay

is ’tgrandc’ (respectively ’tgrandtt’).
Furthermore, by comparing figures 11 and 12, we check straightforward

that Taylor’s regime of enhanced diffusion appears much later in presence
of reactions. Kinetics make the anomalous diffusion regime longer.

4.3. Effects of the kinetics on the convection
In the former subsection, we have shown that the effective model, de-

spite being derived from the conventional diffusive Fick law at the micro-
scopic level, exhibits anomalous and enhanced diffusive effects. Moreover,
the effect of boundary adsorption increases the deviation from the Gaussian
distribution.

Now, we aim to emphasize that the reactions also have influence on the
apparent mean velocity of the flow. We thus introduce the following equa-
tion, which is equation (9) where we have suppressed all the retardation
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Figure 12: Evolution of the variance corresponding to Taylor’s setting (without
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enhanced diffusion during the second fickian regime as t∗ � 4 ·104. The first fickian
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terms which act on convection:

∂cglob

∂t∗
+

2
3
Q∗

∂cglob

∂x∗
−D∗

(
1 +

8
945

Pe2
T

)∂2cglob

∂(x∗)2

+
k∗s
K∗e

cglob − (
k∗s
K∗e

)2

∫ t∗

0
e−k

∗
s (t∗−ξ)/K∗

e cglob(·, ξ)dξ

−1
3
PeT DaT

H

K∗e

k∗s
K∗e

(
cglob

+
∫ t∗

0
e−k

∗
s (t∗−ξ)/K∗

e

(
(
k∗s
K∗e

)2(t∗ − ξ)− 2
k∗s
K∗e

)
cglob(·, ξ)dξ

)
=

k∗s
K∗e

e−k
∗
s t
∗/K∗

e

( c∗s0
K∗e

+
1
3
PeT DaT

c∗s0
K∗e

H

K∗e

( k∗s
K∗e

t∗ − 1
))

+e−k
∗
s t
∗/K∗

e
4
45

k∗s
K∗e

H

K∗e
PeT ∂xc∗s0, (15)

We then compare the solutions issued of (9) with the ones issued of (15) and
of Taylor’s model without kinetics (4). Computations performed at t∗ = 200
and t∗ = 1000, 1400 are presented in Figures 13-15. First, for small times,
the effective convectional velocity seems to slightly increase (see the retard of
curve ’glo’ with regard to curve ’eff’ in Figure 13). But as of t∗ = 1000,
we observe easily in Figure 14 the retard of curve ’eff’ with regard to the
curve ’glo’, except at the front of the profile. We also provide the curves
corresponding to Taylor’s situation ’tay’ without reactions to compare this
effect with the one due to reactions. This phenomenon worsens for larger
times. It means that the wall reactions globally slow down the mean flow of
the solute.

5. Other examples of effective models

We present finally numerical illustrations for some other effective models:
the one derived rigorously in [14] for Danckwerts boundary condition in
subsection 5.1, and the one for nonlinear reactions of [18] in subsection 5.2.
All the results presented below aim to show the efficiency of the effective
models. They show the smallness of the error between exact and effective
approximate solution and the advantage of effective models over the models
obtained by taking the simple mean over the vertical section.

5.1. Danckwerts boundary condition
We assume now an infinite adsorption rate : k∗s = +∞ in (7), that is

−D∗∂y∗c∗ = Ke∂tc
∗ on Γ∗. At the inlet boundary we suppose Danckwert’s
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Figure 13: Comparison (with a boxed zoom) between the profiles of solutions issued
of the effective model (9) (’eff200’) with the ones issued of (15) (’glo200’) and of
Taylor’s model (4) (’tay200’) at time t∗ = 200 sec.
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Figure 14: Comparison between the profiles of solutions issued of the effective model
(9) (’EFF1000’) with the ones issued of (15) (’GLO1000’) and of Taylor’s model (4)
(’TAY1000’) at time t∗ = 1000 sec.
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Figure 15: Comparison between the profiles of solutions issued of the effective model
(9) (’EFF1400’) with the ones issued of (15) (’GLO1400’) and of Taylor’s model (4)
(’TAY1400’) at time t∗ = 1400 sec.

boundary condition. We have an infiltration with a pulse of water contain-
ing a solute of concentration c∗f followed by solute-free water. Then the
Danckwerts boundary condition at x∗ = 0 is:

−D∗∂x∗c∗ + q(y∗)c∗ = q(y∗)c∗f for 0 < t∗ < t0,

−D∗∂x∗c∗ + q(y∗)c∗ = 0 for t∗ > t0.

The corresponding effective problem is (see its rigorous derivation in [14]):

(1 + DaK)
∂c∗,effK

∂t∗
+

2Q∗

3
∂c∗,effK

∂x∗
=

D∗
(

1 +
4

135
Pe2

T [
2
7

+
DaK(2 + 7DaK)

(1 + DaK)2
]
)∂2c∗,effK

∂(x∗)2
(16)

with DaK = Ke/H, completed by the initial and boundary conditions

−D∗∂x∗c∗,effK |x=0 +
2Q∗

3
(
c∗,effK |x=0 − c

∗
fχ(0,t0)

)
= 0, (17)

c∗,effK |t=0 = c∗00. (18)

For the simulations presented in Figures 16-17, we take c∗f = 0.5, c00 = 0,
α = 1.73, ε = 0.001 and we test successively with t0 = 1 and t0 = 0.2.
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Figure 16: Comparison at times t∗ = 0.1, 1, 2, 3 of the effective and exact solutions
corresponding to a Danckwerts left boundary condition with t0 = 1 and an infinite
adsorption rate
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5.2. Nonlinear kinetics
Finally we consider some nonlinear models of reactions. Thus Condition

(7) is replaced by

−D∗∂y∗c∗ =
∂c∗s
∂t∗

= k̂∗s(Φ(c∗)− c∗s/K∗e ) on Γ∗, (19)

where Φ is the isotherm function. Typical examples for Φ are given by the
Langmuir and Freundlich isotherms:

Φ(c) =
k1c

1 + k2c
(Langmuir) ; Φ(c) = k1c

k2 (Freundlich). (20)

In the present work, we fix k1 = 1 and use different values for k2.
Choosing the same scalings than in the previous sections, the authors of

[18] have derived formally (using an anisotropic perturabation method) the
corresponding effective model. It reads:

∂t∗(c∗N +
c∗s,N
H

) + ∂x∗(
2Q∗

3
c∗N +

PeT
15

Φ(c∗N ))

= D∗(1 +
8

945
Pe2

T )∂2
x∗c
∗
N +

2k∗dPeT
45

∂x∗c
∗
s,N (21)

∂t∗c
∗
s,N = Φ(c∗N + PeT c̃1

N )− k∗dc∗s,N (22)

c̃1
N =

2H
45

∂x∗c
∗
N −

1
3
, k∗d =

k∗s
K∗e

. (23)

Problem (21)-(23) is thus the equivalent of equation (9) in case of nonlinear
reactions. The main difference is due to the nonlinearity of the definition of
the reaction which does not allow to decouple the problem for c∗ from the
problem for c∗s. We thus have to consider here a system of two coupled pde’s.
Other difference lies in the justification of the effective model (21)-(23).
Article [18] contains its formal derivation but no error estimates. For the
numerical simulations, we fix k∗s = 1, K∗e = H

Q∗·ε . The physical parameters
are those already given in the table 1 and we choose the following initial and
left boundary conditions:

c|x=0 = 1, c|t=0 = 0.

First, we take k2 = 3 with Freundlich’s adsorption isotherm. Next, we use
the Langmuir’s adsorption isotherms for the value k2 = 2. Corresponding
results are in Figures 18-19.
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