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The paper is devoted to the longitudinal dispersion of a soluble substance released in a steady laminar flow through slit channel with heterogeneous reaction at the outer wall. The reactive transport happens in presence of dominant Péclet number and order one Damköhler number. In particular, these Péclet numbers correspond to Taylor's dispersion regime. An effective model for the enhanced diffusion in this context was derived recently . It contains memory effects and contributions to the effective diffusion and effective advection velocity, due to the flow and chemistry reaction regime. In the present paper, we show through numerical simulations the efficiency of this new model. In particular, using Taylor's 'historical' parameters, we illustrate that our derived contributions are important and that using them is necessary in order to simulate correctly the reactive flows. We emphasize three main points. First, we show how the effective diffusion is enhanced by chemical effects at dispersive times. Second, our model captures an intermediate regime where the diffusion is anomalous and the distribution is asymmetric. Third, we show how the chemical effects also slow down the average speed of the front.

Introduction

We consider the evolution of a soluble substance introduced into the Poiseuille flow in a slit channel. In fact, this problem could be studied in three distinct regimes: a) diffusion-dominated mixing; b) Taylor dispersionmediated mixing; c) chaotic advection. We focus our analysis to regime b), corresponding to dominant Péclet's numbers, but smaller than a threshold value. We also consider the transition between a) and b).

If the channel is the domain Ω * , Ω * = {(x * , y * ) : x * ∈ R, |y * | < H}, the height of the channel being denoted by H, H > 0, the equation governing the evolution of the solute concentration c * is:

∂c * ∂t * + q(y * ) ∂c * ∂x * -D * ∂ 2 c * ∂(x * ) 2 -D * ∂ 2 c * ∂(y * ) 2 = 0 in Ω * , (1) 
where q(z) = Q * (1-(z/H) 2 ) is the Poiseuille profile, Q * being the maximum velocity at the axis, while D * is the molecular diffusion. Equation ( 1) is of course completed by appropriate initial and boundary conditions. Boundary conditions are especially important in the present work since they model the reactions with the walls. We will turn back to this point somewhat later. Let us first focus on equation [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF] and introduce appropriate scales to emphasize the significance of a dominant Péclet number. The obvious transversal length scale is H. For all other quantities we use reference values denoted by the subscript R. Setting

         c = c * c R , x = x * L R , y = y * H , t = t * T R , Q = Q * Q R , D = D * D R ,
where L R is the 'observation distance', we obtain the dimensionless equation

∂c ∂t + Q R T R L R Q(1 -y 2 ) ∂c ∂x - D R T R L 2 R D ∂ 2 c ∂x 2 - D R T R H 2 D ∂ 2 c ∂y 2 = 0 (2) 
in Ω = R × (-1, 1).

The times scales involved in this equation are

T L = characteristic longitudinal time scale = L R Q R , T T = characteristic transversal time scale = H 2 D R .
We define a small parameter ε by

ε = H L R .
The Péclet number Pe, defined by

Pe = L R Q R D R ,
being supposed to be dominant but before a threshold, assume there exists 0 < α < 2 such that Pe = ε -α . The lower order process of diffusion is rescaled by

T T T L = HQ R D R ε = O(ε 2-α ).
Choosing the dispersive time for reference time by setting T R = T L , equation (2) yields:

∂c ε ∂t + Q(1 -y 2 ) ∂c ε ∂x = Dε α ∂ 2 c ε ∂x 2 + Dε α-2 ∂ 2 c ε ∂y 2 in Ω. (3) 
Clearly, there is a great anisotropy in the former equation. The dispersion is due to this combined action of dominant convection parallel to the axis and molecular diffusion in the radial direction. Actually, in the fundamental papers [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF] and [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF], Taylor and Aris found the following one-dimensional approximation for [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF] with no-flux (Neumann) boundary conditions on the side walls:

∂ t * c T ay + 2Q * 3 ∂ x * c T ay -D T ay ∂ 2 x * c T ay = 0 in R + . (4) 
In [START_REF] Bhattacharya | On the Taylor-Aris theory of solute transport in a capillary[END_REF], the effective axial diffusivity contains a contribution proportional to the square of the transversal Péclet number in addition to the original molecular diffusivity:

D T ay = D * 1 + 8 945 Pe 2 T , Pe T = Q * H D * . ( 5 
)
The solute is convected by the average velocity of the flow q = 2Q * /3 and diffuses with respect to the Taylor's dispersion coefficient D T ay . Taylor's paper [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF] was the first one of a huge literature on the subject. This does not allows us to give an exhaustive list of references. Let us only mention the mostly used methods. Roughly speeking, passing from the 2D-equation ( 1) to the 1D-equation ( 4) corresponds to a vertical averaging.

Difficulty is that the equation for the difference between physical and averaged concentrations is not closed because of the dispersive source term ∂ x qc * . For its determination one should go to the next order and actually solve an infinite system of equations. Derivation of ( 4) is thus linked with the choice of 'closure scheme'. Aris [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF] presented a formal derivation of Taylor's approximation using the method of moments. This method, further developed by Brenner and collaborators (e.g. [START_REF] Brenner | Dispersion resulting from flow through spatially periodic porous media[END_REF]) is still very common nowadays. Other interesting series expansion methods are in the works [START_REF] Gill | A note on the solution of transient dispersion problems[END_REF] [22] and [START_REF] Smith | The early stages of contaminant dispersion in shear flows[END_REF]. Important step is to "justify" the closure of the computations (or the truncation of the series expansion) either by orders of magnitude arguments (e.g. [START_REF] Fife | Dispersion in flow through small tubes[END_REF], [START_REF] Vrentas | Asymptotic solutions for laminar dispersion in circular tubes[END_REF], [START_REF] Bolster | Mixing in confined stratified aquifers[END_REF]), or by homogenization techniques (e.g. [START_REF] Rubinstein | Dispersion and convection in porous media[END_REF]) or volume averaging approach (e.g. [START_REF] Quintard | Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment[END_REF]; this latter approach being adapted for complex geometries) or by a center manifold argument (e.g. [START_REF] Mercer | A centre manifold description of contaminant dispersion in channels with varying flow profiles[END_REF]). Very different approaches consist in starting from the position process of each molecule with an appropriate description of its transition probability function (e.g. [START_REF] Bhattacharya | On the Taylor-Aris theory of solute transport in a capillary[END_REF]). Taylor-Aris result ( 4) is then equivalent to the asymptotic Gaussian nature of the process. Such a probabilistic analysis may lead to a variety of non-local transport models (e.g. [START_REF] Metzler | The restaurant at the end of the random walk[END_REF]). In particular, some abstract assumptions on the transitions between jumps of the molecules lead to kernel memory terms comparable to those used in the present paper, though derived with a very different method. We finally mention derivation of (reversible) non-parabolic models, using statistical physics, in the papers [START_REF] Camacho | Thermodynamics of Taylor Dispersion: Constitutive equations[END_REF][START_REF] Camacho | Purely Global Model for Taylor Dispersion[END_REF][START_REF] Camacho | Thermodynamics functions for Taylor's dispersion[END_REF] and [START_REF] Berentsen | Relaxation and reversibility of extended Taylor dispersion from a Markovian-Lagrangian point of view[END_REF].

The approximate models proposed in the latter references are justified for asymptotic large times. Nethertheless it is worth mentioning that the literature does not provide information about the induced error. Up to our knowledge, the articles [START_REF] Mikelić | Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers[END_REF][START_REF] Mikelić | Rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore[END_REF][START_REF] Choquet | Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore[END_REF][START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF] give the first derivations of Taylor's type models controlling the error in energy, without assuming unrealistically regular data. More precisely, in the latter papers, the optimization of the error estimates is a crucial step in predicting the effective coefficients.

Moreover papers [START_REF] Mikelić | Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers[END_REF][START_REF] Mikelić | Rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore[END_REF][START_REF] Choquet | Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore[END_REF][START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF] focus on possible chemical effects. One may guess of course that adsorption and desorption processes increase the heterogeneity of the solute plume injected in the pipe and thus should influence the final dispersion phenomenon. Flow with chemistry has already been considered in numerous works, based on the same methods than the ones listed above, and thus without error estimates. We mention for instance [START_REF] Barton | An asymptotic theory of dispersion of reactive contaminant in parallel flow[END_REF][START_REF] Degance | The theory of dispersion of chemically active solutes in a rectilinear flow field: the vector problem[END_REF], [START_REF] Iosilevskii | Taylor dispersion in systems containing a continuous distribution of reactive species[END_REF] (for a reactive mixture, but no reactions with the walls) based on the method of moments, [START_REF] Ng | Dispersion in steady and oscillatory flows through a tube with reversible and irreversible wall reactions[END_REF] based on the Fife and Nicholes expansion, [START_REF] Sarkar | The effect of wall absorption on dispersion in annular flows[END_REF] based on [START_REF] Sankarasubramanian | Unsteady convective diffusion with interphase mass transfer[END_REF], [START_REF] Paine | Dispersion in pulsed systems -I, Heterogeneous reaction and reversible adsorption in capillary tubes[END_REF] based on closure schemes of turbulence modeling and a volume averaging approach, [START_REF] Balakotaiah | Dispersion of Chemical Solutes in Chromatographs and Reactors[END_REF] based on the center manifold approach.

The present paper aims at giving numerical illustrations of the results obtained in [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF] where adsorption and desorption reactions occur on the walls of the channel through a linear driving force model with a finite kinetics and a linear isotherm. In [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF], the authors derive rigorously an upscaled Taylor's type model where influence of the chemical kinetics on the dispersive effects is explicit. The model was justified through error estimates depending explicitly on the small parameter ε = H/L R . Presence of an initial time boundary layer allows only a global error estimate in L 2 with respect to space and time.

In the present paper, we show through numerical simulations the efficiency of the model derived in [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF]. In particular, using Taylor's original parameters (see Section §3), we illustrate that the derived contributions are important and that using them is necessary in order to simulate correctly the reactive flows (see Subsection 4.1). The model derived in [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF] is reproduced in Section §2 (see ( 9)-( 12)). The reader will note that the chemical reactions on the walls produce complicated memory terms. We thus aim to emphasize three main points through our numerical simulations. First, in Subsection 4.2, we turn to the question of anomalous diffusion. We show how the effective diffusion is enhanced by chemical effects at dispersive times. Furthermore the model of [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF] also captures an intermediate regime where the diffusion is anomalous and the distribution is asymmetric. Second, in Subsection 4.3, we show how the chemical effects also slow down the average speed of the front. Finally, in Section §5, we present numerical illustrations of some other effective models: the case with Danckwerts boundary condition in subsection 5.1, and the case of nonlinear reactions in subsection 5.2.

Exact and upscaled problems

Let us write the precise setting of the problem. We consider the transport of a reactive solute by diffusion and convection by Poiseuille's velocity in an infinite 2D channel. The solute particles do not react among themselves. Instead they undergo an adsorption process at the lateral boundary. For a general discussion on the modeling of adsorption processes in porous media we refer to [START_REF] Van Duijn | Travelling Waves in the Transport of Reactive Solutes through Porous Media: Adsorption and Binary Ion Exchange -Part 1[END_REF] and [START_REF] Knabner | An analysis of crystal dissolution fronts in flows through porous media. Part 1: Compatible boundary conditions[END_REF].

We consider the following exact model for the solute concentration c * :

∂c * ∂t * + q(y * ) ∂c * ∂x * -D * ∂ 2 c * ∂(x * ) 2 -D * ∂ 2 c * ∂(y * ) 2 = 0 in Ω * , (6) 
-D * ∂ y * c * = ∂c * s ∂t * = k * s c * - c * s K * e on Γ * , (7) 
c * (x * , y * , 0) = c * 00 (x * ), c * s (x * , 0) = c * s0 (x * ). ( 8 
)
The crucial difference between problem ( 6)-( 8) and the the one originally considered by Taylor is the boundary condition on the side walls Γ * = {(x * , y * ) : x * ∈ R, |y * | = H}. Taylor assumed no-flux conditions. Here equation ( 7) describes reaction at channel wall Γ * linking the solute concentration c * and the adsorbed species surface concentration c * s . The adsorption rate constant is k * s (homogeneous to a velocity), the linear adsorption equilibrium constant is K * e (length), the constant desorption rate being characterized by k * s /K * e . These quantities are all positive real numbers. Equation ( 8) describes initial infiltration with a mollified Dirac pulse of water containing a solute of volume concentration c * 00 and the adsorbed species surface concentration c * s0 . In [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF], we assume c * 00 ∈ C ∞ 0 (R), c * 00 ≥ 0 and c * s0 ∈ C ∞ 0 (R), c * s0 ≥ 0. Following Taylor's example (B1) (see [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF], page 192), we can take for c * 00 the mollified Dirac measure of mass M, concentrated at x = 0. We have already explained in the Introduction how appropriate scales have to be chosen ensuring the Péclet number in the range of the Taylor's dispersion regime (see the derivation of (3)). We now have to describe the order of magnitude of the kinetics, characterized by the Damköhler number defined below. If we introduce reference values denoted by the subscript R in the reaction equation [START_REF] Brenner | Dispersion resulting from flow through spatially periodic porous media[END_REF], three characteristic time scales appear,

T De = characteristic desorption time scale = K eR k sR , T A = characteristic adsorption time scale = c sR c R k sR , T react = superficial chemical reaction time scale = H k sR ,
with the Damköhler number defined by

Da = L R T A Q R .
Assuming K eR ≈ H, and the time scales T De , T A and T L of the same order, implies Damköhler's number of order one (with respect to ε, that is of order ε 0 ). We will see below that this order one (to be compared with the order ε α , α > 0, of the Péclet number) is sufficient to ensure that the kinetics appear at the main scale in the upscaled model. Hence one should take care simultaneously of the flow and of the chemical reactions.

It should be noted that transport models derived for nonreactive solutes are often used, in conjunction with experimentally-derived correctors, to predict the transport of reactive chemicals. Here instead we used an upscaled model rigorously derived in [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF]. In [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF], the authors prove that the upscaled problem in R + corresponding to ( 6)-( 8) for the basic dimensional effective concentration c ef f is the following: find

c ef f ∈ L 2 ((0, T ) × R) such that ∂c ef f ∂t * + 2 3 Q * ∂c ef f ∂x * -D * 1 + 8 945 Pe 2 T ∂ 2 c ef f ∂(x * ) 2 + k * s K * e c ef f -( k * s K * e ) 2 t * 0 e -k * s (t * -ξ)/K * e c ef f (•, ξ)dξ - 1 3 Pe T Da T H K * e k * s K * e c ef f + t * 0 e -k * s (t * -ξ)/K * e ( k * s K * e ) 2 (t * -ξ) -2 k * s K * e c ef f (•, ξ)dξ + 4 45 
H K * e Pe T k * s ∂ x c ef f - k * s K * e t * 0 e -k * s (t * -ξ)/K * e ∂ x c ef f (•, ξ)dξ = k * s K * e e -k * s t * /K * e c * s0 K * e + 1 3 Pe T Da T c * s0 K * e H K * e k * s K * e t * -1 +e -k * s t * /K * e 4 45 k * s K * e H K * e Pe T ∂ x c * s0 , (9) 
c ef f |t=0 = c * 00 , (10) 
where the transversal Péclet et Damköhler numbers, Pe T and Da T are given by

Pe T = Q * H D * and Da T = k * s Q * .
Existence of a unique solution c ef f ∈ H 1 (0, T ; H 2 (R) is proved in [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF]. Then the dimensional effective solute and sorbed concentrations read

c ef f f ull (x * , y * , t * ) = c ef f (x * , t * ) +HPe T ∂ x c ef f (x * , t * ) 1 6 y * 2 H 2 - 1 12 
y * 4 H 4 ) - 7 180 +( 1 6 - y * 2 2H 2 )Pe T Da T H K * e (c ef f (x * , t * ) - k * s K * e t * 0 e -k * s (t * -ξ)/K * e c ef f (x * , ξ) dξ) -( 1 6 - 1 2 
y * 2 H 2 ) c * s0 K * e e -k * s t * /K * e Pe T Da T , (11) 
c ef f s (x * , t * ) = c * s0 e -k * s t * /K * e + T L k * s t * 0 e -k * s (t * -ξ)/K * e c ef f f ull (x * , ξ) dξ. ( 12 
)
and it gives an approximation of order O((εPe T ) 3/2 ) of c * and c * s . More precisely, the approximation is justified rigorously by the following error estimate.

Proposition 1. Let 1 ≤ α < 2 and assume that the times scales T A , T DE and T L are of the same order (not depending on ε). Assume that

(c * 00 , c * s0 ) ∈ (C ∞ 0 (R)) 2 . Let c ef f ∈ H 1 (R + ; H 2 (R))
the solution for ( 9)-( 10). Then we have

c * -c ef f f ull L 2 (Ω * ×(0,T )) + c * s -c ef f s L 2 (Γ * ×(0,T )) ≤ C((εPe T ) 3/2 ) ||c * 00 || H 3 (R) + ||c * s0 || H 2 (R) . (13) 
On the one hand, in the first line of the effective equation ( 9), we easily recognize Taylor's model of dispersion. On the other hand, adsorption/desorption reactions introduce complex retardation and memory terms. Some characteristic parameters based on the data from Taylor's article [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF] are given in the next section. Let us here mention briefly two important Taylor's examples, one with α = 1.614, H = 2.6 • 10 -4 m, the longitudinal Péclet number Pe=0.95 • 10 5 and Pe T = 78 and the second one with α = 1.96, H = 2.6 • 10 -4 m, the longitudinal Péclet number Pe=4.14 • 10 6 and Pe T = 173. Obviously, in Taylor's situation, our derived contributions are important and using them is necessary in order to simulate correctly the reactive flows. Since we can not neglect the complex term induced in the model by the kinetics, we give a precise description of their effects in the present paper, through numerical simulations.

Taylor's example

All the numerical illustrations of the paper have been computed using the package FreeFem++ [START_REF] Pironneau | FreeFem++ version 3.11-0[END_REF] and the following space and time discretization:

• Discretization in time: The first order operator is discretized using the method of characteristics. More precisely, a convection equation of the form

∂ t c + q • ∇c = f (x, t),
being given, the one step backward convection scheme by the methods of characteristics reads as follows

1 δt (c n+1 (x) -c n (X n (x)) = f n (x)
where c n denotes the approximation of the solution c at time t n = nδt, and X n (x) is an approximation of the solution at time t n of the ordinary differential equation

dX dt (t) = q(X(t), t n ), X(t n+1 ) = x.
A Taylor's expansion result implies that c n (x-q n (x)δt) is a first order approximation of c n (X n (x)). We get the one step backward convection scheme reading:

1 δt c n+1 (x) -c n (x -q n (x)δt) = f n (x).
Turning back to our complete problem with the diffusion term, we use the following scheme:

1 δt c n+1 (x, y) -c n (x -q(y)δt, y) -D x ∂ 2 x -D y ∂ 2 y c n+1 (x, y) = f (x, y, nδt).
• Discretization in space: One of the characteristics of our problem is the presence of a smeared front. In order to track it correctly, the Lagrange P 1 finite elements with adaptive mesh are used. The mesh is adapted in the neighborhood of front after every ten time steps.

We begin our numerical illustrations by an example issued of the pioneer's work of Taylor [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF]. This example is a reference test in view of emphasizing Table 1: Parameters values in Taylor's paper the differences between a transport without kinetical effects and a transport under order one Damköhler number as presented in the next sections. We compute the following set of parameters thanks to the precise description by Taylor of his experimental setup and obtain Table 1. Note that we choose here the critical example from [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF] where α is very close to the threshold value α * = 2. For this set of parameters, we compute the vertical average of the solution c * of equation ( 1), and we compare it with the solution c T ay of (4). In order to show that in this situation one can not neglect Taylor's dispersive contribution, we also compute the solution c moy of a very brute approximation by simple averaging, that is

∂ t * c moy + 2Q * 3 ∂ x * c moy -D * ∂ 2 x * c moy = 0 in R + . (14) 
For the three equations, we choose the following initial and left boundary conditions:

c |x=0 = 1, c |t=0 = 0.
Originally this problem is formulated in a semi-infinite channel. In our numerical computations we have considered a finite one of length N L R , N ∈ N * being chosen sufficiently large for our purpose. This prevents the outflow boundary condition to influence the tracer breakthrough at the observation points. For instance, setting N = 4 was sufficient for our simulations. At the outflow we have imposed a homogeneous Neumann boundary condition

∂ x * c |x=N L R = 0.
Some results are presented in Figure 1. They show clearly the smallness of the error between exact and Taylor's approximate solution and the advantage of Taylor's model over the model obtained by taking the simple mean over the vertical section. 'exactTay100' 'TAY100' 'MOY100' 'exactTay200' 'TAY200' 'MOY200' 'exactTay300' 'TAY300' 'MOY300' 'exactTay500' 'TAY500' 'MOY500' Note that here, in absence of chemical reactions, we can solve explicitly the effective problem (4) using the integral formula:

c T ay (x, t) = 1 - 1 √ π exp q x D T ay ∞ (x+ q t)/(2 √ D T ay t) e -η 2 dη + ∞ (x-q t)/(2 √ D T ay t)
e -η 2 dη , q = 2Q * /3.

An analogous result holds true for the solution of [START_REF] Choquet | Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore[END_REF]. We thus also have used this first setting to calibrate our numerical scheme. As an illustration, we present in Figure 2 the evolution of the variance for small times, computed respectively with our numerical scheme and with the explicit solution (definition of the variance being recalled in the beginning of Subsection 4.2 below). Obviously the numerical results meet well the analytical solution.

The detailed analysis of the variance is postponed to Subsection 4.2.

Numerical simulations on the effective model

This section presents the main results of the paper. We develop numerical simulations for the effective model derived in [START_REF] Choquet | Rigorous upscaling of the reactive flow with finite kinetics and under dominant Peclet number[END_REF] for Taylor's dispersion under dominant Damköhler numbers.

Comparison of the exact and effective solutions

Retardation and memory effects on the dispersive characteristics due to the adsorption/desorption reactions appear in the effective model ( 9)- [START_REF] Camassa | The exact evolution of the scalar variance in pipe and channel flow[END_REF]. In the present section, we aim to show their importance. In particular the chemistry influences directly the characteristic diffusion width. We thus perform similar simulations to the ones presented in Section §3: we compare now the transverse average of the solution c * of the real problem ( 6)- [START_REF] Bromly | Non-fickian transport in homogeneous unsaturated repacked sand[END_REF] with the effective approximation defined by ( 9)- [START_REF] Camacho | Thermodynamics functions for Taylor's dispersion[END_REF]. We use the same set of parameters as in Section §3 Table 1 with the ones for the reactions characteristics described in Table 2. We choose

k * s = Q * ε, K * e = H, T A = T L .
In presence of the reactions described through [START_REF] Brenner | Dispersion resulting from flow through spatially periodic porous media[END_REF] and Table 2, the analogous of Figure 1 is Figure 3. Clearly, there is a good agreement between the exact and effective solutions. The small differences are essentially due to the value of parameter ε = H/L R which is quite important in this example. It is sufficient to divide ε by 2 (hence diminishing the term C((εPe T ) 3/2 ) in the error estimate [START_REF] Chatwin | The initial develoption of longitudial dispersion in straight tubes[END_REF]) to drastically reduce the differences (see Figure 4). We add some numerical simulations to highlight the kinetics effects on the solute spread in Figures 5,6,7.

In Figure 5, we present a reference example with the profiles obtained as the height H varies. If H decreases, so does the transverse Péclet number Pe T and the effective diffusion coefficient: we observe a global retardation in the spread of the front. A decrease of H also means a decrease of the superficial chemical reaction time scale. One observes its effect at the head of the front.

In Figure 6, we present a reference example with the profiles obtained when the axial velocity Q * varies. A decrease of Q * means an increase of the transverse Damköhler number Da T . The observed profiles are thus more stiff because more slowed down by a relatively stronger adsorption rate. Figure 7 presents an example with a decrease of both Péclet and Damköhler numbers. It should induce of course a net slow down of the propagation of the front. This is confirmed by the simulations on the upscaled model ( 9)- [START_REF] Camacho | Thermodynamics functions for Taylor's dispersion[END_REF] presented in figure 7. Note in particular that with our choice of parameters, the increase of L R induces a decrease of ε = Da T appearing in ( 9)-( 11).

Enhanced and anomalous diffusion

We recall that informations on a diffusive regime may be obtained by computing, for a given concentration c, the first moments about the origin M k and the associated variance σ 2 , defined by

M k (t) = +∞ -∞ x k c(x, t) dx, 0 ≤ k ≤ 2, σ(t) 2 = M 2 (t)M 0 (t) -M 1 (t) 2 .
The characteristic diffusion D c is then such that σ(t) ∼ √ D c t. Nevertheless, observations have emphasized the existence of regimes where σ rather expands as t α , α = 1/2 (see for instance the observations in a sand column described in [START_REF] Bromly | Non-fickian transport in homogeneous unsaturated repacked sand[END_REF]). This phenomenon is referred to as anomalous diffusion.

The question of enhanced and anomalous diffusion arises naturally from the fundamental work of Taylor [START_REF] Taylor | Dispersion of soluble matter in solvent flowing slowly through a tube[END_REF]:

• Taylor showed that, for sufficiently large time, any point discharge of tracer in laminar pipe Poiseuille flow evolves to a symmetric gaussian distribution moving longitudinally with the mean speed of the flow and with a characteristic diffusion width σ ∼ D * 1 + 8 945 Pe 2 T t. This is an enhanced diffusion compared to the original one σ ∼ √ D * t.

• In the mean time, Taylor, in his experiments, noted that for moderate time a distinct asymmetry was observed, in contradiction with a fickian behavior.

By ignoring longitudinal diffusion and interactions with the pipes boundary, Lighthill [START_REF] Lighthill | Initial Development of Diffusion in Poiseuille Flow[END_REF] showed that the tracer distribution spreads longitudinally proportional to t for the moderate time. This is perhaps the first observation of anomalous diffusion in the fluids literature. Then, Chatwin [START_REF] Chatwin | The initial develoption of longitudial dispersion in straight tubes[END_REF] generalized the Aris result for transversely uniform initial data to the full variance temporal evolution, and computed short time asymptotic behavior of this special case. Short times behavior is also the preoccupation of [START_REF] Smith | The early stages of contaminant dispersion in shear flows[END_REF].

More recently, Latini and Bernoff [START_REF] Latini | Transient anomalous diffusion in Poiseuille flow[END_REF] generalized the method employed by Lighthill to consider the anomalous spread of an initial distribution before complete transverse mixing has occurred. The authors of [START_REF] Camassa | The exact evolution of the scalar variance in pipe and channel flow[END_REF] employ the stochastic differential equations underlying the passive scalar equation and the rules of conditional probability to compute, with no approximations, the moments needed to construct the complete variance valid for all times. The long time limit of the variance is shown to agree with Taylor's type result.

References for reactive settings are seldom. Motivated by the study of a flow in a catheterized artery with conductive walls, the authors of [START_REF] Mondal | On the solute dispersion in a pipe of annular cross-section with absorption boundary[END_REF] considered a similar problem in an annular pipe, but for a very simple model of reaction, i.e. an instantaneous linear equilibrium. They use a Crank-Nicholson scheme coupled with series expansion, once again formal, to approximate the mean concentration distribution using the first four central moments.

Let us finally mention the recent work [START_REF] Bolster | Mixing in confined stratified aquifers[END_REF] which clearly describes difficulties induced by the modeling of preasymptotic times and which moreover evaluate mixing.

Difficulty is to determine the short-time limit of the domain of applicability of Taylor's type models since they are constructed to hold true at large times. Looking for an answer through numerical simulations was done as soon as some years after Taylor's work (see [START_REF] Gill | Laminar dispersion in capillaries: Part IV. The slug stimulus[END_REF]). We now show that the effective model ( 9)-( 11) is able to capture the three regimes of diffusion encountered in such a problem of tracer injection in a thin pipe: Diffusive regime Initially, diffusion dominates over advection yielding a spherically symmetric Gaussian dispersion cloud.

Note that in the simplest case of absence of reactions, longitudinal displacement due to diffusion is of order O( √ D * t). The relative longitudinal displacement of two particles is controled by O(Q * D * t 2 ) due to the parabolic shear (compare the convective displacement of a particle at the center of the pipe with the one of a particle that has diffused of O( √ D * t) in the transverse direction). This regime is then limited to the times t (Q * 2 D * ) -1/3 . In the present paper the time limitation also depends on the kinetics.

Anomalous regime In this regime the displacement due to tracer diffusing transversely and being sheared longitudinally dominates over the longitudinal diffusion. In this regime, the variance show an anomalous diffusion and the distribution of solute concentration is distinctly asymmetric.

As emphasized by Latini and Bernoff [START_REF] Latini | Transient anomalous diffusion in Poiseuille flow[END_REF], this kind of phenomenon appears when the majority of the tracer has not yet interacted with the pipes boundary. Here, in the case of reacting wall, the effects are enhanced.

Taylor's regime At large times, the flow is in the classical Taylor regime, for which the tracer is homogenized transversely across the pipe and diffuses with a Gaussian distribution longitudinally.

In the original setting of Taylor (see equations ( 4)-( 5)), the diffusion is enhanced by the factor 8D * Pe 2 T /945. In the present paper, there is a greater enhancement due to the reactions.

Let us illustrate that the three latter behaviors are captured by model ( 9)- [START_REF] Camacho | Thermodynamics functions for Taylor's dispersion[END_REF]. Due to the complex structure of the effective equation ( 9), the observation of these latter phenomena is not obvious. Numerical simulations thus become a particularly interesting tool.

To deal with large times computations, we slightly modify our set of parameters. Tables 1,2 are thus replaced by Table 3. The tracer is initially injected until t 0 = 4000 sec. We begin by computing the evolution of the variance associated to the upscaled reactive problem ( 9)- [START_REF] Camacho | Thermodynamics functions for Taylor's dispersion[END_REF]. The result is presented in Figure 8. Observation of the evolution of the variance let us detect the three different regimes of diffusion: • For t * 2.5 • 10 5 , the fluid obeys to the classical diffusive regime, with the diffusion coefficient D * (actually, the diffusion D * is so small here that it is difficult to differentiate the line of slope D * of the horizontal axis). t * , we clearly observe a zone of anomalous regime where σ 2 (t) ∼ Ct, C ∈ R, followed by a return to a diffusive regime.

Da = L R T A Q * = 1 Transversal Damköhler number: DaT = k * s Q * = 10 -4
The point is to detect the transition times from anomalous to enhanced diffusion. A method, e.g. used in [START_REF] Mondal | On the solute dispersion in a pipe of annular cross-section with absorption boundary[END_REF], consists in observing eventual asymmetry in the concentrations profiles. Some of them, computed during the anomalous period, are presented in Figure 9. Nevertheless this method is obviously not practicable neither confident at large times. Observation of anomalous regime should be confirmed by the computation of the skewness Sk, defined by

Sk(t) = M 0 (t) 2 M 3 (t) -3M 0 (t)M 1 (t)M 2 (t) + 2M 1 (t) 3 σ 3 (t) .
The skewness is an indicator of the symmetry of the concentration's distribution. Results are presented in Figure 10. The negative value of the skewness indicates an asymmetric profile with a left tail more pronounced than the right tail (as in Figure 9). Computation of the skewness evolution seems to be the right tool to assert that fickian behavior can only be supposed for 10 7 sec. t * : • For t * 10 7 sec. (see Figure 11), we turn back to a diffusive regime, actually a Taylor's type enhanced diffusion regime: the value of the effective diffusion is given by the slope of the tangent to the curve of the squared We note easily that Taylor's enhanced diffusion is drastically increased by the reactive effects by comparing the slope of the asymptotes at large times of variance curves for reactive and Taylor's settings (Figures 11 and 12 respectively): in Figure 11, a line of slope D T ay would be hard to distinct from an horizontal line. In Figure 8 (respectively Fig. 12) line of slop D T ay is 'tgrandc' (respectively 'tgrandtt').

Furthermore, by comparing figures 11 and 12, we check straightforward that Taylor's regime of enhanced diffusion appears much later in presence of reactions. Kinetics make the anomalous diffusion regime longer.

Effects of the kinetics on the convection

In the former subsection, we have shown that the effective model, despite being derived from the conventional diffusive Fick law at the microscopic level, exhibits anomalous and enhanced diffusive effects. Moreover, the effect of boundary adsorption increases the deviation from the Gaussian distribution. Now, we aim to emphasize that the reactions also have influence on the apparent mean velocity of the flow. We thus introduce the following equation, which is equation [START_REF] Camacho | Thermodynamics of Taylor Dispersion: Constitutive equations[END_REF] where we have suppressed all the retardation terms which act on convection:

∂c glob ∂t * + 2 3 Q * ∂c glob ∂x * -D * 1 + 8 945 Pe 2 T ∂ 2 c glob ∂(x * ) 2 + k * s K * e c glob -( k * s K * e ) 2 t * 0 e -k * s (t * -ξ)/K * e c glob (•, ξ)dξ - 1 3 Pe T Da T H K * e k * s K * e c glob + t * 0 e -k * s (t * -ξ)/K * e ( k * s K * e ) 2 (t * -ξ) -2 k * s K * e c glob (•, ξ)dξ = k * s K * e e -k * s t * /K * e c * s0 K * e + 1 3 Pe T Da T c * s0 K * e H K * e k * s K * e t * -1 +e -k * s t * /K * e 4 45 k * s K * e H K * e Pe T ∂ x c * s0 , (15) 
We then compare the solutions issued of ( 9) with the ones issued of ( 15) and of Taylor's model without kinetics [START_REF] Bhattacharya | On the Taylor-Aris theory of solute transport in a capillary[END_REF]. Computations performed at t * = 200 and t * = 1000, 1400 are presented in Figures 131415. First, for small times, the effective convectional velocity seems to slightly increase (see the retard of curve 'glo' with regard to curve 'eff' in Figure 13). But as of t * = 1000, we observe easily in Figure 14 the retard of curve 'eff' with regard to the curve 'glo', except at the front of the profile. We also provide the curves corresponding to Taylor's situation 'tay' without reactions to compare this effect with the one due to reactions. This phenomenon worsens for larger times. It means that the wall reactions globally slow down the mean flow of the solute.

Other examples of effective models

We present finally numerical illustrations for some other effective models: the one derived rigorously in [START_REF] Choquet | Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore[END_REF] for Danckwerts boundary condition in subsection 5.1, and the one for nonlinear reactions of [START_REF] Van Duijn | Effective Dispersion Equations For Reactive Flows With Dominant Peclet and Damkohler Numbers[END_REF] in subsection 5.2. All the results presented below aim to show the efficiency of the effective models. They show the smallness of the error between exact and effective approximate solution and the advantage of effective models over the models obtained by taking the simple mean over the vertical section.

Danckwerts boundary condition

We assume now an infinite adsorption rate : k * s = +∞ in [START_REF] Brenner | Dispersion resulting from flow through spatially periodic porous media[END_REF], that is boundary condition. We have an infiltration with a pulse of water containing a solute of concentration c * f followed by solute-free water. Then the Danckwerts boundary condition at x * = 0 is: -D * ∂ x * c * + q(y * )c * = q(y * )c * f for 0 < t * < t 0 , -D * ∂ x * c * + q(y * )c * = 0 for t * > t 0 .

-D * ∂ y * c * = K e ∂ t c
The corresponding effective problem is (see its rigorous derivation in [START_REF] Choquet | Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore[END_REF]):

(1 + Da K ) ∂c * ,ef f K ∂t * + 2Q * 3 ∂c * ,ef f K ∂x * = D * 1 + 4 135 Pe 2 T [ 2 7 + Da K (2 + 7Da K ) (1 + Da K ) 2 ] ∂ 2 c * ,ef f K ∂(x * ) 2 (16) 
with Da K = K e /H, completed by the initial and boundary conditions

-D * ∂ x * c * ,ef f K |x=0 + 2Q * 3 c * ,ef f K |x=0 -c * f χ (0,t 0 ) = 0, ( 17 
) c * ,ef f K |t=0 = c * 00 . ( 18 
)
For the simulations presented in Figures 1617, we take c * f = 0.5, c 00 = 0, α = 1.73, ε = 0.001 and we test successively with t 0 = 1 and t 0 = 0.2.

Nonlinear kinetics

Finally we consider some nonlinear models of reactions. Thus Condition [START_REF] Brenner | Dispersion resulting from flow through spatially periodic porous media[END_REF] 

where Φ is the isotherm function. Typical examples for Φ are given by the Langmuir and Freundlich isotherms:

Φ(c) = k 1 c 1 + k 2 c (Langmuir) ; Φ(c) = k 1 c k 2 (Freundlich). ( 20 
)
In the present work, we fix k 1 = 1 and use different values for k 2 .

Choosing the same scalings than in the previous sections, the authors of [START_REF] Van Duijn | Effective Dispersion Equations For Reactive Flows With Dominant Peclet and Damkohler Numbers[END_REF] have derived formally (using an anisotropic perturabation method) the corresponding effective model. It reads: 

∂ t * (c * N + c * s,N H ) + ∂ x * ( 2Q * 3 c * N + Pe T 15 Φ(c * N )) = D * (1 + 8 945 Pe 2 T )∂ 2 x * c * N + 2k * d Pe T 45 ∂ x * c * s,N (21) 
Problem ( 21)-( 23) is thus the equivalent of equation ( 9) in case of nonlinear reactions. The main difference is due to the nonlinearity of the definition of the reaction which does not allow to decouple the problem for c * from the problem for c * s . We thus have to consider here a system of two coupled pde's. Other difference lies in the justification of the effective model ( 21)- [START_REF] Iosilevskii | Taylor dispersion in systems containing a continuous distribution of reactive species[END_REF]. Article [START_REF] Van Duijn | Effective Dispersion Equations For Reactive Flows With Dominant Peclet and Damkohler Numbers[END_REF] contains its formal derivation but no error estimates. For the numerical simulations, we fix k * s = 1, K * e = H Q * •ε . The physical parameters are those already given in the table 1 and we choose the following initial and left boundary conditions: Comparison between concentrations issued from the effective problem ('eff2'), from the sectional average of the solution of the original problem ('langmuir2') and from the simple average ('moy2'), using Langmuir isotherm characterized by k 2 = 2 at time t = 300sec.

c |x=0 = 1, c |t=0 = 0.

  PARAMETERS VALUES Width of the slit: H 5 • 10 -3 m Characteristic lenght: LR 0.632 m ε = H/LR 7.9113 • 10 -3 Characteristic velocity: Q * 3 • 10 -3 m/sec Diffusion coefficient: D * 2 • 10 -7 m 2 /sec, Longitudinal Peclet number: Pe = LRQ * /D * = 9.48 • 10 3 α = log Pe/ log(1/ε) = 1.8921440 Transversal Peclet number: PeT = HQ * /D * = 75

Figure 1 :

 1 Figure 1: Comparison between concentration from Taylors paper ('tay') and from the simple average ('moy') with the vertically averaged solution of the original problem ('exactTay'), at times t * = 100, 200, 300, 500 sec.

Figure 2 :

 2 Figure 2: Comparison between variance computed with the analytical solution ('sig2 tay') and with our numerical scheme ('sigtay')
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Figure 3 :

 3 Figure 3: Comparison between concentration from the vertical average of the original problem ('EXACTT') and from the effective model ('EFFT') at times t * = 100, 200, 300, 500 sec.

  0

Figure 4 : 5 •

 45 Figure 4: Similar results to those of Figure 3 but computed for a value of ε divided by 2

Figure 5 :

 5 Figure 5: Comparison between the profile of the effective concentration presented in Figure 2 when H = 5.10 -3 ('effref') and the one of the effective concentration when H = N.10 -3 ('effhN') at time t * = 200 sec.

Figure 6 :

 6 Figure 6: Comparison between the profile of the effective concentration presented in Figure 2 when Q * = 3.10 -3 ('EFFREF') and the one of the effective concentration when Q * = N.10 -3 ('EFFQN') at time t * = 200 sec.

Figure 7 :

 7 Figure 7: Comparison between the profile of the effective concentration presented in Figure 3 when L R = 0.632 ('EFFREF') and the one of the effective concentration when L R = 0.832 ('EFFRL8') at time t * = 200 sec.

4

 4 Characteristic velocity: Q * 9 • 10 -4 m/sec Diffusion coefficient: D * 2 • 10 -7 m 2 /sec, Longitudinal Peclet number: Pe = LRQ * /D * = 4.5 • 10 6 α = log Pe/ log(1/ε) = 1.6633 Transversal Peclet number: PeT = HQ * /D * = 450 Adsorption rate constant: k * s 9 • 10 -8 m/sec Adsorption equilibrium constant: K * e 5 • 10 -1 m Longitudinal Damköhler number:

Figure 8 :

 8 Figure 8: Evolution of the variance (with respect to time) for the reactive problem

Figure 9 :

 9 Figure 9: Asymmetric profiles (with respect to space) during the period of anomalous diffusion at times t * = 4 • 10 6 sec., 5 • 10 6 sec., 6 • 10 6 sec. and 6.5 • 10 6 sec.

Figure 10 : 8 Figure 11 :

 10811 Figure 10: Evolution of the skewness corresponding to Figure 8

Figure 12 :

 12 Figure 12: Evolution of the variance corresponding to Taylor's setting (without reactions). The straight line has a slope of value D T ay , D T ay being the value of the enhanced diffusion during the second fickian regime as t * 4•10 4 . The first fickian regime, characterized by the diffusion D * , is detectable by zooming to smaller times t * < D -1/3 ≈ 30 sec.

Figure 13 :

 13 Figure13: Comparison (with a boxed zoom) between the profiles of solutions issued of the effective model (9) ('eff200') with the ones issued of (15) ('glo200') and of Taylor's model (4) ('tay200') at time t * = 200 sec.

Figure 14 :

 14 Figure 14: Comparison between the profiles of solutions issued of the effective model (9) ('EFF1000') with the ones issued of (15) ('GLO1000') and of Taylor's model (4) ('TAY1000') at time t * = 1000 sec.

Figure 15 :

 15 Figure 15: Comparison between the profiles of solutions issued of the effective model (9) ('EFF1400') with the ones issued of (15) ('GLO1400') and of Taylor's model (4) ('TAY1400') at time t * = 1400 sec.

  is replaced by-D * ∂ y * c * = ∂c * s ∂t * = k * s (Φ(c * ) -c * s /K * e ) on Γ * ,

∂

  t * c * s,N = Φ(c * N + Pe T c1 N ) -k * d c *

First, we take k 2

 2 = 3 with Freundlich's adsorption isotherm. Next, we use the Langmuir's adsorption isotherms for the value k 2 = 2. Corresponding results are in Figures18-19

  .

Figure 18 :

 18 Figure 18: Comparisons between concentrations issued from the effective problem ('eff3'), from the sectional average of the solution of the original problem ('freundlich3') and from the simple average ('moy3'), using Freundlich isotherm characterized by k 2 = 3 at time t = 300sec.

Figure 19 :

 19 Figure 19: Comparison between concentrations issued from the effective problem ('eff2'), from the sectional average of the solution of the original problem ('langmuir2') and from the simple average ('moy2'), using Langmuir isotherm characterized by k 2 = 2 at time t = 300sec.

Table 2 :

 2 Parameters values for the kinetics

	1									'effref' 'effh2'	
										'effh3' 'effh4'	
	0.8										
	0.6										
	0.4										
	0.2										
	0										
	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2

Table 3 :

 3 Parameters values for the variances computations

  . At the inlet boundary we suppose Danckwert's

									'eff200' 'glo200' 'tay200'
		0.8						
		0.6						
	1						'eff200'	
							'glo200' 'tay200'	
	0.8	0.4						
	0.6							
		0.2						
	0.4							
	0.2							
		0						
			0	0.5		1		1.5	2	2.5
	0	0	0.5	1	1.5	2	2.5	3

* on Γ *
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