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In this paper we describe an algorithm visiting all numerical semigroups up to a given genus using a well suited representation. The interest of this algorithm is that it fits particularly well the architecture of modern computers allowing very large optimizations: we obtain the number of numerical semigroups of genus g 67 and we confirm the Wilf conjecture for g 60.

Introduction

A numerical semigroup S is a subset of N containing 0, closed under addition and of finite complement in N. For example the set

S E = {0, 3, 6, 7, 9, 10} ∪ {x ∈ N, x 12} (1) 
is a numerical semigroup. The genus of a numerical semigroup S, denoted by g(S), is the cardinality of N \ S. For example the genus of S E is 6, the cardinality of {1, 2, 4, 5, 8, 11}.

For a given positive integer g, the number of numerical semigroups of genus g is finite and is denoted by n g . In J.A. Sloane's on-line encyclopedia of integer sequences [START_REF] Sloane | The on-line encyclopedia of integer sequences[END_REF] we find the values of n g for g 52. These values have been obtained by M. Bras-Amorós ( [START_REF] Bras-Amorós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF] for more details for g 50). On his home page [START_REF] Delgado | Homepage[END_REF], M. Delgado gives the value of n 55 .

M. Bras-Amorós used a depth first search exploration of the tree of numerical semigroups T up to a given genus. This tree was introduced by J.C. Rosales and al. in [START_REF] Rosales | Fundamental gaps of numerical semigroups generated by two elements[END_REF] and it is the subject of Section 1. Starting with all the numerical semigroups of genus 49 she obtained the number of numerical semigroups of genus 50 in 18 days on a pentium D runing at 3GHz. In the package NumericalSgs [START_REF] Delgado | NumericalSgps, A GAP package for numerical semigroups[END_REF] of GAP [START_REF]GAP -Groups, Algorithms, and Programming[END_REF], M. Delgado together with P.A. Garcia-Sanchez and J. Morais used the same method of exploration.

Here we describe a new algorithm for the exploration of the tree of numerical semigroups T and achieve the computation of n g for g 67. The cornerstone of our method is a combinatorial representation of numerical semigroups that is well suited and allows large code optimization essentially based on the use of vectorial instructions and parallelization. The goal of the paper is twofold: first to present our encoding of numerical semigroups and the associated algorithms, and second to present the optimization techniques which allow, for those kinds of algorithms, to get speedups by factors of hundreds and even thousands. We claim that these techniques are fairly general for those kinds of algorithms. As a support for the claim, we applied it to an algorithm of N. Borie enumerating integer vector modulo permutation groups [START_REF] Borie | Generation modulo the action of a permutation group[END_REF] and got a speedup by a factor larger than 2000 using 8 cores.

The paper is divided as follows. In Section 1 we describe the tree of numerical semigroups and give bounds for some parameters attached to a numerical semigroup. The description of our representation of numerical semigroups is done in the second section. In Section 3 we describe an algorithm based on the representation given in Section 2 and give its complexity. Section 4 is more technical, and is devoted to the optimization of the algorithm introduced in Section 3. In the last section we emphasize the results obtained using our algorithm.

The tree of numerical semigroups

We start this section with definitions and properties of numerical semigroups that will be used in the sequel. For a more complete introduction, the reader can usefully consult the book Numerical Semigroups by J.C. Rosales and P.A. García-Sánchez [START_REF] Rosales | Numerical semigroups[END_REF] or the book The Diophantine Frobenius Problem by J.L. Ramírez Alfonsín [START_REF] Ramírez Alfonsín | The Diophantine Frobenius problem[END_REF].

Definition 1.1. Let S be a numerical semigroup. We define i) m(S) = min(S \ {0}), the multiplicity of S; ii) g(S) = card(N \ S), the genus of S; iii) f (S) = max(Z \ S), the Frobenius of S; iv) c(S) = f (S) + 1, the conductor of S.

By definition a numerical semigroup is an infinite object and we need a finite description of such an object. That is provided by generating sets. Definition 1.2. A subset X = {x 1 < x 2 < ... < x n } of a semigroup is a generating set of S if every element of S can be expressed as a sum of elements in X. In this case we write S = x 1 , ..., x n . If we reconsider the numerical semigroup of (1), we obtain

S E = {0, 3, 6, 7, 9, 10} ∪ [12, +∞[= 3, 7 . (2) 
A non-zero element x of a numerical semigroup S is said to be irreducible if it cannot be expressed as a sum of two non-zero elements of S. We denote by Irr(S) the set of all irreducible elements of S.

Lemma 1.3 (Lemma 2.3 of [START_REF] Rosales | Numerical semigroups[END_REF]). For a numerical semigroup S, the set Irr(S) is the minimal generating set of S relatively to the inclusion ordering.

The different parameters we have defined on a numerical semigroup, satisfy the following relations.

Proposition 1.4 (Proposition 2.12 and Lemma 2.14 of [START_REF] Rosales | Numerical semigroups[END_REF]). For every numerical semigroup S, we have i) x ∈ Irr(S) implies x c(S) + m(S) -1;

ii) m(S) g(S) + 1; iii) c(S) 2g(S).

A consequence of Proposition 1.4 i) is that Irr(S) is finite and its cardinality is at most c(S)+m(S)-1. Moreover, the cardinality of Irr(S) is at most m(S) since any two distinct elements of Irr(S) cannot be congruent modulo m(S). See Section 2 of Chapter I of [START_REF] Rosales | Numerical semigroups[END_REF] for more details.

We now explain the construction of the tree of numerical semigroups. Let S be a numerical semigroup. The set S ′ = S ∪ {f (S)} is also a numerical semigroup and its genus is g(S) -1. As each integer greater than f (S) is included in S ′ we have c(S ′ ) f (S). Therefore every semigroup S of genus g can be obtained from a semigroup S ′ of genus g -1 by removing an element of S ′ greater than or equal to c(S ′ ). Proposition 1.5 (Proposition 7.28 of [START_REF] Rosales | Numerical semigroups[END_REF]). Let S be a numerical semigroup and x an element of S. The set S x = S \ {x} is a numerical semigroup if and only if x is irreducible in S.

Proposition 1.5 implies that every semigroup S of genus g can be obtained from a semigroup S by removing a generator x of S that is greater than or equal to c(S). Hence the relation S ′ = S x holds.

We construct the tree of numerical semigroups, denoted by T as follows. The root of the tree is the unique semigroup of genus 0, i.e, 1 that is equal to N. If S is a semigroup in the tree, the sons of S are exactly the semigroups S x where x belongs to Irr(S) ∩ [c(S), +∞[. By convention, when depicting the tree, the numerical semigroup S x is in the left of S y if x is smaller than y. With this construction, a semigroup S has depth g in T if and only if its genus is g, see Figure 1. We denote by T g the subtree of T restricted to all semigroups of genus g.

Decomposition number

The aim of this section is to describe a representation of numerical semigroups, which is well suited to an efficient exploration of the tree T of numerical semigroups. Assume that y is an element of D S (x). By definition of D S (x), the integer z = xy also belongs to S. Then x can be decomposed as x = y + z with y and z in S. Moreover the condition 2y x implies y z. In other words if we define D ′ S (x) to be the set of all (y, z) ∈ S × S with x = y + z and y z then D S (x) is the image of D ′ S (x) under the projection on the first coordinate. Hence D S (x) describes how x can be decomposed as sums of two elements of S. This justifies the name given to the function d S . The first four layers of the tree T of numerical semigroups, corresponding to T 4 . A generator of a semigroup is it in gray if is not greater than c(S). An edge between a semigroup S and its son S ′ is labelled by x if S ′ is obtained from S by removing x, that is if S ′ = S x holds.

Example 2.2. Reconsider the semigroup S E given at [START_REF] Borie | Generation modulo the action of a permutation group[END_REF]. The integer 14 admits two decompositions as sums of two elements of S, namely 14 = 0 + 14 and 14 = 7 + 7. Thus the set D SE [START_REF]Software.intel.com. Intel R cilk TM homepage[END_REF] is equal to {0, 7} and d SE = 2 holds. A straightforward consequence of the definition of S-decomposition numbers is : Proposition 2.4. For a numerical semigroup S and x ∈ N \ {0}, we have:

i) x lies in S if and only if d S (x) > 0. ii) x is in Irr(S) if and only if d S (x) = 1.
We note that 0 is never irreducible despite the fact d S (0) is 1 for all numerical semigroups S. We now explain how to compute the S-decomposition numbers function of a numerical semigroup from that of its father. Proposition 2.5. Let S be a numerical semigroup and x be an irreducible element of S. Then for all y ∈ N \ {0} we have

d S x (y) = d S (y) -1 if y x and d S (y -x) > 0, d S (y) otherwise. Proof. A direct consequence of D S x (y) = D S (y) \ {y -x, x}.

A new algorithm

We can easily explore the tree of numerical semigroups up to a genus G using a depth first search algorithm (see Algorithm 1). This approach does not seem to have been used before. In particular, M. Bras-Amorós and M. Delgado use instead a breadth first search exploration. The main advantage in our approach is the small memory needs. Indeed, in the case of breadth first search algorithm one needs to compute and store the list L g of all numerical semigroups of genus g before visiting the numerical semigroups of genus g + 1, which is not required for a depth first search exploration. In this paper we are interested in the exploration of the list L g for g ∈ N, not in storing it. This is the reason we use a depth first search algorithm for the exploration of the tree T g . The only limitation is then the duration of the exploration and not the amount of available memory. For example the list L 54 needs several terabytes to be stored.

Algorithm 1 Recursive Depth first search exploration of the tree Tg. stack.push(N)

4:
while stack is not empty do 5:

S ← stack.top()

6:
stack.pop()

7:
if g(S) < G then end while 15: end procedure

In Algorithm 1 we do not specify how to compute c(S), g(S) and m(S) from S neither how to test if an integer is irreducible. It also misses the characterization of S x from S. These items depend heavily of the representation of S. Our choice is to use the S-decomposition numbers function. The first task is to use a finite set of such numbers to characterize the whole semigroup. 

c(S) = 1 + max{i ∈ {0, ..., 3G}, d S (i) = 0}.
As all elements of N \ S are smaller than c(S), their S-decomposition numbers are in δ S and we obtain

g(S) = card{i ∈ {0, ..., 3G}, d S (i) = 0}.
By Proposition 1.4 ii), the relation m(S) g(S)+1 holds. This implies that the S-decomposition number of m(S) appears in δ S : m(S) = min{i ∈ {0, ..., 3G}, d S (i) > 0}. By Proposition 1.4, all irreducible elements are smaller than c(S) + m(S) -1, which is itself smaller than 3G. Hence, Proposition 2. [START_REF] Delgado | Homepage[END_REF] gives

Irr(S) = {i ∈ {0, ..., 3G}, d S (i) = 1}.
The previous representation of numerical semigroup (in terms of the vector δ S ) is similar but a little different from this used in [START_REF] Bras-Amorós | Addition behavior of a numerical semigroup[END_REF] and by people concerned with coding theory.

Even though it is quite simple, the computation of c(S), m(S) and g(S) from δ S has a non negligible cost. We represent a numerical semigroup S of genus g G by (c(S), g(S), c(S), δ S ). In an algorithmic context, if the variable S stands for a numerical semigroups we use:

-S.c, S.g and S.m for the integers c(S), g(S) and m(S); -S.d[i] for the integer d S (i).

For example the following Algorithm initializes a representation of the semigroup N ready for an exploration of the tree T G (the tree of numerical semigroup of genus at most G.)

Algorithm 3 Returns the root of TG function Root(G) R.c ← 0 ⊲ R stands for N R.g ← 0 R.m ← 1 for x from 0 to 3 G do R.d[x]← 1 + x 2 end for return R end function
We can now describe an algorithm that returns the representation of the semigroup S x from that of the semigroup S where x is an irreducible element of S greater than c(S). Proof. The correctness of the algorithm is a consequence of Proposition 3.2 and of the description of the tree T of numerical semigroups.

For the time complexity, let us remark that Algorithm Son is called for every semigroup of the tree T G (the tree of semigroups of genus G). Since there are exactly N = G g=0 n g such semigroups, the time complexity of Son established in Proposition 3.2 guarantees that the running time of Count is in O(log(G) × G × N ), as stated.

Let us now prove the space complexity statement. For this we need to describe the stack through the run of the algorithm. Since the stack is filled with a depth first search it has two properties. The first one is that reading the stack from bottom to the top, the genus increases. The second one is that, for all g ∈ [0, G], every semigroup of genus g in the stack has the same father. As the number of sons of a semigroup S is the number of S-irreducible elements in the set {c(S), ..., c(S) + m(S) -1}, a semigroup S has at most m(S) sons. By Proposition 1.4 ii), this implies that a semigroup of genus g has at most g + 1 sons. Therefore the stack contains at most g + 1 semigroups of genus g + 1 for g G. So the size of the stack is bounded by

M = G g=0 g = G(G + 1) 2 .
A semigroup S is represented by a quadruple (c(S), g(S), m(S), δ S ). By relations ii) and iii) of Proposition 1.4, we have c 2g(S) and m g(S) + 1. As g(S) G holds, the integers c, g and m of the representation of S require a memory space in O(log(G)). The size of δ S = (d S (0), ..., d S (3G)) is exactly 3G + 1. Each entry of δ S is the S-decomposition number of an integer smaller than 3G and hence requires O(log(G)) bytes of memory space. Therefore the space complexity of δ S is in O(log(G) × G), which implies that the space complexity of the Count algorithm is

O(log(G) × G × M ) = O(log(G) × G 3 ).

Technical optimizations and results

Even though there are asymptotically faster algorithms than the one presented here, thank to careful optimizations, we were able to compute n g for much larger genuses than before. This is due to the fact that our algorithm is particularly well suited for the current processor architecture. In particular, it allows to use parallelism at various scales (parallel branch exploration, vectorization)... stack.push(Root(G))

5:

while stack is not empty do 6:

S ← stack.top()

7:
stack.pop()

8: n[S.g] ← n[S.g] + 1 9:
if S.g < G then stack.push(Son(S, x, G)) To get the greatest speed from modern processors, we used several optimization tricks, which we will elaborate in the following section:

-Vectorization (MMX, SSE instructions sets) and careful memory alignment; -Shared memory multi-core computing using Cilk++ for low level enumerating tree branching; -Partially derecursived algorithm using a stack; -Avoiding all dynamic allocation during the computation: everything is computed "in place"; -Avoiding all unnecessary copy (the cost of the Son algorithm is roughly the same as copying); -Aggressive loop unrolling: the main loop is unrolled by hand using some kind of Duff's device; -Careful choice of data type (uint_fast8_t for decomposition number, vs uint_fast64_t for all indexes). The source code of our algorithm is available in [START_REF] Fromentin | [END_REF].

4.1. Vectorization. Assume for example that we want to construct the tree T 100 of all numerical semigroups genus smaller than 100. In this case, the representation of numerical semigroups given in Section 2 uses decomposition numbers of integers smaller than 300. By Lemma 2.3, such a decomposition number is smaller than 151 and requires 1 byte of memory. Thus at each for step of Algorithm Son, the CPU actually works on 1 byte. However current CPUs usually work on 8 bytes and even on 16 bytes using vector extensions. The first optimization uses this point.

To go further we must specify that the array of decomposition numbers in the representation of a semigroup corresponds to consecutive bytes in memory. In the for loop of Algorithm Son we may imagine two cursors: the first one, denoted src pointing to the memory byte of S.d[0] and the second one, denoted dst pointing to the memory byte T.d [y]. Using these two cursors, Lines 10 to 14 of Algorithm 4 can be rewritten as follows:

src ← address(S.d[0]) dst ← address(T.d[x]) i ← 0 while i 3G -x do if content(src) > 0 then decrease content(dst) by 1 end if increase src,

dst,i by 1 end while

In this version we can see that the cursors src and dst move at the same time and that the modification of the value pointed by dst only needs to access the values pointed by src and dst. We can therefore work in multiple entries at the same time without collision. Current CPUs allow this thanks to the SIMD technologies as MMX, SSE, etc. The acronym SIMD [19] stands for Single Operation Multiple Data. We used SSE4.1 [START_REF]Streaming simd extensions[END_REF][START_REF] Girkar | Intel Instruction Set Architecture Extensions -Intel R Developer Zone[END_REF] technology as it allows for the largest speedup 1 . This need to respect some constraints in the memory organization of the data, namely "memory alignment". Recall that an address is 16 bytes aligned if it is a multiple of 16. SSE memory access are much faster for aligned memory.

The computation of the children is then performed as follows. First, the parent's decomposition numbers are copied in the children's using the following C++ code void copy_blocks(dec_blocks &dst, dec_blocks const &src) for (ind_t i=0; i<NBLOCKS; i++) dst

[i] = src[i];
Here dec blocks is a type for arrays of 16 bytes blocks whose size NBLOCKS are just large enough to store the decomposition numbers (that is 3G rounded up to a multiple of 16). The instruction dst[i] = src[i] actually copies a full 16 bytes block.

Then the core of the while loop in the preceding algorithm is translated as a for loop as follows (recall that x denotes the generator of the father which is to be removed in the children): A much greater speedup can be certainly obtained using AVX2 technology [START_REF]Advanced vector extension[END_REF]. However, at this time, we cannot access a performant computer with this set of instructions.

The instruction load unaligned epi8 (specific to SSE technology) loads 16 consecutive entries of the decomposition number of the parent (called src semigroup) in the variable block. Those entries will be used to compute the entries 16i, . . . 16i + 15 of the children semigroups. Since the removed generator x is not necessarily a multiple of 16, the data are not aligned in memory, hence the use of a specific instruction. The zero (resp. one) constants are initialized as 16 bytes equal to 0 (resp. 1). The comparison (block != zero) therefore returns a block which contains 0 in the bytes corresponding the 0 entries of block and 255 in the non zero one. This result is then bitwise and-ed with one so that the instruction actually performs a 16 bytes parallel version of dst ← dstif block = 0 then 1 else 0 which is equivalent to Lines 10 to 14 of Algorithm 4.

As we previously said, to gain more speed this core loop is actually unrolled using some kind of Duff device [START_REF]Duff's device[END_REF]. 4.2. Parallel tree exploration using Cilk++. Our second optimization is to use parallelism on exploration of the tree. Today, CPUs of personal computers have several cores (2, 4 or more). The given version of our exploration algorithm uses a single core and so a fraction only of the power of a CPU. The idea here is that different branches of the tree can be explored in parallel by different cores of the computer. The tricky part is to ensure that all cores are busy, giving a new branch when a core is done with a former one. Fortunately there is a technology called Cilk++ [START_REF]Software.intel.com. Intel R cilk TM homepage[END_REF][START_REF]Intel R cilk TM plus reference guide[END_REF] which is particularly well suited for those kinds of problems. For our computation, we used the free version which is integrated in the latest version of the GNU C compiler [START_REF] Iyer | Cilk TM plus in gcc[END_REF].

Cilk is a general-purpose language designed for multithreaded parallel computing. The C++ incarnation is called Cilk++. The biggest principle behind the design of the Cilk language is that the programmer should be responsible for exposing the parallelism, identifying elements that can safely be executed in parallel; it should then be left to the run-time environment, particularly the scheduler, to decide during execution how to actually divide the work between cores.

The crucial thing is that two keywords are all that are needed to start using the parallel features of Cilk++:

cilk spawn: used on a procedure call, indicates that the call can safely operate in parallel with the remaining code of the current function. Note that the scheduler is not obliged to run this procedure in parallel; the keyword merely alerts the scheduler that it can do so. cilk sync: indicates that execution of the current procedure cannot proceed until all previously spawned procedures have completed and returned their results to the current frame. We just tell Cilk++ that the subtrees rooted at various children can be explored in parallel. Things are actually only a little bit more complicated. First we have to gather the results of the exploration. If we simply write result[g(S)] ← result[g(S)] + 1 then we face the problem of two cores incrementing the same variable at the same time. Incrementing a variable is actually done in 3 steps: reading the value from the memory, adding one, storing back the result. Since there is by default non synchronization, the following sequence of actions for two cores is possible: Read1 / Read2 / Add1 / Add2 / Store1 / Store2. Then the two cores perform the same modification resulting in incrementing the variable only once. This is called a data race and leads to nondeterministic wrong results. To cope with those kinds of synchronization problems, Cilk++ provides the notion of reducer which are variables local to each thread which are gathered (here added) when a thread is finishing its job.

A more important problem is that the cost of a recursive call in non negligible. Using Cilk++ recursive calls instead of C++ calls makes it even worse. The solution we use is to switch back to the non recursive version using a stack when the genus is close to the target genus. This leads to the following Cilk++ code:

Results

Running the Cilk version of our optimized algorithm we have explored the tree of numerical semigroups up to genus 67. The computations were done on a shared 64 core AMD Opteron .

Since the work of M. Bras-Amorós, see [START_REF] Bras-Amorós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF], we yet know that all numerical semigroups of genus g 50 satisfy Wilf's conjecture. With our exploration algorithm we have proved that there is no counterexample to Wilf's conjecture up to genus 60. We have tested the Wilf's conjecture on a different machine than the one used to determine n67. As its performance is lower we have only tested the conjecture for g 60. 5.2. Timings. In this section we summarize the timing improvements through the different optimizations of our algorithm.

The following table shows the time needed by the algorithm for computing the values of ng for g G with 30 G 40 on a machine equipped with an Intel TM i5-3570K CPU running at 3.4GHz and 8GB of memory. All algorithms are executed on only one core. Algorithm breadth is based on a breadth exploration of the tree while Algorithm depth use a depth exploration. These two algorithms are based on the same naive representation of numerical semigroups. The only difference concerns the tree exploration algorithm used. Algorithm depth+δ is a refinement of depth based on the S-decomposition function. Algorithm δ+sse in an optimization of depth+δ using the SIMD extension SSE. Times are in seconds. The computation of ng for g 35 with algorithm breadth is very long because all the 8GB of memory are consumed and the system must use swap memory to finish the computation. This algorithm was not launched for genus g 36.

The following table illustrates the impact of parallelization on the same machine based on the Intel TM i5-3570K CPU which have 4 physical cores that are able to run four threads. The time of the one threaded algorithm must be compared with the δ+sse version of the previous table : it illustrates the additional cost induced by the use of Cilk technology.

It should be noticed that the TurboBoost technology [START_REF]Turbo boost[END_REF] is present on the CPU. Therefore the clock of the CPU is a bit higher when the number of threads is smaller. Therefore the gain of using more threads is a bit over than the one suggestested by the table.

Finally we tested our algorithm on a machine holding two Intel TM Xeon TM X5650 CPU running at 2.67GHz. Each of those CPU has 6 physical cores that are able to run 12 threads thanks to the Hyper-Threading technology [START_REF]Hyper-threading[END_REF]: the machine has also 12 physical cores and is able to run 24 threads. However, when more than 12 threads are running, the computation engines are shared between two threads and the speedup should be much less when adding more cores. The following table resumes the time needed by the algorithm to explore T50 on different numbers of threads (the double vertical line delimite the use of Hyper Threading). For reference, we put in the column called C++ the computation time of the same program compiled without Cilk. Further improvements on the computation of ng or on the verification of Wilf's conjecture will be published on our home pages and on [START_REF] Fromentin | [END_REF].

Threads

Definition 2 . 1 .

 21 Let S be a numerical semigroup. For every x of N we set D S (x) = {y ∈ S | xy ∈ S and 2y x} and d S (x) = card D S (x). We called d S (x) the S-decomposition number of x. The application d S : N → N is the S-decomposition numbers function.

Figure 1 .

 1 Figure1. The first four layers of the tree T of numerical semigroups, corresponding to T 4 . A generator of a semigroup is it in gray if is not greater than c(S). An edge between a semigroup S and its son S ′ is labelled by x if S ′ is obtained from S by removing x, that is if S ′ = S x holds.

Lemma 2 . 3 . 2 ,

 232 For every numerical semigroup S and every integer x ∈ N, we have d S (x) 1 + x 2 and the equality holds for S = N.Proof. As the set D S (x) is included in 0, ..., x the relation d S (x) 1 + x 2 holds. For S = N we have the equality for the set D S (x) and so for the integer d S (x).

1 : 2 : 5 :

 125 procedure ExploreRec(S, G) if g(S) < G then 3: for x from c(S) to c(S) + m(S) do 4: if x ∈ Irr(S) then ExploreRec(S x , G) end procedure Equivalently, we can use an iterative version which uses a stack: Algorithm 2 Iterative Depth first search exploration of the tree Tg 1: procedure Explore(G) 2:Stack stack ⊲ the empty stack 3:

8 : 9 :

 89 for x from c(S) to c(S) + m(S) do if x ∈ Irr(S) then 10:stack.push(S x )

Proposition 3 . 1 .

 31 Let G be an integer and S be a numerical semigroup of genus 0 < g G. Then S is entirely described by the vector δ S = (d S (0), ..., d S (3 G)) ∈ N 3G+1 . More precisely we can obtain c(S), g(S), m(S) and Irr(S) from δ S . Proof. By Proposition 1.4 iii) we have the relation c(S) 2g(S) and so the S-decomposition number of c(S) occurs in δ S . Proposition 3.1 implies

Algorithm 4 3 : 4 : 9 :for y from x to 3 G do 11 :Proposition 3 . 2 .

 43491132 Returns the son S x of S with x ∈ Irr(S) ∩ [c(S), c(S) + m(S)[.1: function Son(S,x,G) 2: S x .c ← x + 1 S x .g ← S.g + 1 if x > S.m then 5: S x .m ← S.m S x .d ← S.d ⊲ copy all the decomposition numbers 10: if S.d[yx] > 0 then 12: S x .d[y] ← S.d[y] -1 ⊲ decrease the decomposition number by 1 Running on (S, x, G) with g(S) G, x ∈ Irr(S) and x c(S), Algorithm 4 returns the semigroup S x in time O(log(G) × G).Proof. Let us check the correctness of the algorithm. By construction S x is the semigroup S \ {x}. Thus the genus of S x is g(S) + 1, see Line 3. Every integer of I = [x + 1, +∞[ lies in S since x is greater than c(S), so the interval I is included in S x . As x does not belong to S x , the conductor of S x is x+ 1, see Line 2. For the multiplicity of S x we have two cases. First, if x > m(S) holds then m(S) is also in S x and so m(S x ) is equal to m(S). Assume now x = m(S). The relation x(S) c(S) and the characterization of m(S) implies x = m(S) = c(S). Thus S x contains m(S) + 1 which is m(S x ). The initialization of m(S x ) is done by Lines 4 to 8. The correctness of the computation of δ S x (see Proposition 3.1 for the definition of δ S x ) done from Line 9 to Line 15 is a direct consequence of Proposition 2.4.Let us now prove the complexity statement. Since by relations ii) and iii) of Proposition 1.4 we have x 3G together with m(S) G + 1, each line from 2 to 8 is done in time O(log(G)). The for loop needs O(G) steps and each step is done in time O(log(G)). Summarizing, these results give that the algorithm runs in time O(log(G) × G). Proposition 3.3. Running on G ∈ N, Algorithm 5 returns the values of n g for g G in time O log(G) × G × G g=0 n g and its space complexity is O(log(G) × G 3 ).

Algorithm 5

 5 Returns an array containing the value of ng for g G1: function Count(G) 2: n ← [0, ..., 0]⊲ n[g] stands for ng and is initialized to 0

10 :

 10 for x from S.c to S.c + S.m do 11: if S.d[x] = 1 then 12:

  start = x >> 4; // index of the block containing x shift = x & 0xF; // offset of x inside the block ... // some specific instructions to handle the first incomplete block. for (long int i=start+1; i<NBLOCKS; i++) block = load_unaligned_epi8(src + ((i-start)<<4) -shift); dst[i] -= ((block != zero) & one);

1

 1 

Algorithm 6

 6 As a consequence, to get a parallel version of the recursive Algorithm 1, one only needs to modify it as Cilk version of Algorithm 1 procedure ExploreRec(S, G) if g(S) < G then for x from c(S) to c(S) + m(S) do if x ∈ Irr(S) then cilk spawn ExploreRec(S x , G) end if end for end if end procedure

  TM Processor 6276. As other heavy calculations were running on the machine, we only used 32 cores. The computations took 18 days. The values of ng for g 67 are: established by A. Zhai in[START_REF] Zhai | Fibonacci-like growth of numerical semigroups of a given genus[END_REF] is very slow: n 67 n 66 ≈ 1.62.

	g	ng	g		ng	g	ng
	0	1 23	170 963 46	14 463 633 648
	1	1 24	282 828 47	23 527 845 502
	2	2 25	467 224 48	38 260 496 374
	3	4 26	770 832 49	62 200 036 752
	4	7 27	1 270 267 50	101 090 300 128
	5	12 28	2 091 030 51	164 253 200 784
	6	23 29	3 437 839 52	266 815 155 103
	7	39 30	5 646 773 53	433 317 458 741
	8	67 31	9 266 788 54	703 569 992 121
	9	118 32	15 195 070 55	1 142 140 736 859
	10	204 33	24 896 206 56	1 853 737 832 107
	11	343 34	40 761 087 57	3 008 140 981 820
	12	592 35	66 687 201 58	4 880 606 790 010
	13	1 001 36	109 032 500 59	7 917 344 087 695
	14	1 693 37	178 158 289 60	12 841 603 251 351
	15	2 857 38	290 939 807 61	20 825 558 002 053
	16	4 806 39	474 851 445 62	33 768 763 536 686
	17	8 045 40	774 614 284 63	54 749 244 915 730
	18	13 467 41 1 262 992 840 64	88 754 191 073 328
	19	22 464 42 2 058 356 522 65 143 863 484 925 550
	20	37 396 43 3 353 191 846 66 233 166 577 125 714
	21	62 194 44 5 460 401 576 67 377 866 907 506 273
	22 103 246 45 8 888 486 816	
	As the reader can check the convergence of sequence	ng n g-1 satisfy
	the relation					
			card(Irr(S))	c(S) c(S) -g(S)

5.1. Wilf 's conjecture. In the paper

[START_REF] Wilf | A circle-of-lights algorithm for the "money-changing problem[END_REF] 

of 1978, H.S. Wilf conjectured that all numerical semigroup S
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void explore(const Semigroup &S) { unsigned long int nbr = 0; if (S.g < MAX_GENUS -STACK_BOUND) { auto it = generator_iter<CHILDREN>(S); while (it.move_next()) { //iterate along the children of S auto child = remove_generator(S, it.get_gen()). cilk_spawn explore(child); nbr++; } cilk_results[S.g] += nbr; } else explore_stack(S, cilk_results.get_array()); } Note that in our version, we found that the STACK BOUND optimal value was around 10 to 12 for genus in the range 45 . . . 67 so that explore stack is used more than 99% of the time. The Cilk++ recursive function does actually very little work but ensures that the work is balanced between the different cores. 4.3. Various technical optimizations. Using vectorization and loop unrolling as described previously leads to an extremely fast Son algorithm. Indeed, its cost is comparable to the cost of copying a semigroup. It is therefore crucial for performance to avoid any extra cost. We list here various places where unnecessary cost can be avoided.

Avoiding all unnecessary copy. We also used a trick to avoid copying from and to the top of the stack. Indeed, the main loop performs the following sequences of operations:

If we use a stack of semigroup, we can construct S x directly into the stack memory but we have to copy the top of the stack to S. In [START_REF] Zhai | Fibonacci-like growth of numerical semigroups of a given genus[END_REF], A. Zhai establishes that the limit of the quotient ng n g-1 , when g go to infinity, is the golden ratio φ ≈ 1.618. Therefore this single copy is far from being negligible. The trick is to use a level of indirection, replacing the stack by an array of semigroups A and an array of indexes I pointing to the array of semigroups. The array I can be viewed as a permutation of the array A. Now instead of copying S out of the stack, we keep it on the stack, pushing the children in the second position by exchanging the indexes in I. Here is the relevant part of the code: Avoiding dynamic allocation. Compared to the Son algorithm, dynamic allocation costs orders of magnitude more. Therefore, during the derecursived stack algorithm, we only allocate (on the system stack rather than on the heap) the stack of semigroups. No further allocations are done.

Pointer arithmetic and indexes. Due to the way C++ does its pointer arithmetic, even if the index in the array are less than 3G and therefore fits in 8 bits, we use 64 bits indexes (namely uint_fast64_t) to avoid conversion and sign extension when computing addresses of indexed elements. This single standard trick save 10% of speed.