
HAL Id: hal-00823339
https://hal.science/hal-00823339v1

Submitted on 16 May 2013 (v1), last revised 14 Sep 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the tree of numerical semigroups
Jean Fromentin

To cite this version:

Jean Fromentin. Exploring the tree of numerical semigroups. 2013. �hal-00823339v1�

https://hal.science/hal-00823339v1
https://hal.archives-ouvertes.fr

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS

JEAN FROMENTIN

Abstract. In this paper we describe an algorithm visiting all the nu-
merical semigroups up to a given genus using a new representation of
numerical semigroups.

1. Introduction

A numerical semigroup S is a subset of N containing 0, close under addi-
tion and of finite complement in N. For example the set

SE = {0, 3, 6, 7, 9, 10} ∪ [12,+∞[(1)

is a numerical semigroup. The genus of a numerical semigroup S, denoted
by g(S), is the cardinality of N \ S, i.e, g(S) = card(N \ S). For example
the genus of SE defined in (1) is 6, the cardinality of {1, 2, 4, 5, 8, 11}

For a given positive integer g, the number of numerical semigroups is finite
and is denoted by ng. In J.A. Sloane’s on-line encyclopedia of integer [1]
we find the values of ng for g 6 52. These values have been obtain by M.
Bras-Amorós (view [2] for more details for g 6 50). On his home page [3],
M. Delgado gives the value of n55 without specifying the values of n53 and
n54. M. -Bras Amorós used a depth first search exploration of the tree of
numerical semigroups up to a given genus. This tree was introduced by J.C.
Rosales and al. in [4] and it is the subject of the Section 2.

Starting with all the numerical semigroups of genus 49 she obtained the
number of numerical semigroups of genus 50 in 18 days on a pentium D
runing at 3GHz. In the package NumericalSgs [5] of GAP [6], M. Delgado
together with P.A. Garcia-Sanchez and J. Morais used the same method of
exploration.

The paper is divided as follows. In section 2 we describe the tree of
numerical semigroups and give bounds for some parameters attached to
a numerical semigroup. In Section 3 we describe a new representation of
numerical semigroups that is well suited to the construction of the tree.
In Section 4 we describe an algorithm based on the representation given in
Section 3 and give its complexity. Section 5 is more technical, and is devoted
to the optimisation of the algorithm introduced in Section 4.

2. The tree of numerical semigroups

We first start by some notations.
1

2 JEAN FROMENTIN

Definition 2.1. Let S be a numerical semigroup. We define
i) m(S) = min(S \ {0}), the multiplicity of S;
ii) g(S) = card(N \ S), the genus of S;
iii) c(S) = 1+max(N \S), the conductor of S for S different from N. By

convention the conductor of N is 0.

By definition a numerical semigroup is an infinite object. We need a finite
description of such a semigroup. That is the role of generating sets.

Definition 2.2. A subset X of a semigroup is a generating set of S if every
element of S can be express as a sum of elements in X.

Notation 2.3. A numerical semigroup admitting X = {x1 < x2 < ... < xn}
as generating set is denoted by S = 〈x1, ..., xℓ〉.

We now introduce a specific generating set.

Definition 2.4. A non-zero element x of a numerical semigroup S is said to
be irreducible if it cannot be expressed as a sum of two non-zeros elements
of S. We denote by Irr(S) the set of all irreducible elements of S.

Proposition 2.5. Let S be a numerical semigroup. Then Irr(S) is the

minimal generating set of S.

Proof. Assume for a contradiction, that there exists an integer x in S than
cannot be decomposed as a sum of irreducible elements. We may assume
that x is minimal with this property. As x cannot be irreducible, there exist
y and z in S \ {0} satisfying x = y + z. Since we have y < x and z < x, the
integers y and z can be expressed as a sum of irreducible elements of S and
so x = y+ z is a sum of irreducible elements, in contradiction to hypothesis.

As irreducible elements of S cannot be decomposed as the sum of two
non-zeros integers in S, they must occur in each generating set of S. �

We recall that Apéry elements of a numerical semigroup S associated to
m(S) are the integers x in S such that x−m(S) is no longer in S. We denote
by App(S) the set of these elements. It is well known that the cardinality of
App(S) is exactly m(S) (see [7] for example). Note that the set Irr(S) is in
included in App(S). In particular, the set Irr(S) is finite and its cardinality
is at most m(S).

If we reconsider the numerical semigroup of (1), we obtain

SE = {0, 3, 6, 7, 9, 10} ∪ [12,+∞[= 〈3, 7〉 (2)

Let S be a numerical semigroup. The set T = S ∪ {c(S) − 1} is also a
numerical semigroup and its genus is g(S)−1. As [c(S)−1,+∞[is included
in T we have c(T) 6 c(S)− 1. Therefore every semigroup S of genus g can
be obtained from a semigroup T of genus g − 1 by removing an element of
T greater than or equal to c(T).

Proposition 2.6. Let S be a numerical semigroup and x an element of S.
The set Sx = S \{x} is a numerical semigroup if and only if x is irreducible

in S.

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 3

Proof. If x is not irreducible in S, then there exist a and b in S \0 such that
x = a+b. Since a 6= 0 and b 6= 0 hold, the integers a and b belong to S \{x}.
Since x = a+ b and x 6∈ Sx, it follows that Sx is not stable under addition.

Conversely, assume that x is irreducible in S. As 0 is never irreducible,
the set Sx contains 0. Let a and b be two integers belonging to Sx. The set
S is stable under addition, hence a+ b lies in S. As S is equal to Sx ∪ {x},
the integer a + b also lies in Sx except if it is equal to x. The latter is
impossible since a and b are different from x and x is irreducible. �

Proposition 2.6 implies that every semigroup T of genus g can be obtained
from a semigroup S by removing a generator x of S that is greater than c(S).
Hence relations T = Sx = S \ {x} hold.

We construct the tree of numerical semigroups, denoted by T as follows.
The root of the tree is the unique semigroup of genus 0, i.e, 〈1〉 that is equal
to N. If S is a semigroup in the tree, the sons of S are exactly the semigroup
Sx where x belongs to Irr(S) ∩ [c(s),+∞[. By convention, when depicting
the tree, the ,numerical semigroup Sx is in the left of Sy if x is smaller than
y.

The above remarks imply that a semigroup S has depth g in mathcalT if
and only if its genus is g, see Figure 1. We denote by T 6g the subtree of T
resticted to all semigroup of genus 6 g.

As the reader can check, the main difficulty to characterize the sond of a
semigroup is to determine its irreducible elements. In [5], the semigroup are
given by their Apéry set App(S) and then the main difficulty is to describe
App(Sx) from App(S). This approach is elegant but not sufficiently basic

for our optimisations.
We conclude this section with some basic results on numerical semigroups

of a given genus. Let S be a numerical semigroup. We first prove :

x ∈ Irr(S) implies x 6 c(S) +m(S). (3)

If y is a positive integer with y > c(S) +m(S) then y lies in S (as y > c(S)
holds). Moreover, we always have y−m(S) > c(s) and so y is not irreducible.

As N \ S contains {1, ..,m(S) − 1} we have

m(S) 6 g(S) + 1. (4)

Let x be an element of S ∩ [0, c(S)− 1]. The integer y = c(S)− 1− x lies in
[0, c(S)− 1]. Moreover y is not in S, for otherwise we write c(S)− 1 = y+x
where x, y are elements of S implying c(S) − 1 ∈ S. In contradiction with
the definition of conductor. Thus we define an involution

ψ : [0, c(S) − 1] → [0, c(S) − 1]
x 7→ c(S)− 1− x

that send S ∩ [0, c(S)−1] into [0, c(S)−1]\S. The cardinality of [0, c(S)[\S
is exactly g(S). Let us denote by k the cardinality of S ∩ [0, c(S)− 1]. Since
ψ is injective we must have k 6 g(S). From the relation

[0, c(S)[= S ∩ [0, c(S)[⊔[0, c(S)[\S

4 JEAN FROMENTIN

〈1〉

〈2,3〉

1

〈3,4,5〉

2

〈4,5,6,7〉

3

〈5,6,7,8,9〉

4

〈4,6,7,9〉

5

〈4,5,7〉

6

〈4,5,6〉

7

〈3,5,7〉

4

〈3,7,8〉

5

〈3,5〉

7

〈3,4〉

5

〈2,5〉

3

〈2,7〉

5

〈2,9〉

7

Figure 1. The first five layers of the tree T of numerical
semigroups, corresponding to T 65. A generator of a semi-
group is in gray if it is not in [c(S),+∞[. An edge between a
semigroup S and its son S′ is labelled by x is S′ is obtained
from S by removing x, that is S′ = Sx.

we obtain c(S) = k + g(S) and so

c(S) 6 2g(S). (5)

3. Decomposition number

The aim of this section is to describe a new representation of numerical
semigroups. which is well suited to a efficient exploration of the tree T of
numerical semigroups.

Definition 3.1. Let S be a numerical semigroup. For every x of N we set

DS(x) = {y ∈ S | x− y ∈ S and 2y 6 x}

and dS(x) = cardDS(x). We called dS(x) the S-decomposition number of
x. The application dS : N→ N is the S-decomposition numbers function.

Assume that y is an element of DS(x). By very definition of DS(x), the
integer z = x−y also belongs to S. Then x can be decomposed as x = y+z
with y and z in S. Moreover the condition 2y 6 x implies y 6 z. In other
words if we define D′

S(x) to be the set of all (y, z) ∈ S × S with x = y + z
and y 6 z then DS(x) is the image of D′

S(x) under the projection on the

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 5

first coordinate. Hence DS(x) describes how x can be decomposed as sums
of two elements of S,-. This is why dS(x) is called the S-decomposition
number of x.

Example 3.2. Reconsider the semigroup SE given at (1). The integer 14
admits three decompositions as sums of two elements of S, namely 14 =
0+14, 14 = 3+11 and 14 = 7+7. Thus the set DSE

(14) is equal to {0, 3, 7}
and dSE

equals 3.

Lemma 3.3. For every numerical semigroup S and every integer x ∈ N, we

have dS(x) 6 1 +
⌊x

2

⌋

and the equality holds for S = N.

Proof. As the set DS(x) is included in {0, ...,
⌊

x
2

⌋

}, the relation dS(x) 6

1 +
⌊

x
2

⌋

holds. For S = N we have the equality for DS(x) and so for
dS(x). �

Proposition 3.4. Let S be a numerical semigroup and x ∈ N \ {0}. We

have:

i) x lies in S if and only if dS(x) > 0.
ii) x is in Irr(S) if and only if dS(x) = 1.

Proof. We start with i). If x is an element of S then x equals 0 + x. The
relation 2× 0 6 x and 0 ∈ S imply that DS(x) contains 0, and so dS(x) > 0
holds. Conversely, the relation dS(x) > 0 implies that DS(x) is non-empty.
Let y be an element of DS(x). As y and x − y belong to S, by definition,
the integer x = (x− y) + y is in S (since S is stable by addition).

Let us show ii). Assume x is irreducible in S. There cannot exist y and
z in (S \ {0})2 such that x = y + z. The only possible decomposition of x
as a sum of two elements of S is x = 0 + x. Hence, the set DS(x) is equal
to {0} and we have dS(x) = 1. Conversely, let x such that dS(x) = 1. By i)
the integer x must be in S. As x = 0 + x is always a decomposition of x as
a sum of two elements in S, we obtain DS(x) = {0}. If there exist y and z
in S such that y 6 z and x = y + z hold then y lies in DS(x). This implies
y = 0 and z = x. Hence x is irreducible in S. �

We note that 0 is never irreducible despite the fact dS(0) is 1 for all
numerical semigroup S.

We now explain how to compute the S-decomposition numbers function
of a numerical semigroup from these of its father.

Proposition 3.5. Let S be a numerical semigroup and x be an irreducible

element of S. Then for all y ∈ N \ {0} we have

dSx(y) =

{

dS(y)− 1 if y > x and dS(y − x) > 0,

dS(y) otherwise.

Proof. Let y be in N \ {0}. We have

DSx(y) = {z ∈ Sx | y − z ∈ Sx and 2z 6 y}

6 JEAN FROMENTIN

and DSx(y) is a subset of DS(y). We have DS(y) \DSx(y) = E ⊔ F where

E =

{

{x} if y − x ∈ Sx and 2x 6 y,

∅ otherwise.

F = {z ∈ S | y − z = x and 2z 6 y}

Since the relation y−x ∈ Sx can be rewritten as the conjunction of y−x ∈ S
and y 6= 2x, we obtain

E =

{

{x} if y − x ∈ S and 2x < y,

∅ otherwise.

By Proposition 3.4, the relation y − x ∈ S is equivalent to y > x and
dS(y − x) > 0, we have

E =

{

{x} if y > x and dS(y − x) > 0 and 2x < y,

∅ otherwise.

On the other hand, we have

F = {z ∈ S | y − z = x and 2z 6 y}

= {z ∈ S | z = y − x and y 6 2x}

=

{

{y − x} if y − x ∈ S and y 6 2x,

∅ otherwise.

As in the case of E, we get

F =

{

{y − x} if y > x and dS(y − x) > 0 and y 6 2x,

∅ otherwise.

In E we have the constraint 2x < y while in F we have y 6 2x, hence only
one of the sets E or F can be non-empty. This implies

DS(y) \DSx(y) =











{x} if y > x and dS(y − x) > 0 and y 6 2x,

{y − x} if y > x and dS(y − x) > 0 and y > 2x,

∅ otherwise.

Therefore we obtain

dSx(y) =

{

dS(y)− 1 if y > x and dS(y − x) > 0,

dS(y) otherwise.

�

4. A new algorithm

We can easily explore the tree of numerical semigroups up to a genus G
using a depth search first algorithm using a stack (see 1). This approach
does not seem to have been used before. In particular, M. Bras-Amorós
and M. Delgado use instead a breadth search first exploration. The main

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 7

advantage in our approach is the small memory needs. The cost to pay is
that, if we want to explore the tree deepero, we must restart from the root.

Algorithm 1 Depth search first exploration of the tree of numerical semi-
groups

1: procedure Explore(G)
2: Stack stack ⊲ the empty stack
3: S← 〈1〉
4: while stack is not empty do

5: S← stack.top()

6: stack.pop()

7: if g(S) < G then

8: for x from c(S) to c(S) +m(S) do
9: if x ∈ Irr(S) then

10: S.push(Sx)
11: end if

12: end for

13: end if

14: end while

15: end procedure

In Algorithm 1 we do not specify how to compute c(S), g(S) and m(S)
from S neither how to test if an integer is irreducible. It also miss the char-
acterisation of Sx from S. These items depend heavily of the representation
of S. Our choice is to use the S-decomposition numbers function. The
first task is to use a finite set of such numbers to characterise the whole
semigroup.

Proposition 4.1. Let G be an integer and S be a numerical semigroup of

genus g 6 G. Then S is entirely described by δS = (dS(0), ..., dS(3G)).
More precisely we can obtain c(S), g(S),m(S) and Irr(S) from δS.

Proof. By (5) we have c(S) 6 g(S) and so the S-decomposition number of
c(S) occurs in δS . Since c(S) is equal to max(N\S), Proposition 4.1 implies

c(S) = 1 + max{i ∈ [0, ..., 3G], dS(i) = 0}.

As all elements of N\S are smaller than c(S), their S-decomposition numbers
are in δS and we obtain

g(S) = card{i ∈ [0, .., 3G], dS(i) = 0}.

By (4) the relation m(S) 6 g(S) + 1 holds. This implies that the S-
decomposition number of m(S) appears in δS :

m(S) = min{i ∈ [0, ..., 3G], dS(i) > 0}.

Since, by (3), all irreducible elements are smaller than c(S) + m(S) − 1,
which is itself smaller than 3G, equations (4) and (5) give

Irr(S) = {i ∈ [0, ..., 3G], dS(i) = 1}.

8 JEAN FROMENTIN

�

Even though it is quite simple, the computation of c(S),m(S) and g(S)
from δS has a non negligible cost. We represent a numerical semigroup S
of genus g 6 G by (c(S), g(S), c(S), δS). In an algorithmic context, if the
variable S stands for a numerical semigroup we use:

– S.c, S.g and S.m for the integers c(S), g(S) and m(S);
– S.d[i] for the integer dS(i).
For example the following Algorithm initializes a representation of the

semigroup N ready for an exploration up to genus G.

Algorithm 2 Return the root of T for an exploration up to genus G

function Root(G)
R.c ← 1 ⊲ R stands for N
R.g ← 0
R.m ← 1
for x from 1 to 3 G do

R.d[x]← 1 +
⌊

x

2

⌋

end for

return R

end function

We can now describe an algorithm that returns the representation of the
semigroup Sx from that of the semigroup S where x is an irreducible element
of S greater than c(S).

Algorithm 3 Returns the son Sx of S with x ∈ Irr(S)∩ [c(S), c(S)+m(S)[.

1: function Son(S,x,G)
2: T.c ← x+ 1 ⊲ T stands for Sx
3: T.g ← S.g+ 1
4: if x > S.m then

5: T.M ← S.m

6: else

7: T.M ← S.m+ 1
8: end if

9: T.d ← S.d

10: for y from x to 3 G do

11: if S.d[y− x] > 0 then

12: T.d[y]← T.d[y]− 1
13: end if

14: end for

15: return T

16: end function

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 9

Proposition 4.2. Running on (S, x,G) with g(S) 6 G, x ∈ Irr(S) and x 6

c(S), Algorithm 3 returns the numerical semigroup Sx in time O(log(G)×G).

Proof. By construction Sx is the semigroup S \ {x}. Thus the genus Sx is
g(S) + 1, see Line 1. Every integer of I = [x + 1,+∞[lies in S since x is
greater than c(S), so the interval I is included in Sx. As x does not belong to
S, the conductor of Sx is x+1, see Line 2. For the multiplicity of Sx we have
two cases. First, if x > m(S) holds then m(S) is also in Sx and so m(Sx)
is equal to m(S). Assume now x = m(S). The relation x(S) > c(S) and
the characterisation of m(S) implies x = m(S) = c(S). Thus Sx contains
m(S) + 1 which is m(Sx). The initialisation of m(Sx) is done by Lines 4

to 8. The correctness of the computation of δSx (see Proposition 4.1) done
from Line 9 to Line 15 is a direct consequence of Proposition 3.4.

Let us now prove the complexity statement. Since by (5) and (4) we have
x 6 3G together with m(S) 6 G + 1, each line from 2 to 8 is done in time
O(log(G)). The for loop needs O(G) steps and each step is done in time
O(log(G)). Summarizing, these results give that the algorithm runs in time
O(log(G) ×G). �

Algorithm 4 Returns an array containing the value of ng for g 6 G

1: function Count(G)
2: n ← [0, ..., 0] ⊲ n[g] stands for ng and is initialised to 0
3: Stack stack ⊲ the empty stack
4: S← Root(G)
5: while stack is not empty do

6: S← stack.top()

7: stack.pop()

8: n[S.g]← n[S.g]+ 1
9: if S.g < G then

10: for x from S.c to S.c+ S.m do

11: if S.d[x]= 1 then

12: S.push(Son(S, x, G))
13: end if

14: end for

15: end if

16: end while

17: return n

18: end function

Proposition 4.3. Running on G ∈ N, Algorithm Count returns the ar-

ray [n0, ..., nG] in time

O



log(G)×G×
G
∑

g=0

ng





10 JEAN FROMENTIN

and its space complexity is O(log(G)×G3).

Proof. The correctness of the algorithm is a consequence of Proposition 4.2
and of the description of the tree T of numerical semigroups.

For the time complexity, let us remark that Algorithm Son is called for
every semigroup of the tree T 6G (the restriction of T to semigroup of genus

6 G). Since there are exactly N =
∑G

g=0
ng such semigroups, the time com-

plexity of Son established in Proposition 4.2 guarantees that the running
time of Count is in O(log(G) ×G×N), as stated.

Let us now prove the space complexity statement. For this we need to
describe the stack through the run of the algorithm. Since the stack is filled
with a depth first search algorithm, it has two properties. The first one is
that reading the stack from the bottom to the top, the genus of semigroup
increases. The second one is that, for all g ∈ [0, G], every semigroup of genus
g in the stack has the same father. As the number of sons of a semigroup S is
the number of S-irreducible elements in [c(S), c(S)+m(S)−1], a semigroup
S has at most m(S) sons. By (4), this implies that a semigroup of genus g
as at most g+1 sons. Therefore the stack contains at most g+1 semigroup
of genus g + 1 for g 6 G. So the size of the stack is bounded by

S =
G
∑

g=0

g =
G(G + 1)

2

A semigroup is represented by a quadruple (c(S), g(S),m(S), δS). By equa-
tions (5) and (4), we have c 6 2g(S) and m 6 g(S)+ 1. As g(S) 6 G holds,
the integers c, g and m of the representation of S require a memory space
in O(log(G)). The size of δS = (dS(0), ..., dS (3G)) is exactly 3G + 1. Each
entry of δS is the S-decomposition number of an integer smaller than 3G
and hence requires log(G) bytes of memory space. Therefore the space com-
plexity of δS is in O(log(G) × G), which implies that the space complexity
of the Count algorithm is

O(log(G)×G× S) = O(log(G)×G3).

�

5. Technical optimizations and results

Assume for example that we want to construct the tree T 6100 of all nu-
merical semigroup of genus smaller than 100. In this case, the representation
of numerical semigroup given in Section 3 uses decomposition numbers of
integers smaller than 300. By Lemma 3.3, such a decomposition number is
smaller than 151 and requires 1 byte of memory. Thus at each for step of
Algorithm Son, the CPU actually works on 1 byte. However current CPUs
work on 8 bytes. The first optimization uses this point.

To go further we must specify that the array of decomposition numbers
in the representation of a semigroup corresponds to consecutive bytes in
memory. In the for loop of Algorithm Son we may imagine two cursors:

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 11

the first one, denoted src pointing to the memory byte of S.d[0] and the
second one, denoted dst pointing to the memory byte T.d[y]. Using these
two cursors, Lines 10 to 14 of Algorithm Son can be rewritten as follows

src← address(S.d[0])
dst← address(T.d[x])
i← 0
while i 6 3G− x do

if content(src) > 0 then

decrease content(dst) by 1
end if

increase src,dst,i by 1
end while

In this version we can see that the cursors src and dst move at the same
time and that the modification of the value pointed by dst only needs to
access the values pointed by src and dst. We can therefore work in multiple
entries at the same time without collision. Current CPUs allow this thanks
to the SIMD technologies as MMX, SSE, etc. The acronym SIMD stands
for Single Operation Multiple Data.

The MMX technology permits to work on 8 bytes in parallel while the
SSE works in 16 bytes. As the rest of the CPU works on 8 bytes, the SSE
technology needs some constraint on memory access than cannot be fulfilled
in our algorithm. This motivate our choice to use the MMX technology.
More precisely, we use three commands: pcmpeqb, pandn and psubb. These
commands work on two arrays of 8 bytes, called s and d here. In each case
the array d is modified. We denote bytes by {0, 1}-words of length 8. After
a call to pcmpeqb(s,d) the ith entry of d contains 11111111 if s[i] = d[i]
holds and 00000000 otherwise. The command pand(s,d) store in d[i] the
value of the byte-logic operation s[i] and (not d[i]). When pand(s,d) is
called the new value of d[i] is s[i] − d[i]. Glueing all the pieces together we
obtain the following version of the for loop of Algorithm Son :

1: src← address(S.d[0])
2: dst← address(T.d[x])
3: i← 0
4: while i 6 3G− x do

5: t← [00000000, ..., 00000000] ⊲ 8 bytes equal to 00000000

6: pcmpeqb(src,t)

7: pandn([00000001,...,00000001],t)

8: psub(dst,t)

9: dst← t ⊲ copy the array [t[0], ..., t[7]] to [d[0], ..., d[7]]
10: increase src,dst,i by 8
11: end while

12 JEAN FROMENTIN

Let us explain how this works in more details. Let i be an integer in
{0, ..., 7}. After Line 5, the value of t[i] is 0000000. After Line 6, we have

t[i] =

{

11111111 if src[i] = 00000000 (corresponding to 0)

00000000 otherwise

Line 7 performs a logical and between 00000001 and not t[i]. Hence the
result byte is 00000001 if the last byte of t[i] is 0 and 00000000 otherwise:

t[i] =

{

00000000 if src[i] = 00000000 (corresponding to 0)

00000001 otherwise

Line 8 subtracts t[i] (which is equal to 0 or 1) from dst[i] according to
Proposition 2.6. Finally we shift the cursor src and dst by eight cases.

Our second optimization is to use parallelism on exploration of the tree.
Today, CPU of personal computer have several cores (2, 4 or more). The
given version of our exploration algorithm uses a single core and so a fraction
only of the power of a CPU.

Our method of parallelism is very simple: for G ∈ N, we cut the tree
T 6G in sub-trees T1, ...,Tn and we launch our algorithm on these sub-trees.
The advantage of this method is that there is no communication between the
instances of our algorithm. The disadvantage is that the cutting controls the
efficiency of the parallelism. Assume for example that we want to explore
the tree T 640. We first determine all numerical semigroups S1, ...Sn20

of
genus 20. To explore T it remains to explore the tree Ti rooted in Si for
i = 1, ..., n20. This works but the time to explore T1 is similar to the time
need to explore the tree T 640. And in this case, using many cores does not
reduce the time to explore the tree.

Let us now explain in more detail how we cut the tree T 6G in order to use
parallelism. Semigroups of the form 〈g + 1, ..., 2g + 1〉, which are of genus g,
are called ordinary in [8]. Each ordinary semigroup has a unique son that
is also ordinary. We define X to be the set of all the non-ordinary sons of
an ordinary semigroup and X6G the restriction of X to semigroup of genus
6 G. We then denote by Ti the tree rooted on Si where X

6G = {S1, ..., Sn}.
The time needed to explore Ti is very heterogeneous but there are many tree
Ti with maximal time. This cutting is more efficient than the previous one.

Figure 5 summarizes the time complexity of various exploration algo-
rithms.

The version depth− expl− δ −mmx of our algorithm compute the value
of ng for g 6 50 in 196 minutes on the i5-3570K CPU while the parallel
version running on the 4 cores of the same CPU end the work in 50 minutes.

Using two i7 based computers and our parallel algorithm we computed
in two days the values of ng for g 6 60, confirming the values given by
M.Bras-Amorós and M.Delgado :

EXPLORING THE TREE OF NUMERICAL SEMIGROUPS 13

g ng ng/ng−1

0 1
1 1 1.0
2 2 2.0
3 4 2.0
4 7 1.75
5 12 1.71428
6 23 1.91666
7 39 1.69565
8 67 1.71794
9 118 1.76119
10 204 1.72881
11 343 1.68137
12 592 1.72594
13 1001 1.69087
14 1693 1.69130
15 2857 1.68753
16 4806 1.68218
17 8045 1.67394
18 13467 1.67395
19 22464 1.66807
20 37396 1.66470
21 62194 1.66311
22 103246 1.66006
23 170963 1.65588
24 282828 1.65432
25 467224 1.65197
26 770832 1.64981
27 1270267 1.64791
28 2091030 1.64613
29 3437839 1.64408

g ng ng/ng−1

30 5646773 1.64253
31 9266788 1.64107
32 15195070 1.63973
33 24896206 1.63843
34 40761087 1.63724
35 66687201 1.63605
36 109032500 1.63498
37 178158289 1.63399
38 290939807 1.63304
39 474851445 1.63212
40 774614284 1.63127
41 1262992840 1.63047
42 2058356522 1.62974
43 3353191846 1.62906
44 5460401576 1.62841
45 8888486816 1.62780
46 14463633648 1.62723
47 23527845502 1.62668
48 38260496374 1.62617
49 62200036752 1.62569
50 101090300128 1.62524
51 164253200784 1.62481
52 266815155103 1.62441
53 433317458741 1.62403
54 703569992121 1.62368
55 1142140736859 1.62335
56 1853737832107 1.62303
57 3008140981820 1.62274
58 4880606790010 1.62246
59 7917344087695 1.62220
60 12841603251351 1.62195

In [9], A.Zhai establishes that the limit of the quotient
ng

ng−1
, when g go

to +∞, is the golden ratio φ ≈ 1.618. As the reader can see the convergence
is very slow.

References

[1] N. Sloane, “The on-line encyclopedia of integer sequences.”
[2] M. Bras-Amorós, “Fibonacci-like behavior of the number of numerical semigroups of

a given genus,” Semigroup Forum, vol. 76, no. 2, pp. 379–384, 2008.
[3] M. Delgado, “Homepage.”
[4] J. C. Rosales, “Fundamental gaps of numerical semigroups generated by two elements,”

Linear Algebra Appl., vol. 405, pp. 200–208, 2005.

14 JEAN FROMENTIN

[5] J. M. Manuel Delgado, Pedro A. Garcia-Sanchez, NumericalSgps – GAP package,

Version 0.971. T, 2011.
[6] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.6.3, 2013.
[7] J. C. Rosales and P. A. Garćıa-Sánchez, Numerical semigroups, vol. 20 of Developments

in Mathematics. New York: Springer, 2009.
[8] S. Elizalde, “Improved bounds on the number of numerical semigroups of a given

genus,” J. Pure Appl. Algebra, vol. 214, no. 10, pp. 1862–1873, 2010.
[9] A. Zhai, “Fibonacci-like growth of numerical semigroups of a given genus,” Semigroup

Forum, vol. 86, no. 3, pp. 634–662, 2013.

20 25 30 35 40

10−2

10−1

100

101

102

103

genus

ti
m
e

breadth-expl

depth-expl

depth-expl-δ

depth-expl-δ-mmx

Figure 2. Comparison of time executions of different explo-
ration algorithms of the tree T 6g on an Intel i5-3570K CPU
with 8GB of memory. The scale is logarithmic in time. The
first version is based on a breadth-first search exploration
and the peak at genus 35 is due to the consumption of all the
memory and use of swap. The second version uses a depth
first search exploration. The third is based on the second one
with use of decomposition numbers, it corresponds to the al-
gorithm given in Section 4. The last one is an optimisation
of the third one with MMX.

