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[1] The diffuse attenuation coefficient, Kd(l) is a fundamental radiometric parameter
that is used to assess the light availability in the water column. A neural network
approach is developed to assess Kd(l) at any visible wavelengths from the remote
sensing reflectances as measured by the SeaWiFS satellite sensor. The neural network
(NN) inversion is trained using a combination of simulated and in-situ data sets
covering a broad range of Kd(l), between 0.0073 m�1 at 412 nm and 12.41 m�1 at
510 nm. The performance of the retrieval is evaluated against two data sets, one
consisting of mainly synthetic data while the other one contains in-situ data only and is
compared to those obtained with previous published empirical (NASA, Morel and
Maritorena (2001) and Zhang and Fell (2007)) and semi-analytical (Lee et al., 2005b)
algorithms. On the in-situ data set from the COASTLOOC campaign, the retrieval
accuracy of the present algorithm is quite similar to published algorithms for
oligotrophic and mesotrophic ocean waters. But for Kd(490) > 0.25 m�1, the NN
approach allows to retrieve Kd(490) with a much better accuracy than the four other
methods. The results are consistent when compared with other SeaWiFS wavelengths.
This new inversion is as suitable in the open ocean waters as in the turbid waters.
The work here is straightforwardly applicable to the MERIS sensor and with few
changes to the MODIS-AQUA sensor. The algorithm in matlab and C code is
provided as auxiliary material.

Citation: Jamet, C., H. Loisel, and D. Dessailly (2012), Retrieval of the spectral diffuse attenuation coefficient Kd(l) in open and
coastal ocean waters using a neural network inversion, J. Geophys. Res., 117, C10023, doi:10.1029/2012JC008076.

1. Introduction

[2] The diffuse attenuation coefficient for downwelling
irradiance, Kd(l) (in m�1), where l is the wavelength of
light, is a water property related to light penetration and
availability in aquatic ecosystems. Light availability plays a
critical role in the regulation of physical and biogeochemical
processes in the upper ocean, such as the heat transfer in the
upper layer of the ocean [Lewis et al., 1990; Morel and
Antoine, 1994; Sathyendranath et al., 1989], phytoplank-
ton photosynthesis in the ocean euphotic zone [Platt et al.,
1988; Sathyendranath et al., 1991], and in-water visibility
[Preisendorfer, 1986; Tyler, 1968]. Kd(l) is an apparent
optical property (AOP) whose variability is governed by
changes in the inherent optical properties (IOP) of the water
body and sea surface irradiance conditions [Kirk, 1984,
1991; Morel and Loisel, 1998; Preisendorfer, 1975]. The
latter depend on the sun zenith angle qs, diffuse sky

irradiance, and sea surface state (wind speed). Accurate
determination of Kd(l) is critical to being able to analyze
and understand those processes.
[3] Satellite observation is the only effective method to

provide large-scale maps ofKd(l) over basin and global scales
at high spatial and temporal resolutions. The ocean color
remote sensing of the diffuse attenuation coefficient corre-
sponds to the average irradiance attenuation coefficient within
the upper layer, delimited by the first attenuation depth at
which the downwelling irradiance is reduced to 37% of its
surface value. The assessment of the diffuse attenuation coef-
ficient from ocean color algorithms is essentially performed at
490 nm. Empirical methods estimate Kd (490) either directly
from the blue-to-green [Austin and Petzold, 1981; Mueller,
2000; Werdell and Bailey, 2005] or blue-to-red ratios [Doron
et al., 2007; Kratzer et al., 2008; Wang et al., 2009; Zhang
and Fell, 2007]. But these latter methods only estimate Kd at
490 nm. Based on Kd(490), Kd(l) can be estimated for other
wavelengths (l) by using empirical relationships between
Kd(490) and Kd(l) [Austin and Petzold, 1986; Kishino et al.,
1996]. Empirical algorithms based on spectral relationships
between Kd(l) and the chlorophyll-a concentration, Chla,
allow, by construction, the retrieval of Kd(l) at any visible
wavelengths [Morel, 1988; Morel and Maritorena, 2001;
Morel et al., 2007]. However, these published formulations
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strongly depend on field data sets used for their develop-
ments, which is problematic for global applications offered
by satellite observation of ocean color. Semi-analytical
algorithms do not present such limitation, as they are based
on semi-analytical relationships between IOP and Kd(l) [Lee
et al., 2005b]. In the semi-analytical method, Kd(490) is
estimated from the absorption and backscattering coefficients
through a semi-analytical model [Lee et al., 2002, 2005b,
2007].
[4] Lee et al. [2005a] showed that empirical methods

[Austin and Petzold, 1981; Mueller, 2000; Morel and
Maritorena, 2001], produced satisfactory estimates in clear
open ocean waters, i.e. for low values of Kd (<0.25 m

�1), but
they generally failed to provide accurate estimates in turbid
waters (high values of Kd), using data collected in three
different regions that cover open ocean and coastal waters
(Gulf of Mexico, the Arabian and the Baltic Seas). The semi-
analytical method of Lee et al. [2005b] did not show such
limitations. In order to avoid the limitations of the empirical
algorithms based on blue/green ratios, alternative wave-
lengths band ratios with higher red wavelengths could be
used and have shown improvements for MODIS and MERIS
ocean color sensors [Doron et al., 2007; Kratzer et al., 2008;
Wang et al., 2009].
[5] Neural networks (NN) are good candidates for model-

ing inverse functions in geophysical and remote sensing
applications [Atkinson and Tatnall, 1997; Badran and
Thiria, 2002; Gardner and Dorling, 1998; Krasnopolsky
and Schiller, 2003; Krasnopolsky, 2007; Thiria et al.,
1993]. An NN, if properly parameterized, can yield retrie-
vals that are accurate and relatively insensitive to reasonable
noise levels, because noise is introduced and accounted for
during the training process. The type of NN used in this study
is theMulti-Layer Perceptron (MLP) [Rumelhart et al., 1986]
which can be seen as a generic technique for the nonlinear
approximation of nonlinear continuous and almost continu-
ous mappings [Cybenko, 1989; Hornik et al., 1989; Pinkus,
1999]. The MLP is an empirical method that allows the
inclusion of more information as inputs than the classic linear
or polynomial regressions. A number of studies in ocean
color were published using MLP inversion, for the atmo-
spheric correction processing [Brajard et al., 2006a, 2006b,
2008; Jamet et al., 2004, 2005; Schroeder et al., 2007], the
estimation of Chla concentration [Buckton et al., 1999;
D’Alimonte and Zibordi, 2003; Gonzales Vilas et al., 2011;
Gross et al., 2000; Keiner and Brown, 1999; Schiller and
Doerffer, 1997; Tanaka et al., 2004; Zhang et al., 2003], or
the inherent optical properties retrieval [Bricaud et al., 2007;
Doerffer and Schiller, 2007; Ioannou et al., 2011], among
others. This study is the first attempt to use this type of sta-
tistical inversion for estimating the diffuse attenuation coef-
ficient from ocean color satellite data at the SeaWiFS
wavelengths.
[6] In this paper, we briefly describe the empirical and

semi-analytical methods previously published for deriving
Kd(490) (and Kd(l)) from ocean color remote sensing.
Then, we present the synthetic and in-situ data sets used for
the training of the NN inversion and its validation and
comparison to existing algorithms. A brief mathematical
concept of the NN is given in section 4. Section 5 presents
the validation of the NN inversion and its comparison to
four existing algorithms using two types of data sets. One

SeaWiFS image is presented as an example of application
of the new NN inversion in the English Channel/North Sea.
The work presented in this study focuses on the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) but the method is
straightforwardly applicable for the Moderate Resolution
Imaging Spectroradiometer (MODIS) or the Medium Reso-
lution Imaging Spectrometer (MERIS) sensors.

2. Existing Algorithms for the Estimation of Kd(l)
[7] This section presents four different ocean color

algorithms previously developed to compute the diffuse
attenuation coefficient at different wavelengths (two only
at l = 490 nm and the two others at any wavelengths),
and which are taken into account in the inter-comparison
exercise.

2.1. One-Step Empirical Methods

[8] In the framework of the Coastal Zone Color Scanner
(CZCS) mission, Austin and Petzold [1981] proposed an
algorithm to derive Kd(490) from the water-leaving radian-
ces, Lw, estimated at l1 = 443 nm and l2 = 550 nm as
follows:

Kd 490ð Þ ¼ Kw 490ð Þ þ 0:0883� Lw 443ð Þ
Lw 550ð Þ

� ��1:491

ð1Þ

with Kw(490), the attenuation coefficient for pure sea water
(Kw = 0.022 m�1).
[9] To assess the diffuse attenuation coefficient at 490 nm

from the SeaWiFS sensor,Mueller [2000] proposed a variant
of the previous equation:

Kd 490ð Þ ¼ Kw 490ð Þ þ 0:15645� Lw 490ð Þ
Lw 555ð Þ

� ��1:5401

ð2Þ

with a Kw value of 0.016 m�1 [Mueller, 2000]. This version
was modified in 2005 using the remote sensing reflectance
Rrs instead of the water-leaving radiances Lw, as input para-
meters (http://oceancolor.gsfc.nasa.gov/REPROCESSING/
SeaWiFS/R5.1/k490_update.html) using the following
equation:

Kd 490ð Þ ¼ 0:1853
Rrs 490ð Þ
Rrs 555ð Þ

� ��1:349

ð3Þ

[10] The NASA operational algorithm for derivingKd(490)
(http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/
kdv4/) was updated using in situ data from the NASA bio-
Optical Marine Algorithm Data set (NOMAD [Werdell and
Bailey, 2005]). The algorithm is described by the polyno-
mial best fit that relates the log-transformed Kd(490) variable
to a log-transformed ratio of remote-sensing reflectances.
The polynomial form replaces the power-law form employed
in previous Kd algorithms (equations (1), (2), and (3)) and
uses the remote-sensing reflectances (Rrs) instead of the
water-leaving radiances Lw or the normalized value, nLw:

Kd 490ð Þ ¼ 10 0:8515�1:8263Xþ1:8714X 2�2:4414X 3�1:0690X 4ð Þ þ 0:0166

ð4Þ
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with X = log10
Rrs 490ð Þ
Rrs 555ð Þ

� �
. This method will be thereafter referred

to as Kd
Werdell.

[11] As shown by Mueller [2000], the empirical algorithm
using a fixed ratio of Rrs generally works well in clear waters
(Kd(490) ≤ 0.25 m�1) but shows significant uncertainties for
higher values of Kd(490) (i.e., in turbid waters). An alter-
native approach was proposed by Zhang and Fell [2007]
to improve the determination of Kd(490) in turbid waters.
This method, thereafter referred to asKd

Zhang, uses a switching
point to deal with Kd(490) values higher than 0.5 m�1,
as follows:

if
Rrs 490ð Þ
Rrs 555ð Þ ≥ 0:85 then Kd 490ð Þ ¼ 10 �0:843�1:459X�0:101X 2�0:811X 3ð Þ

ð5Þ

with X = log10
Rrs 490ð Þ
Rrs 555ð Þ

� �
and

if
Rrs 490ð Þ
Rrs 555ð Þ < 0:85 then Kd 490ð Þ

¼ 10 0:094�1:302Xþ0:247X 2�0:021X 3ð Þ ð6Þ

with X = log10
Rrs 490ð Þ
Rrs 670ð Þ

� �
[12] These two empirical algorithms (Kd

Werdell and Kd
Zhang)

allow to estimate Kd only at l = 490 nm.

2.2. Two-Step Empirical Method

[13] Another way to estimate the diffuse attenuation coeffi-
cient is to use a two-step method, with Chla as an intermediate
parameter [Morel, 1988; Morel and Maritorena, 2001]. In the
present study, Chla is derived from the empirical OC4v6
algorithm (http://oceancolor.gsfc.nasa.gov/REPROCESSING/
R2009/ocv6/) as follows:

chl a ¼ 10 a0þa1Xþa2X 2þa3X 3þa4X 4ð Þ ð7Þ

with X = log(Rrs
1 /Rrs

2 ) where Rrs
1 = max(Rrs(443), Rrs(490),

Rrs(510)) and Rrs
2 = Rrs(555); a0 = 0.3272, a1 = �2.9940, a2 =

2.7218, a3 = �1.2259 and a4 = �0.5683.
[14] Then, the Kd versus Chla empirical relationships are

used to calculate Kd(l) at any visible wavelengths:

Kd lð Þ ¼ Kw lð Þ þ a0 lð Þ * Chlað Þa1 lð Þ ð8Þ

[15] For l = 490 nm, Kw = 0.0166 m�1, a0 = 0.07242 and
a1 = 0.68955. This method will be thereafter referred to as
Kd
Morel. This method has been developed using in-situ data in

oligotrophic and mesotrophic waters, with relatively low
values of Kd(l) (<0.5 m�1). The evaluation of Kd

Morel is the

combination of OC4V6 and the relationship between Chla
and Kd(l).

2.3. A Semi-analytical Approach

[16] The change of the diffuse attenuation coefficient with
variations of the IOP and the solar zenith angle has long
been studied through radiative transfer calculations [Gordon,
1989; Kirk, 1984, 1991; Lee et al., 2005b;Morel and Loisel,
1998]. Based on these modeling studies, semi-analytical
relationships have been developed. For instance, through
Monte Carlo modeling, Kirk [1984] proposed a simple
parameterization between Kd(l), the solar zenith angle and
the absorption and scattering coefficients. Morel and Loisel
[1998] improved this parameterization by taking into
account the effect of the variations in the shape of the volume
scattering function, as well as the sky conditions. In contrast
to these studies, Lee et al. [2002] parameterized Kd(l) as a
function of the absorption and backscattering coefficients,
which can be both estimated from satellite ocean color
observations. The model can be written as:

Kd lð Þ ¼ 1þ 0:005qsð Þ � a lð Þ
þ 4:18� 1� 0:52� exp �10:8a lð Þð Þð Þ � bb lð Þ ð9Þ

where qs is the solar zenith angle, and a(l) and bb(l), the
absorption and backscattering coefficients, respectively.
These two parameters are retrieved from the remote sensing
reflectances, Rrs, at wavelengths 443, 490, 555 and 670 nm
with the Quasi-Analytical Algorithm (QAA) [Lee et al.,
2002, 2005a, 2007]. The measured values of qs are avail-
able in the different data sets used for this study. This method
will be thereafter referred to as Kd

Lee.

3. Data

3.1. Training Data

[17] The training data set includes Rrs and Kd data points
that were issued from either field or synthetic data sets, at the
SeaWiFS wavelengths. The main characteristics of these
four different data sets are summarized in Table 1.
[18] The full data set is mainly composed of the synthetic

data set created by the International Ocean Color Coordi-
nating Group (IOCCG) working group on Ocean Color
Algorithms [IOCCG, 2006] as well as the NOMAD data set
[Werdell and Bailey, 2005]. When the wavelengths in the
IOCCG database differed from that of the SeaWiFS sensor,
the remote-sensing reflectances at 410, 440, 490, 510, 550,
560 and 670 nm were interpolated to get Rrs at the
corresponding SeaWiFS wavelengths using a spline method.
In this synthetic data set, the inherent optical properties
(IOPs) were generated with various available/reasonable
optical/bio-optical parameters/models to account for the

Table 1. Range and Median Values of Kd(490), Rrs(490) and Rrs(555) for Each Data Set Used for the Training of the NN Inversiona

BOUM NOMAD IOCCG Synthetic-Turbid

N Kd (490) (m
�1) 60 1308 9000 1656

Range Median Rrs(490) (sr
�1) [0.008; 0.34] 0.038 [0.019; 2.29] 0.25 [0.017; 2.53] 0.20 [0.056; 7.73] 0.86

Range Median Rrs(555) (sr
�1) [0.0050; 0.0060] 0.0059 [0.00037; 0.0096] 0.0032 [0.00060; 0.0175] 0.0054 [0.0012; 0.0278] 0.0082

Range Median Reference [0.0011; 000017] 0.0014
Loisel et al. [2011]

[0.00042; 0.0179] 0.0030
Werdell and Bailey [2005]

[0.00089; 0.0297] 0.0046
IOCCG [2006]

[0.018; 0.049] 0.014
section 3.1

aN represents the total number of points per data set (for all SeaWiFS wavelengths).
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natural variability encountered in natural waters. Rrs and Kd

were generated using the HydroLight software [Mobley,
1994, 1995] with these IOPs and different sun zenith
angles as inputs parameters. More details are given in the
IOCCG report #5 [IOCCG, 2006].
[19] The NOMAD data set gathered field measurements

collected in optically very diverse waters. Only 218 con-
comitant observations (per wavelength) of Rrs(l) and Kd(l)
were available. The Kd(490) values cover a broad range of
trophic waters (from oligotrophic to turbid waters, Table 1).
[20] For completing these two data sets and having a

large range of Kd(l) representing ocean waters from very-
oligotrophic to very turbid situations, two others data sets
were added. The third data set corresponds to field mea-
surements collected in very oligotrophic areas of the Medi-
terranean Sea during the BOUM experiment in 2008 [Loisel
et al., 2011]. In this third data set, Kd(l) vary between
0.008 m�1 and 0.34 m�1, with a median value of 0.08 m�1

(Table 1), which are very low values for Kd(l). The fourth
data set corresponds to very turbid waters (named as syn-
thetic-turbid data set in Table 1) and is developed through
radiative transfer computations. The details about this syn-
thetic data set are given in Appendix A.
[21] The number of (Rrs(l), Kd(l)) pairs is 1500, 218, 10,

120 for the IOCCG, NOMAD, BOUM, synthetic-turbid data
sets per wavelength, respectively (Table 1). The range of
Kd(490) and median values and associated Rrs at 490 and
555 nm for each data set is summarized in Table 1. Most of
the Kd(l) values are below 0.5 m�1. For all wavelengths,
4121 Kd(l) out of 10656 and 553 Kd(l) out of 1368 are
<0.25 m�1 in the synthetic and in-situ data sets, respectively.
The whole in-situ and synthetic data set (Table 1) has then
been divided into two sub–data sets: 80% of the data (sub–
data set 1) were randomly selected for the training phase of
the neural network (i.e. determination of its parameters, see
section 4) while the rest (sub–data set 2) were used to eval-
uate the capacity of the neural network to retrieve Kd(l)
from Rrs(l).

3.2. Validation Database

[22] While the sub–data set 2 is also used for the valida-
tion and algorithm comparison phases, a fully independent
data set was taken for that purpose. The COASTLOOC data
set [Babin et al., 2003a] was used to evaluate the neural
network approach, and to compare its performance with
existing methods. The COASTLOOC data set gathered field
measurements performed in 1997 and 1998 in European
coastal waters and is comprised of 420 observations per
wavelength. It is entirely independent from the in-situ data
sets, i.e. no COASTLOOC data were integrated into
NOMAD or BOUM. These data cover a large variability in
terms of water types with values of Kd(490) ranging from

0.023 m�1 to 3.14 m�1 (Table 2). For our study, this data set
has been reduced to 132 data points (per l), because of the
constraints on the spectral values of Rrs and Kd(l), as values
of Rrs at 412, 443, 490, 510, 555 and 670 nm are needed as
inputs of the neural network. The median and standard
deviation values of Kd(l) are provided in Table 2.
[23] The irradiance reflectance just below the sea surface,

R(0�), was available in the COASTLOOC data set instead of
the remote sensing reflectance, Rrs. Therefore, prior to any
evaluation, R(0�) needed to be converted into Rrs. The for-
mulation used by Zhang and Fell [2007], who also took the
COASTLOOC data set for their Kd(490) retrieval evalua-
tion, was adopted: Rrs = 0.133 � R(0�).

4. Neural Network Inversion

[24] The type of neural network used in this study is the
Multi-Layer Perceptron (MLP). A neuron is an elementary
transfer function that provides an output s when an input A is
applied. An MLP is a set of interconnected neurons
(Figure 1). Each neuron receives from and sends signals
only to the neurons to which it is connected. Thanks to this
association of elementary tasks, an MLP is able to solve
complex inverse problems. The specificity of an MLP
depends on the topology of the neurons (number of layers,
numbers of neurons on each layer) and on the connection
weights wij from neuron j to neuron i. The MLP architecture
has one layer with the inputs, one layer broadcasting the
outputs, and one or more intermediate layers (the so-called
hidden layers). The network used in this study is fully
connected (Figure 1).
[25] The wij weight values were computed through a train-

ing phase, using the training data set (i.e., sub–data set 1). We
minimized a cost function defined as the quadratic difference
between the desired and the computed outputs, the wij being
the control variables. For that purpose, we used a conjugate-
gradient technique, that is an iterative optimization method

Table 2. Median, Standard Deviation, and Minimum and
Maximum Values of Kd(l) of the COASTLOOC Data Set

Kd(412) Kd(443) Kd(490) Kd(510) Kd(555) Kd(670)

Median (m�1) 1.05 0.75 0.46 0.41 0.32 0.71
Standard

deviation (m�1)
1.00 0.80 0.60 0.56 0.44 0.41

Minimum (m�1) 0.012 0.029 0.023 0.021 0.019 0.27
Maximum (m�1) 4.81 4.02 3.14 2.94 2.46 2.67

Figure 1. Architecture of the Multi-Layer Perceptron with
7 inputs, one hidden layer of 11 neurons and 1 output, Kd(l).
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adapted to MLP, the back-propagation gradient [Bishop,
1995]. The weight values were randomly initialized and the
activation function used is the classic sigmoid function with
values varying between �1 and 1. Once the training phase is
finished, the MLP will only do algebraic operations, which
leads to faster computations, which is very convenient for
satellite applications.
[26] As we want to estimate Kd at any wavelength, the

sixth visible SeaWiFS Rrs between 412 and 670 nm as well
as the wavelength at which the Kd retrieval is performed
were used as input parameters (Figure 1). Several tests were
performed for finding the optimal architecture. Two types of
architecture were tested: one or two hidden layers with the
number of neurons varying between 1 and 50 for the case
with only one hidden layer and between 1 and 20 for the
second case (with the number of neurons always higher in
the first hidden layer than in the second one). We chose the
architecture that combined a minimal error with a mini-
mal number of neurons. Finally, the optimal architecture
was therefore composed of one hidden layer MLP with
11 neurons in the hidden layer (Figure 1). Different
partitions of the training data set have been tested with
no significant differences in the performances of the
retrievals. Both the inputs (Rrs(l)) and output (log(Kd(l)))

of the NN inversion were pre-processed using the fol-
lowing equations:

RN
rs lð Þ ¼ 2

3
� Rrs lð Þ �mean Rrs lð Þð Þ

s Rrs lð Þð ð10Þ

KN
d lð Þ ¼ 2

3
� log Kd lð Þð Þ �mean log Kd lð Þð Þð Þ

s log Kd lð Þð Þð Þ ð11Þ

with s, the standard deviation. Of course, the output of
the NN need to be denormalized with its mean and standard
deviation using the invert formulations of equations (10)
and (11).

5. Results and Discussion

[27] To demonstrate the performance of the new para-
metric neural network based inversion, we present inter-
comparison results with the existing methods presented in
section 2 for Kd(490) and Kd(l) using the sub–data set 2 and
the COASTLOOC database. In the following, the discussion
of the results will be focused on the retrieval of Kd(490) as
all algorithms described in section 2 provide this parameter
which is the official parameter provided by NASA. Short
discussions about the other SeaWiFS wavelengths will also
be provided.

Figure 2. Scatterplots of the desired Kd(490) versus estimated Kd(490) values retrieved with the five
algorithms for sub–data set 2. The continuous line represents the 1:1 line.
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[28] The statistical parameters used to assess the perfor-
mance of the different algorithms are:
[29] 1. The Root-Mean-Square-Error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Kdes
d � Kdes

d

� �2
N

s
ð12Þ

with Kest
d is the Kd estimated with the different algorithms,

Kdes
d is the desired (measured) Kd and N, the number of

examples.

[30] 2. The Relative Error (RE):

RE ¼ 1

N
�
X Kdes

d � Kest
d

Kdes
d

				
				

� �
ð13Þ

[31] 3. The Absolute Difference Percentage (ADP) as
defined by Lee et al. [2005a]:

ADP ¼ exp mean ln
Kest
d

Kdes
d

� �				
				

� �
� 1 ð14Þ

[32] 4. The average bias (AB):

AB ¼ 1

N
�
X

Kest
d � Kdes

d

� � ð15Þ

[33] 5. The slope and intercept of the regression line
[34] 6. The Pearson’s correlation coefficient r

5.1. Results on the Sub–data Set 2 for Kd(490)

[35] Figure 2 shows the comparison between the desired
Kd(490) values and the Kd(490) retrieved values applying
the four published algorithms (Kd

Werdell(490), Kd
Zhang(490),

Kd
Morel(490), Kd

Lee(490)) and the neural network approach
(Kd

NN(490)) to the sub–data set 2 (section 3.1). All statistical

Table 3. Statistical Results for the Retrieval of Kd(490) by the
Algorithms of Kd

Werdell, Kd
Morel, Kd

Zhang, Kd
Lee and Kd

NN Applied to
the Sub–data Set 2a

Kd
Werdell Kd

Zhang Kd
Morel Kd

Lee Kd
NN

RMSE (m�1) 1.41 0.71 1.56 0.53 0.27
RE (%) 29 20 32 20 14
ADP 0.76 0.33 1.31 0.29 0.21
AB (m�1) �0.40 �0.65 �0.08 0.006 �0.011
Slope 0.98 1.05 4.23 1.06 1.03
Intercept 0.41 0.037 0.056 �0.054 �0.014
r 0.47 0.89 0.60 0.94 0.98
# (%) ∈ [0.75;1.25] 64 71 58 73 90

a# corresponds to the number of points.

Figure 3. Ratio of the estimated Kd(490) to desired Kd(490) versus desired Kd(490) on the test data set
(sub–data set 2) for the five algorithms. The upper vertical dashed line corresponds to a ratio of 1.25,
the middle vertical line corresponds to a ratio of 1 and the lower vertical dashed line corresponds to a ratio
of 0.75.
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results are given in Table 3. For the low Kd(490) values, i.e.
<0.25 m�1, all five methods give similar and accurate esti-
mates. The estimates of Kd(490) are very close to the 1:1 line
(Figure 2)and the scattering of the data is very low for these
low values of Kd(490) (RMSE(Kd

NN) = 0.013 m�1, RMSE
(Kd

Werdell) = 0.009 m�1, RMSE(Kd
Morel) = 0.014 m�1, RMSE

(Kd
Zhang) = 0.009 m�1, RMSE(Kd

Lee) = 0.014 m�1). As shown
in Figure 3, most of the retrievals, for any algorithm, have an
error within �25%. Kd

Zhang, Kd
Lee and Kd

NN tend to overesti-
mate the very low values of Kd(490) ≤ 0.03 m�1, which is
not the case for Kd

Werdell and Kd
Morel. For moderate and high

values, the five algorithms give different results. Kd
Werdell

and Kd
Morel show limitations when Kd(490) is greater than

0.5 m�1 with an overall under-estimation of the diffuse
attenuation coefficient. Kd

Zhang, Kd
Lee and Kd

NN do not present
such limitations. These three algorithms are quite accurate for
retrieving Kd(490) > 0.5 m�1 as shown in Figure 3. Kd

Zhang

and Kd
Lee show overestimates of Kd(490) for values >1 m�1,

of up to 200% (Figure 3). The quality of retrievals obtained
with Kd

NN do not vary much with Kd(490) (Figures 2 and 3).
Only 10% of retrievals have an error >|25| % with this latter
algorithm, while the number is 36% for Kd

Werdell, 29% for
Kd
Zhang, 42% for Kd

Morel and 27% for Kd
Lee. This is related to

the statistical values presented in Table 3, as the RMSE is

0.27 m�1, RE is 14% and the correlation coefficient is 0.98
for the retrievals obtained with Kd

NN. The statistical results are
computed for the true (linear) values of Kd(l). As the values
of this parameter cover a broad range (from 0.08 m�1 to
10 m�1 so two orders of magnitude), it is interesting to
compute statistics with log-transformed Kd(l) through the
ADP parameter. As shown in Table 3, when using ADP,
the comparison leads to the same conclusion.
[36] These results are in agreement with the conclusions of

Lee et al. [2005a] who evaluated Kd
Lee and previous versions

of Kd
Werdell and Kd

Morel using data collected in three different
regions that cover clear open ocean and coastal waters (Gulf
of Mexico, the Arabian Sea and the Baltic Sea). The authors
showed that Kd

Werdell and Kd
Morel provided accurate estimates

of Kd(490) for the relatively low values, typical of open
ocean waters, and under-estimated the Kd(490) for moderate
and high values, concluding that these methods were not
suitable for turbid waters. This is not surprising that Kd

Morel

can not retrieve Kd(490) accurately for those range of values,
as it has be built for low values of Kd(l) (<0.5 m�1) and it
uses the OC4V6 bio-optical algorithm, that was developed
mainly for open ocean waters, for calculating Kd(l). For this
study, we used the Chla estimated by OC4V6 and not the in-
situ Chla. It is not the case for Kd

Werdell as this algorithm used

Figure 4. Scatterplots of desired Kd(490) versus estimated Kd(490) values retrieved with the five algo-
rithms for the COASTLOOC data set. From the top left to the bottom right: Kd

Werdell, Kd
Morel, Kd

Zhang, Kd
Lee

and Kd
NN. The continuous line represents the 1:1 line.
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the NOMAD data set with values of Kd(490) up to 2.29 m
�1.

Our results show an improvement of Kd(490) estimates
when using a switching point as shown by Zhang and Fell
[2007]. The development of the latter algorithm is based
on the NOMAD data set, like Kd

Werdell, but this algorithm is
able to retrieve moderate and high values of Kd(490). The
RMSE is 0.71 m�1 and r of 0.89 for Kd

Zhang while it is

1.41 m�1 and r of 0.47 for Kd
Werdell (Table 3). Kd

Lee also
does not show such limitations for the high values of
Kd(490), as previously mentioned in Lee et al. [2005a].
However, the accuracy of the retrievals is lower than for
Kd
NN as the RMSE is 0.53 m�1 and RE is 20% (Table 1). But

those retrievals are a bit less biased as AB is �0.006 m�1 for
Kd
Lee and �0.011 m�1 for Kd

NN.

5.2. Evaluation on the COASTLOOC Data Set

[37] The previous comparison was made using the sub–
data set 2. As said in section 3.1, sub–data set 2 is extracted
from four data sets, the rest was used to train the NN
inversion. So the data used for the training are very similar
than those included in sub–data set 2 while it is not the case
for developing the four other algorithms. So we present a
second validation with the in-situ COASTLOOC data set.
Using this data set to intercompare the methods can be
considered like a blindfold validation as it was not used for
parameterizing any of the algorithms.
5.2.1. Comparison of Kd(490)
[38] Figure 4 presents the scatterplots of the Kd(490)

estimated by the five algorithms versus the COASTLOOC

Table 4. Statistical Results for the Retrieval of Kd(490) by the
Algorithms of Kd

Werdell, Kd
Morel, Kd

Zhang, Kd
Lee and Kd

NN Applied to
the Independent COASTLOOC Data Seta

Kd
Werdell Kd

Zhang Kd
Morel Kd

Lee Kd
NN

RMSE (m�1) 0.93 0.33 0.70 0.35 0.21
RE (%) 44 26 49 33 28
ADP 1.25 0.48 2.13 0.51 0.38
AB (m�1) �0.19 �0.10 �0.41 0.009 0.09
Slope 0.14 1.34 1.28 0.93 0.88
Intercept 0.58 �0.08 0.34 0.038 0.005
r 0.19 0.87 0.34 0.81 0.96
# (%) ∈ [0.75;1.25] 41 56 22 48 64

a# corresponds to the number of points.

Figure 5. Ratio of the estimated Kd(490) to desired Kd(490) versus desired Kd(490) on the COASTLOOC
independent data set for the five algorithms. The upper vertical dashed line corresponds to a ratio of
1.25, the middle vertical line corresponds to a ratio of 1 and the lower vertical dashed line corresponds
to a ratio of 0.75.
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Kd(490) measurements. All statistical results are given in
Table 4. The comparisons with the COASTLOOC data set
lead to the same conclusions than the comparisons with the
sub–data set 2.
[39] For the low values of Kd(490), i.e. <0.25 m

�1, all five
methods give similar estimates as shown in Figures 4 and 5.
Few points are however scattered, especially for the very
low values of Kd(490) (≤0.25 m�1). For those low Kd(490)
values, the statistical results are relatively similar, as the
RMSE is 0.050 m�1 for Kd

Werdell, 0.052 m�1 for Kd
Zhang,

0.050 m�1 for Kd
Morel, 0.070 m�1 for Kd

Lee and 0.068 m�1 for
Kd
NN. The correlation coefficient is almost the same with

values between 0.77 for Kd
Morel and 0.80 for Kd

Lee. It is worth
noting that even if the NN inversion was trained for both
open and coastal waters, its retrievals are very comparable
with the one obtained with Kd

Morel, which was developed only
for open ocean waters. The differences in term of RMSE
come from the very low values of Kd(490) (<0.08 m�1) as
there were only few training data in this range of Kd(490).
[40] For Kd(490) > 0.25 m�1, there are, again, differences

in the retrieval accuracy depending on the algorithm. As
previously shown, Kd

Werdell and Kd
Morel present limitations

when Kd(490) is greater than 0.5 m�1 with an overall under-
estimation of the diffuse attenuation coefficient for both
algorithms (Figures 4 and 5), Kd

Werdell showing an over-
estimation for few points (for Kd(490) around 0.8 m�1). As
said in the previous section, Kd

Morel is developed for case 1
waters and uses the OC4V6 algorithm to calculate Chla,
which explains its limitation for estimating high values of
Kd(490), which is not entirely the case for Kd

Werdell. Our
study shows, again, the same conclusions as in Lee et al.
[2005b] with another independent set of data but also as in
the work by Zhang and Fell [2007] who evaluated their own
parameterization of Kd(490) to Kd

Werdell and Kd
Lee with the

COASTLOOC data set. They showed that using a switching
point with Rrs(670) instead of Rrs(555) allowed a better
estimation for high values of Kd(490). This effect can be
seen in Figures 4 and 5. From Kd(490) = 0.7 m�1, Kd

Werdell

highly underestimates Kd(490) while the values obtained
with Kd

Zhang are still underestimated but only by 25%, com-
pared to ⋍75% with Kd

Werdell.
[41] As said by Lee et al. [2005b], Kd

Lee does not have such
limitations. All the retrievals are close to the 1:1 line
(Figures 4 and 5) and the retrievals are very similar to those
of Kd

Zhang as the RMSE is 0.40 m�1 for Kd
Zhang and 0.42 m�1

for Kd
Lee, for Kd(490) > 0.25 m�1. The retrievals obtained

with the NN inversion show better accuracies for Kd(490) >
1 m�1 as most of the records have an error �25% error. It is
an improvement of the retrievals compared to Kd

Zhang and
Kd
Lee. For Kd(490) > 0.25 m�1, the RMSE is 0.25 m�1 for

Kd
NN.
[42] The overall results are given in Table 4. Kd

Werdell and
Kd
Morel are the less accurate methods and show similar

accuracies with RMSE of 0.93 m�1 and of 0.70 m�1,
respectively. Kd

Zhang and Kd
Lee are quite accurate and also

provide similar retrievals, with RMSE of 0.33 m�1 and of
0.35 m�1, respectively. This result is in agreement with the
study of Zhang and Fell [2007]. Kd

NN is the most accurate
method to estimate Kd(490) on this independent data set in
term of errors (RMSE = 0.21 m�1) as the number of retrie-
vals within �25% is 64% of the data set, while it is 41% for
Kd
Werdell, 56% for Kd

Zhang, 22% for Kd
Morel, and 48 for Kd

Lee.
5.2.2. Comparison for Other SeaWiFS Wavelengths
[43] As said previously, 490 nm is often the wavelength

selected to assess the value of the diffuse attenuation coef-
ficient from remote sensing approaches. Among the different
algorithms presented here, the algorithms of Werdell and
Zhang and Fell [2007] do not propose any direct estimates
of Kd(l), for l ≠ 490 nm. Note that Kd(l) at other wave-
lengths can be estimated from Kd(490) through empirical
relationships [Austin and Petzold, 1986; Kishino et al.,
1996]. However, Loisel et al. [2001] showed that these
relationships are not universal for wavelengths other than
490 nm. So these two methods have been discarded. Kd

Morel,

Table 5. Statistical Results for the Retrieval of Kd(l) by the Algo-
rithms of Kd

Werdell, Kd
Morel, Kd

Zhang, Kd
Lee and Kd

NN Applied to the
Independent COASTLOOC Data Seta

Kd
Morel Kd

Lee Kd
NN

l = 412 nm
RMSE (m�1) 1.27 0.81 0.61
RE (%) 58 45 33
ADP 3.19 0.68 0.43
AB (m�1) �0.86 0.34 0.28
Slope 1.69 0.65 0.68
Intercept 0.60 0.21 0.19
r 0.40 0.81 0.95
# (%) ∈
[0.75;1.25]

11 38 59

l = 443 nm
RMSE (m�1) 0.96 0.62 0.37
RE (%) 50 45 25
ADP 2.35 0.68 0.37
AB (m�1) �0.61 0.24 0.17
Slope 1.39 0.68 0.76
Intercept 0.47 0.14 0.09
r 0.38 0.79 0.96
# (%) ∈
[0.75;1.25]

18 32 64

l = 510 nm
RMSE (m�1) 0.64 0.31 0.19
RE (%) 50 37 29
ADP 1.35 0.53 0.39
AB (m�1) �0.13 �0.006 0.03
Slope 0.11 1.02 0.95
Intercept 0.53 �0.005 0.0005
r 0.16 0.83 0.94
# (%) ∈
[0.75;1.25]

18 53 71

l = 555 nm
RMSE (m�1) 0.53 0.22 0.19
RE (%) 47 29 25
ADP 2.05 0.45 0.38
AB (m�1) �0.30 �0.014 �0.002
Slope 1.46 1.10 1.03
Intercept 0.23 �0.03 �0.01
r 0.24 0.87 0.90
# (%) ∈
[0.75;1.25]

24 57 69

l = 670 nm
RMSE (m�1) 0.47 0.37 0.33
RE (%) 24 34 23
ADP 0.58 0.51 0.33
AB (m�1) �0.25 0.12 0.11
Slope 0.85 0.70 0.63
Intercept 0.34 0.17 0.24
r 0.24 0.59 0.80
# (%) ∈
[0.75;1.25]

65 48 67

a# corresponds to the number of points.
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Kd
Lee and Kd

NN are compared for the other SeaWiFS wave-
lengths, i.e. l = 412, 443, 510, 555 and 670 nm.
[44] The comparison at the other SeaWiFS wavelengths

(Table 5) leads to the same conclusions and results as for
l = 490 nm. The neural network inversion provides the
most accurate values of Kd(l) for any SeaWiFS wave-
length in term of RMSE, RE, ADP and r. The correlation
coefficient varies between 0.80 (l = 670 nm) and 0.96 (l =
443 nm). The RMSE varies between 0.19 m�1 (l =
555 nm) and 0.61 m�1 (l = 412 nm) and RE between 25%
(l = 443, 555 nm) and 33% (l = 510 nm). The retrievals
are somewhat similar between Kd

Lee and Kd
NN at 555 (RMSE

(Kd
Lee) = 0.22 m�1; RMSE(Kd

NN) = 0.19 m�1) and 670 nm
(RMSE(Kd

Lee) = 0.37 m�1; RMSE(Kd
NN) = 0.33 m�1) but

they are twice more accurate for the other wavelengths with
the NN inversion, in term of RMSE, RE, AD and r. As
expected as this model is not suitable for coastal waters,
the retrieval obtained with Kd

Morel are less accurate with
values of RMSE varying between 0.47 m�1 at 670 nm and
1.27 m�1 at 412 nm.
[45] If the scattering of the data around the 1:1 line is

investigated (not shown), the results of Kd
NN are less scattered

than for the two other methods. This is related to the number
of data with an error within �25%. This number varies
between 59% and 71% for Kd

NN while it is lower for Kd
Morel

(between 11% and 65%) and Kd
Lee (between 32% and 57%)

(Table 5). It is worth noting that the quality of the retrievals
with Kd

NN varies slightly regardless the wavelength.

5.3. Estimation of Kd(l) for a MODIS-AQUA
Wavelength

[46] In the previous sections, we showed the efficiency
and accuracy of the new neural network inversion, Kd

NN, for
retrieving Kd(l) at the SeaWiFS wavelengths. Investigations
were made to estimate the flexibility of the neural network
inversion to estimate Kd at any given wavelength in the
visible spectrum using the COASTLOOC data set. Figure 6
shows the results for a MODIS-AQUA wavelength, i.e. for
l = 532 nm. This band was not taken into account in the
training phase to calibrate the neural network inversion

and Rrs(532) is not an input parameter of the NN. So this
can be seen as a truly blindfold validation of the ability of
the NN inversion to estimate Kd at any wavelength. As
shown in Figure 6, the NN inversion is able to estimate
Kd(532) as most of the data are along the 1:1 line, with a
slope coefficient of 1.01 and an intercept of �0.008. The
estimates are more scattered around the 1:1 line than for
the SeaWiFS wavelengths, especially for low values of
Kd(532) (<0.1 m�1), but there is no obvious bias. The
retrieval accuracy results confirm the observations of the
scatterplot as the RMSE and relative error are 0.19 m�1

and 31%, respectively. 71% of the retrievals show a rela-
tive error lower within 25%. These results are consistent
with the statistical results observed for the SeaWiFS
wavelengths (Table 3, 4, and 5).
[47] A second test was made for l = 456 nm and the

results are very consistent with a RMSE = 0.307 m�1,
RE = 26%, r = 0.97 and 62% of the retrievals with an error
of �25%. This exercise shows ability of the NN inversion to
estimate Kd at any wavelength from the SeaWiFS Rrs.

5.4. Sensitivity to the Solar Zenith Angle

[48] As mentioned in the introduction, Kd(l) is dependent
on the illumination conditions at the sea surface [Kirk, 1984,
1991; Morel and Loisel, 1998], which are mainly driven by
the solar zenith angle, qs. However, this parameter is not
explicitly taken into account in the neural network approach
as it is not an input parameter. The reason of this choice is to
have an easy method for the end-user without needing to
calculate qs from the ocean color satellite images, but also
to be able to calculate Kd from the Level-3 Rrs products
over the global ocean (such as weekly or monthly pro-
ducts). As this parameter can influence the diffuse atten-
uation coefficient, it is necessary to investigate if the Kd

NN

retrieval accuracy is qs-dependent. The sensitivity of the
estimates of the NN to qs has been investigated using the
sub–data set 2. In this latter data set, qs varies between 0�
and 76� (mean values of 29.59� and standard deviation of
23.89�), with most of the values at 0�, 30� or 60�. No trend
appears (Figure 7) and the RMSE varies randomly regardless
the values of qs, i.e. no increase/decrease of the RMSE with
increase/decrease of the RMSE. As the NN inversion was
trained with a broad range of qs, this latter parameter does not
seem to influence the accuracy of the estimates and is taken
implicitly in the training of the NN inversion.

5.5. Application to the SeaWiFS Images

[49] As an example, one SeaWiFS image was processed
using Kd

Werdell and Kd
NN, in the English Channel/North Sea

which are considered as mainly turbid waters [Brylinski
et al., 1996; Vantrepotte et al., 2006; Loisel et al., 2007].
The SeaWiFS “true” color image is given in Figure 8. The
purpose of processing one SeaWiFS image is to analyze the
behavior of the NN inversion, which was trained using sim-
ulated and in-situ data sets and to observe any issues (like
noise for instance) with the method. Moreover, the NN image
is compared to the NASA L2 official Kd(490) product (i.e.,
Kd
Werdell). This allows to understand the limit of each algo-

rithm and to compare the dynamic range of Kd(490).
[50] Figure 9 presents the daily map of the Kd(490)

obtained with Kd
Werdell and the neural network inversion,

Kd
NN. As expected, Kd

NN provides higher values of Kd(490) in

Figure 6. Scatterplot of the desired Kd(532) versus NN-
estimated Kd(532) values on the COASTLOOC database.
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the eastern English Channel and North Sea (Figure 9). The
map of Kd

Werdell is more homogeneous and shows less con-
trast between the different seawater masses. The two maps
are very different, especially in the eastern English Channel
and the North Sea, with differences greater than 150%
(Figure 9c). The map obtained with Kd

NN shows more pat-
terns with a band of high values of Kd(490) (1.5 m�1),
coming from the mouth of the Thames river on the east coast
of England. This variation of Kd(490) can be seen in the
“true” color image, which allows the comparison of the
patterns as a quality control (Figure 8). The patterns
observed in the map of Kd

NN are very similar to those
observed in the “true” color image. The retrieval values of
Kd(490) by the two algorithms are very similar in the west-
ern English Channel with low values and a slight difference
(⋍10%), where values of Kd(490) are around 0.10 m�1.
[51] Kd

NN seems to be more sensitive to clouds and to edges
of clouds, as can be seen in the north part of the North Sea.
This could be explained by two main factors. First, Kd

Werdell

uses the ratio of two remote-sensing reflectances. As shown
by Jamet et al. [2011], the use of ratios of Rrs tends to lessen
the impact of errors in individual channels. Second, the NN
inversion uses the SeaWiFS entire visible spectrum of Rrs. If
one of the satellite Rrs is not correct, it will impact the
retrieval of NN inversion. This problem can be difficult to
detect prior to the processing.

6. Conclusion

[52] A neural network algorithm has been developed to
assess the vertical diffused attenuation of light and validated
against in-situ data set (COASTLOOC). The proposed Kd(l)
neural network inversion is compared to previous empirical
(Werdell [Morel and Maritorena, 2001; Zhang and Fell,
2007]) and semi-analytical [Lee et al., 2005b] algorithms
developed for the SeaWiFS sensor. On the independent
COASTLOOC in-situ data set, the retrieval accuracy of the
present algorithm is quite similar to published algorithms for
oligotrophic and mesotrophic open ocean waters, i.e. for
Kd(490) ≤ 0.25 m�1, with RMSE of 0.068 m�1, compared to

0.050 m�1 for Werdell, 0.052 m�1 for Zhang and Fell
[2007], 0.050 m�1 for Morel and Maritorena [2001] and
0.070 m�1 for Lee et al. [2005b]. For Kd(490) > 0.25 m�1,
the neural network approach allows to retrieve Kd(490) with
a much better accuracy than the four other methods as
the RMSE is 0.25 m�1 with the NN inversion while it is
1.11 m�1 for Werdell’s algorithm, 0.40 m�1 for Zhang
and Fell [2007], 0.83 m�1 for Morel and Maritorena
[2001] and 0.42 m�1 for Lee et al. [2005b]. The results
are consistent when comparing for other SeaWiFS wave-
lengths. One SeaWiFS image is processed in the English
Channel/North Sea showing no noise or issues and a broader
dynamic of values than the NASA official product, with
higher values of Kd(490) in the mouth of Thames river when
processed with the NN inversion.
[53] The NN inversion, presented in this study, is able to

provide Kd at any visible wavelengths if all remote-sensing
reflectances at the SeaWiFS wavelengths are used as input
parameters. The NN training should be re-done if one of the
SeaWiFS bands is not available (like for MODIS-AQUA).
However, if the wavelengths are close enough to the Sea-
WiFS wavelengths, as, for instance, for the MERIS ocean
color sensor, the performance of the present NN approach is
conserved (not shown).
[54] The neural network code (in matlab and C) for any

ocean color sensor is provided as auxiliary material of this
paper and is freely available on-demand by sending an email
to cedric.jamet@univ-littoral.fr and it will be implemented

Figure 7. Variation of the RMSE as a function of the solar
zenith angle (qs) using the training data set (sub–data set 2).

Figure 8. SeaWiFS true color maps over the Eastern
English Channel the 31st of March, 2000.
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in the SeaDAS and ODESA software codes.1 A specific
algorithm for MODIS-AQUA will be provided when the
training will be finished. The present algorithm can be
applied to MERIS data with careful attention to the slight
difference between the SeaWiFS and MERIS wavelengths.

Appendix A: Synthetic-Turbid Waters Data Sets

[55] New numerical simulations were carried out for a
homogeneous and infinitely deep ocean. The air-sea interface

was modeled following Cox and Munk [1954] with a fixed
wind speed of 5 m.s�1. A standard clear atmosphere (with a
visibility of 15 km) with three sun zenith angle values (0�,
30� and 60�) was adopted. Raman scattering was omitted as
only turbid waters were considered, but Chla fluorescence
was taken into account in the simulations. Total absorption
and attenuation coefficients were fixed as follows:

a lð Þ ¼ aw lð Þ þ acdom lð Þ þ aphy lð Þ þ anap lð Þ ðA1Þ

b lð Þ ¼ bw lð Þ þ bphy lð Þ þ bnap lð Þ ðA2Þ
[56] Pure sea water absorption, aw(l), and scattering,

bw(l), coefficients were taken from Pope and Fry [1997]
and [Smith and Baker, 1981], respectively. Absorption by
colored dissolved organic matter, acdom(l) was computed as
a function of acdom(443) with an exponential spectral slope
value of �0.0176 nm�1 [Babin et al., 2003b]. Phytoplank-
ton, aphy(l), and non-algal absorption, anap(a), coefficients
were calculated as a function of the chlorophyll concentra-
tion, Chla, and suspended particulate matter, SPM, using
Bricaud et al. [1998] and [Babin et al. [2003a], respectively.
Scattering coefficient by phytoplankton at 660 nm, bphy(660),
was calculated as the difference between the attenuation
coefficient by phytoplankton, cphy(660), provided by Loisel
and Morel [1998], and aphy(660). The spectral slope of the
attenuation coefficient by phytoplankton was close to zero
(0.05), as only high Chla concentrations were considered:

bphy lð Þ ¼ 0:407 chl að Þ0:795
h i

� l=660ð Þ�0:05
h i

� aphy lð Þ
ðA3Þ

[57] The scattering coefficient by non algal particles was
calculated as the difference between the attenuation coeffi-
cient by non algal particles and anap(l) as follows:

bnap lð Þ ¼ 0:71� SPMð Þ þ anap 555ð Þ
 �� l=555Þ�0:3749
h i

� anap lð Þ ðA4Þ

where the spectral slope of the attenuation coefficient by non
algal particles was set to �0.375 m�1 [Babin et al., 2003b],
and their specific attenuation coefficient was fixed as in
[Neukermans et al., 2012].
[58] The particle phase function for non algal particles was

derived from the formulation proposed by Mobley et al.
[1993], while the formulation of Fournier and Forand
[1994] with a particulate backscattering to scattering ratio
of 0.006 was used for phytoplankton. The simulations were
performed for Chla, SPM, and acdom(443) values in the
following ranges: [2–70] mg.m�3, [0.1–120] g.m�3, and
[0.01–5] m�1.
[59] Note that only Chla, SPM, and acdom(443) combina-

tions representative of in-situ observations performed in very
contrasted bio-optical environments were taken into account
[Babin et al., 2003a, 2003b]. For a given parameter, the two
others vary in a realistic way according to numerous in situ
measurements performed in coastal environments [Babin
et al., 2003a; Loisel et al., 2010]. Based on these in situ
measurements, when one component was high the two others
were relatively high, but the proportions of the three com-
ponents vary over more than one order of magnitude, which

Figure 9. Maps of (a) Kd
Werdell(490), (b) Kd

NN(490), and
(c) the difference between the two methods, over the Eastern
English Channel the 31st of March, 2000 for the SeaWiFS
sensor.

1Auxiliary materials are available with the HTML. doi:10.1029/
2012JC008076.
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was taken into account in our simulations. This was a very
important result of the paper of Babin et al. [2003a]. For
instance, for a chlorophyll concentration of 1 (70) mg.m�3,
SPMwas allowed to vary between 0.1 (5) and 1 (120) g.m�3.
This was in good agreement with in situ measurements col-
lected in various coastal environments (even if one may
observe relatively low chlorophyll concentration in waters
with relatively high SPM concentration during resuspension
effects for example.)

[60] Acknowledgments. The authors would like to thank INSU/
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