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Abstract. Writing test oracles for model transformations is a difficult
task. First, oracles must deal with models which are complex data. Sec-
ond, the tester cannot always predict the expected value of all the prop-
erties of the output model produced by a transformation. In this paper,
we propose an approach to create efficient oracles for validating part of
the produced output model.
In this approach we presume that output models can be divided into two
parts, a predictable part and a non-predictable one. After identifying the
latter, we use it to create a filter. Before providing a (partial) verdict, the
oracle compares actual output model with the expected output model,
returning a difference model, and uses the filter to discard the differences
related to the unpredictable part. The approach infers the unpredictable
part from the model transformation specification, or from older output
models, in the case of regression testing.
The approach is supported by a tool to build such partial oracles. We
run several experiments writing partial oracles to validate output models
returned by two model transformations. We validate our proposal com-
paring the effectiveness and complexity of partial oracles with oracles
based on full model comparisons and contracts.

Keywords: Test, Partial Oracle, Model Comparison

1 Introduction

Model transformations are among the key elements of Model Driven Engineer-
ing. Since a transformation is often implemented to be reused several times,
any implementation error impacts on all the produced models. Therefore, it is
important to ensure that the implementation is correct w.r.t. its specification.

Software testing is a well-known technique for ensuring the correctness of an
implementation. In the precise case of model transformations, a test consists of
a transformation under test (TUT), a test input model and a test oracle. The
role of the oracle is to ensure that the output model, produced by the TUT, is
correct w.r.t. the transformation specification. Two methods are mainly used to
implement the test oracle: (i) comparing the output with an Expected Model or
(ii) using constraints to verify Expected Properties on the output model.



The tester is often able to predict the expected value for part of the output
model only. For instance when part of the specification is very complex. In this
case, the tester can only predict the part corresponding to what she knows about
the specification. In other cases, the specification may allow several different, or
polymorphic, outputs for the same input model. Therefore, the tester can predict
the expected value of the output model’s part that does not change from one
variant to another. Finally if the TUT performs a model refactoring, then the
tester can predict the part that should not be modified by the transformation.
We are interested in using this predictable part with a partial test oracle to
partially validate the correctness of output models.

Several approaches exist to write oracles for model transformation testing [1].
Full model comparison requires the expected model to be comprehensive. Con-
tracts express constraints between any input and output models but considering
few properties each. Assertions or patterns are suited to individually validate
properties of one output model. However, we need to entirely validate the pre-
dictable part of the output model, not just a compilation of properties.

The contribution of this paper is an approach to implement test oracles issu-
ing partial verdicts when part of the output model is predictable. The approach
relies on filtered model comparison with partial expected models.

The partial expected model is compared with the output model generated by
the TUT. The observed differences are filtered in order to reject those concerning
the unpredictable part of the output model. To create the filter we need to
precisely identify the unpredictable part. Elements are considered as belonging to
the unpredictable part based the meta-elements they are instance of. Therefore,
we propose to filter the comparison’s result with a pattern extracted from the
transformation’s output meta-model.

Along with this approach, we propose a tool that automatically produces
partial verdicts. The tool’s inputs are an output model, a partial expected model,
and patterns made of meta-model excerpts. We apply our approach to test two
model transformations with polymorphic outputs. We create 94 test models;
obtaining 94 partial verdicts with our partial oracles, detecting 4 bugs. We define
94 partial expected models with 2,632 elements, 70% less than for the classical
model comparison approach.

This paper is organized as follows. Section 2 discusses the control of part of
an output model by an oracle. Section 3 details our approach to define a partial
oracle for part of the output model. We then present our implementation of the
approach in Section 4. Section 5 presents the experiments we ran on two case
studies and discuss the results. Section 6 discusses existing contributions on the
topic of the verification of model transformations.

2 Test Oracle for Models Transformations

In this section, we discuss the situation where the tester is able to predict part
of an output model but she does not have any oracle function suited to use it.



2.1 Test Oracle for Model Transformations

Figure 1 depicts the process of model transformation testing. The input and
output data are models that conform to meta-models. The tester selects an
input model, then the TUT transforms it, obtaining an output model. Finally,
she writes test oracles aimed at validating the output model, ensuring that it is
correct w.r.t. the TUT’s specification.

A test oracle consists of two elements: oracle function and oracle data [1]. The
oracle function analyses the output model and uses the oracle data to produce
the verdict. For instance when comparing the actual result with the expected
one, the oracle function is the comparison and the oracle data is the expected
result. In previous work [1], we have defined several oracle functions to test model
transformation. These oracle functions use comparison with an expected model
or constraints expressed either between the input and output models or on the
output one only.

Writing oracle data is a blackbox activity: the tester only relies on the spec-
ification not on the implementation. She should not be influenced by any fault
made by the developer.

2.2 Partial verdict for Model transformation Testing

A test oracle may produce a partial verdict when only part of the specification
is considered or part of the output data is validated. In model transformation
testing, one may want to write partial oracles because the tester can only predict
part of the expected output model in many situations. We distinguish three such
situations:

1. The transformation’s specification can be large and output models are com-
plex data. The tester could predict only part for which she can handle the
complexity.

2. The transformation can be endogenous, modifying partially the input model,
e.g., model refactoring. Therefore, part of the input model remains un-
changed and could be used as oracle data to check that the transformation
is side-effect free.

3. The transformation can return polymorphic outputs: instead of an unique
output solution, several variants of the expected model exist. Most of the
time, those variants are semantically equivalent, but syntactically different.

Fig. 1. Model Transformation Testing



This variability usually comes from the model transformation’s specifica-
tion. The tester cannot predict which variant should be produced by the
transformation’s implementation and she should consider them all.
The flattening of a state machine is an example of such a transformation. Its
input is a hierarchical state machine, the output is another state machine
expressing the same behavior without any composite state. The input model
presented in Figure 2 can be transformed into the output model presented
in Figure 3(a). With such state machines, the number of final states is not
limited to only one. Thus, the model presented in Figure 3(b) is also a correct
output for the transformation of the input presented in Figure 2.

In such situations, the tester is able to predict the expected value for part of
the output model with limited effort, while the remaining part is unpredictable
or too difficult to be predicted. We envisage being able to write a partial oracle,
using predictable part of the expected model as oracle data.

2.3 Existing Oracle Functions and Partial Verdict

Considering partial expected model as oracle data requires a suitable oracle func-
tion. Several oracle functions have been proposed for model transformation test-
ing [1], but are they suitable for partial verdict?

A first set of oracle functions considersmodel comparison. Testing frameworks
implement such approach: (i) Lin et al. developed a testing engine [2] based
on DSMDiff, a model comparison engine, (ii) EUnit [3] compares models with
EMFCompare (compliant with the principles exposed by Cicchetti et al. [4]).
They compare the output model with an expected model. The latter is obtained
manually by the tester, or from a reference transformation (e.g., previous version
or regression testing), or a reverse transformation returns an input model from
the output model to be compared with the test model (this last approach is
limited to injective transformations which are rare and require the existence of
such a transformation, which cannot be developed only for testing, especially
when the transformation returns polymorphic outputs).

Hence, using such comparison approaches is not suited to get partial verdict
from part of an expected model. The comparison would identify differences con-
cerning the unpredictable part of the output model: (1) when this part is too
complex to be predicted by the tester, (2) when it concerns part transformed by
a refactoring, (3) when it may have many variants with a polymorphic model.

Those differences should be manually analyzed to get the verdict of the test.
We face this issue considering the three situations where we want to use partial

Fig. 2. Example M in, of Hierarchical State Machine



expected models as oracle data. Such complete model comparison requires com-
prehensive expected models. Moreover, in case of polymorphic output models, it
requires all the variants to be compared with the output model because only one
of them could be equal. Therefore this oracle function is not effective to write
partial oracle.

A second set of oracle functions considers properties to be checked on the out-
put models. Contracts are constraints between input and output models. Cariou
et al. [5], verify model transformations using contracts. Their contracts are com-
posed of constraints (i) on the output model, (ii) on the evolutions of model
elements from the input model to the output model. Defining contracts between
input and output model is at least as complex as writing the transformation it-
self; thus they are as error prone as the transformation. Contracts are not suited
to provide the partial verdict we envisage. They are only appropriate to control
a few requirements of the specification: no output with composite states for in-
stance. Vallecillo et al. [6] reach the same conclusion and present Tracts, partial
contracts for this purpose.

A third set of oracle functions considers assertions or patterns (e.g., OCL
constraints on the output model of one test case). It would allow controlling
dedicated properties of one model. However a model is not just a big set con-
taining many properties, the organization of these properties, i.e., their structure,
is also important. Our goal is to globally control the predictable part and not a
compilation of properties, thus assertions are not suited to our needs.

To sum up, existing oracle functions are not suited to our needs: controlling
part of the output model using a partial expected model as oracle data. We seek
for appropriate oracle function.

3 Filtered Model Comparison for a Partial Verdict

We propose a new approach to obtain a partial verdict for the test of model
transformations. We define a partial oracle function considering part of the out-
put model, the one the tester can predict.

The obtained verdict is only partial but it is still a good piece of information
for the tester. Using this oracle function she is able to detect bugs in the trans-

(a) Variant Mout
1 with One Final
State

(b) Variant Mout
2 with Two Final
States

Fig. 3. Possible Results for the Flattening of M in



formation under test. Furthermore, this partial verdict requires less effort to be
obtained and consumes less resources than a complete one.

3.1 Partial Oracle Data to Focus on Part of the Output Model

The oracle data, which is provided by the tester, consists of two elements: a
partial expected model and a set of patterns defining which part of the model
is not considered by the oracle. The partial expected model is part of an output
model of the TUT. It can also be a comprehensive output model if the tester
can provide it. In particular, when the output model is polymorphic, she may
provide one variant of the model.

The patterns define which elements of the output model are not considered in
the models to produce the partial verdict. Elements belong to the unpredictable
part based on the meta-elements (EClass, EAttribute, EReference) they are
instance of. Those meta-elements are extracted from the output meta-model,
thus our patterns are meta-model fragments.

In the example presented in Figure 3, several variants exist, expressing the
same semantics; the output model is polymorphic. The final states as well as
the transitions targeting them, change from one variant to another, they are
not predictable. In Figure 3(a), both transitions have the same target, while in
Figure 3(b) each one has a different target. Thus, the unpredictable part of these
output models is defined as shown in Figure 4: the instances of FinalState and
those of Transition targeting a FinalState1.

3.2 Model Comparison and Filtering to Control the Predictable
Part

We define a partial oracle function by entirely comparing the output model with
one partial expected model, then filtering the result of this comparison. Model
comparison is already implemented by several tools (e.g. EMFCompare), our
proposal focuses on filtering the comparison’s result.

In our proposal, any observed difference concerning the unpredictable part
is taken off the comparison’s result. The verdict is “pass” if the filtered com-
parison’s result is empty, because in this case, there is no difference between
produced and expected models’ predictable part. Otherwise, the test fails and
reveals a fault in the model transformation.
1 we also consider the guards, actions and events supported by a transition in the
experimentation (Section 5).

(a) A FinalState (b) A Transition targeting a FinalState

Fig. 4. Patterns defining the Unpredictable Part for our Flattening Transformation



Fig. 5. Our Approach to Produce a Partial Verdict

This result is interesting because the tester detects faults with only a partial
expected model when the classical model comparison approach (see Section 2.3)
needs at least a comprehensive one before detecting any fault. The filtering pat-
terns, which are written once, are used for every test of a given transformation.
Additionally, they are built in a familiar way for a MDE tester, extracted from
meta-models. Thus, unlike using specific matching language like ECL (Epsilon
Comparison Language) [7], or specializing the model comparison engine for each
transformation, she does not have to learn additional language.

Figure 5 summarizes our approach. The tester identifies the unpredictable
part, and writes patterns defining it. She provides partial expected models which
are compared with TUT’s output models. The result of this comparison is then
filtered using the patterns. The verdict is produced after observation of this
filtered comparison’s result.

4 Implementation

In this section, we describe the implementation of the proposed approach and
its application to the running example of the paper.

4.1 The Technical Framework

Technically, our oracle function allows testing transformations generating XMI2
models, as in the Eclipse Modeling Framework3. The choice of the EMF frame-
work is due to the number of provided tools, as well as the fact that it is widely
used in the academia.

We use EMFCompare4 to compare our models. For each comparison, EMF-
Compare produces two result models: the Match model for the elements matched
between the two models, and the Diff model for the differences. In the Diff model,
an observed difference is defined as an instance of DiffElement. It can concern
an EClass, an EAttribute or an EReference.

2 http://www.omg.org/spec/XMI/
3 http://www.eclipse.org/emf/
4 http://www.eclipse.org/emf/compare/

http://www.omg.org/spec/XMI/
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/compare/


For the filter, we perform pattern matching on the Diff model returned by
EMFCompare. We look for any difference concerning an element of the pre-
dictable part. The test passes if nothing is matched.

The meta-model excerpts, written by the tester, are Ecore meta-model frag-
ments. Each fragment defines one meta-element (e.g., a transition targeting a
final state Figure 4(b)). We need to be able to filter any element that can be
concerned by a difference observed by EMFCompare. Therefore, our meta-model
fragments can be composed of instances of EClass, EAttribute or EReference.

The pattern matching engine we use is EMF Incquery5. With Incquery, pat-
terns are written in a textual form. Thus, we transform our meta-model frag-
ments into Incquery patterns. We wrote a Java transformation, available on a
public repository [8], for this purpose. The transformation is integrated into the
filter (Figure 5). It takes as input the meta-model fragments defining the unpre-
dictable part of the output model, along with the name of the element the tester
wants to be filtered, as well as the root meta-class of the fragment. The root
meta-class is the one from which the transformation starts browsing the frag-
ment. For instance, in the fragment from Figure 4(b), Transition is the element
the tester wants to filter as well as the fragment’s root meta-class. It produces
Incquery rules that can be automatically applied on the result of the comparison
to return the differences concerning the predictable part only.

4.2 Automatic Treatment of the Patterns in three steps
First Step Since we look for differences between two models, we need to define
how a difference is represented in the Diff model. This is the role of the pattern
isDifference. It basically matches any element for which a difference was observed
(an element referenced in a instance of DiffElement). This pattern is generic
and is generated independently from the TUT.

Second Step In the second step, we generate the Incquery patterns correspond-
ing to the fragments defined by the tester, one pattern for each of the fragments.
This step’s result for the fragments from Figure 4 is presented in Listing 1.1. For
each fragment, we create the header of the pattern with its name (the fragment’s
name) and its parameter, where the matched elements are collected.

We browse the fragment’s elements, starting by the root meta-class speci-
fied by the tester. The pattern’s body starts with the declaration of a variable
instance of this root meta-class. For the pattern from Figure 4(b), the root meta-
class is Transition, thus the declaration of the variable T (since Transition is also
the meta-element the tester wants to filter, the variable T is the parameter of
the pattern).

Then we declare the meta-class’ attributes if any. Afterwards, for each ref-
erence we declare a variable corresponding to the meta-class target of this ref-
erence. Then we declare the link between this new variable and the current
5 http://viatra.inf.mit.bme.hu/incquery

http://viatra.inf.mit.bme.hu/incquery


meta-class. We can see in Listing 1.1 the declaration of the FinalState F, as well
as the link between T and F.

Finally the same process is applied to this referenced meta-class, until there
is no more reference to follow.

// A F i n a l S t a t e F
pattern f i n a l S t a t e (F) = {

F i n a l S t a t e (F ) ;
}

// A t r a n s i t i o n t a r g e t i n g a f i n a l State
pattern f i n a l T r a n s i t i o n (T) = {

T r a n s i t i o n (T) ;
F i n a l S t a t e (F ) ;
T r a n s i t i o n . t a r g e t (T, F ) ;

}

Listing 1.1. Expression of the Non Considered Part with Incquery

Third Step In the third and last step, we generate the pattern that provides the
result of the filtered comparison. In the first step, we defined an element about
which a difference is observed. In the second step, we defined the unpredictable
part’s elements. In this final step, we are looking for any of the unpredictable
part’s elements about which a difference is observed. Therefore, we need to com-
bine the patterns from the previous steps into a new one. In Listing 1.2 we are
looking for an instance of FinalState or of Transition targeting a FinalState,
about which a difference is observed.

/∗ A i s a D i f f e r e n c e which i s not about a F i n a l S a t e
or a T r a n s i t i o n t a r g e t i n g one
I f the r e s u l t i s empty then the t e s t pass f o r the common part ∗/

pattern verdictPassIfAEmpty (A) = {
find i s D i f f e r e n c e (A) ;
neg find f i n a l S t a t e (A) ;
neg find f i n a l T r a n s i t i o n (A) ;

}

Listing 1.2. Pattern for the Verdict of the Considered Part

5 Experiments and Discussion

We validate our approach by running several experiments. We build partial test
oracles for two model transformations. After describing the case studies, we
detail the test protocol set up for these experiments. Afterwards, we discuss
the obtained experimental results and potential threats to the validity of our
experiments and approach.

5.1 Case Studies

State Machine Flattening transformation This transformation, which flat-
tens UML state machines to remove composite states, is used as an illustrative



example throughout this paper. The implementation of this transformation was
developed by Holt et al. [10] in Kermeta. We specify that input model is valid
only with no orthogonal state, no pseudostate other than initial state, no hyper-
edge, and transitions leaving a composite state containing a final state have no
trigger.

UMLActivity Diagram to CSP transformation This transformation trans-
forms UML activity diagram into model of CSP6 program.

Part of the output models is unpredictable since models of CSP programs
are polymorphic. Indeed, from the specification proposed by Bisztray et al. [11],
we identify two elements, which can introduce variations in the output model:
– A decision node is transformed into an n-ary condition. In this situation, the

operands can be permuted and several links can be combined. According to
the authors, provided that the guards’ conditions are distinct, for the UML
norm, several syntactic combinations are semantically equivalent.

– A fork node becomes a combination of concurrency operators which are
commutative; changing the order of operands does not modify the program’s
semantics.
For instance, let us consider a fork node transformed into three parallel pro-

cesses (F1, F2, F3), they can be organized in twelve variants of the same poly-
morphic model. Firstly, they can be permuted in six different ways:

F1‖F2‖F3 F1‖F3‖F2 F2‖F1‖F3 F2‖F3‖F1 F3‖F1‖F2 F3‖F2‖F1

Secondly, the concurrency being a binary operator, to compose three pro-
cesses, one of the two operands is the composition of two processes:

– (Fi ‖ (Fj ‖ Fk)) – ((Fi ‖ Fj) ‖ Fk)

We have implemented this transformation in ATL7.
Writing partial oracles, the unpredictable part of these CSP models is com-

posed of the binary operators (conditions and concurrencies) and their operands.
Therefore, we create 3 patterns which are excerpts of the CSP meta-model. For
space reason they are available on [8].

5.2 Testing Protocol

In this experimental section, we want to answer several questions:
Question 1: Can a tester write partial expected models and patterns?
Question 2: Do the patterns and part of expected models can be processed by
partial oracle function to produce partial verdict?
Question 3: Is the proposal more appropriate than other oracle functions to
produce partial verdict considering part of expected model?
6 CSP = Communicating Sequential Processes [9]
7 http://www.eclipse.org/atl



Answering the first question, we produce a set of test models for our cases
studies, then we write corresponding partial expected models, and patterns.

Answering the second question, we transform the test input models with the
two TUT and we check that partial oracle return partial verdicts.

Answering the third question, we compare the size of the partial expected
models with comprehensive models that would have been written without our
proposal. Moreover, we check that it would be simpler to get the same partial
verdicts with our proposal than with contracts.

The test model creation method was introduced by Fleurey et al. [12] and val-
idated by Sen et al. [13], it relies on the partition of the input domain. We define
partitions of the values of each attribute and reference of the input meta-model.
Then, different strategies combine those partitions defining model fragments.
Finally, for each model fragment, at least one correct input model is created.

We create 94 test models: 30 for the first transformation, 64 for the second.
For the first case study, we create 10 fragments using the IFClassΣ strategy,
then create 3 test models for each model fragment. For the second case study,
using IFCombΠ strategy we create 8 model fragments. We define all the possible
combinations, eliminate invalid ones, and produce the models.

5.3 Results

In this subsection, we present results answering the three previous questions.
We already answer partially Question 1 in Section 4.2 when we introduce the
patterns for one case study.

Part of the experiments’ results is shown in Table 1. For each partial expected
model, we present the number of its elements, the number of elements in the
complete expected model, the proportion of the predictable part in the model,
as well as the number of existing variants and the partial verdict of the test.

UML State Machine Flattening The second result answering Question 1
is the writing of the partial expected models and the patterns for the filter reject-
ing unpredictable part of the models. This transformation returns polymorphic
models, therefore we can create comprehensive expected models but some of
them are only one variant among several possibility. Out of the 30 input models
created, 10 do not have any composite state to be transformed. Therefore, their
corresponding expected models are exactly the ones we expect. In the opposite,
each of the 20 other expected models is only one variant: for instance, we can
use the one of the Figure 3(b). Those models are available in [8].

Answering Question 2, four test cases produce a failure partial verdict, two
of them because of a missing transition in the output model. The other two failed
for a missing guard on a newly created transition; more precisely, the guard was
created but not linked to the transition.

The three following paragraphs answer Question 3. While with most of our
test models the number of variants for the transformation is quite small (1, 2
or 5), we can see that one of the output models has 93 variants (model 9 in the



table). In this case without our approach, using the classical model comparison
approach would require 93 expected models (about 3,906 elements), along with
93 model comparisons to obtain a verdict.

One could argue that since the majority of the output model elements be-
long to the predictable part, the tester should just create one model with the
predictable part then copy it as much as needed, and then only add the unpre-
dictable part. However in this case with 93 variants, the tester still would have
to create 1,238 model elements (29 + (42 - 29) * 93) and 93 comparisons would
still be needed, before getting the least verdict.

Whereas the transformation is 500 lines, we write 510 lines worth of contracts.
Three of them concern the unpredictable part of the output model. Even though
the contracts are more complex than the transformation, they do not cover the
whole output models’ predictable part. For instance, the transitions’ effects are
not controlled with the contracts. On the contrary, our approach permits to
entirely control the predictable part, which is present in our partial expected
models.

Activity Diagram to CSP The experiment on this second transformation
answer the three questions again. Four test cases produce a failure partial
verdict, when two or more join nodes are present in the input model only the first
is correctly transformed. The maximum number of variants is 96 for 3 models.
Without our approach, the tester would have to create the 96 expected models:
4,800 elements or 715 elements (43 + (50 - 43) * 96) by copying the predictable
part elements.

Once again, we write contracts which are as complex as the transformation
(218 lines of contracts and 210 of transformation), but do not entirely control the
output models’ predictable part. For instance they do not control the order in
which the instances of ProcessAssignment are defined, when our partial expected
models do. Two of the contracts we write partially control the unpredictable part.

Discussion We obtain partial verdicts from the use of partial expected models
and patterns with our oracle function, thus answering Question 2. To obtain
partial verdicts we create only 94 partial expected models (2,632 elements) and
8 patterns (18 elements) and perform 94 model comparisons, instead of 835 mod-
els (36,184 elements or 8,677 elements by copying the predictable parts) and
835 model comparisons for the classical model comparison approach. The gain
here is of 93% in terms of model elements (70% if copy of the predictable part)
and of 89% in terms of model comparisons. Our case studies handle simple mod-
els with an average of 35 and 37 elements per model. The gain for the tester
would be greater with transformations handling more complex models. It would
be decisive if she would manually write those models’ variants.

We write incomplete contracts that are as complex as our transformations.
However, these contracts do not entirely control the predictable part. Contracts
controlling a whole transformation are at least as error-prone as the transfor-
mation’s implementation. Thus global contracts are not suited for our needs.
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1 32 36 89% 1 pass
4 35 42 83% 2 pass
5 31 35 89% 1 fail
7 32 42 76% 5 pass
8 32 39 82% 2 fail
9 29 42 69% 93 fail

14 12 17 71% 2 fail
17 18 25 72% 5 pass
...

avg 28 35 79% 6.71
sum 582 734 157

(b) UML To CSP
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4 32 38 84% 2 pass
7 36 42 86% 4 fail
8 36 42 86% 4 fail

10 35 42 83% 6 pass
13 29 34 85% 12 pass
16 40 48 83% 24 fail
17 40 48 83% 24 fail
18 43 50 86% 96 pass
...

avg 32.03 37.3 87% 10.6
sum 2050 2338 678

Table 1. Observed Results for our Case Studies

Answering the third question, we can conclude that our proposal is more appro-
priate than the other oracle functions to provide a partial verdict considering
part of an output model.

One could argue that we do not control the correctness of the whole output
model. However, first, our partial oracles find errors in those transformations,
one of them not being ours [10]. Second, the predictable part is a significant part
of our output models (over 61%). Third and last, in both case studies, elements
in the predictable part are transformed. The transformations do not only act
on the unpredictable part of a model. In the first transformation, simple states
are not modified, but incoming or outgoing transitions of the composite states
are (relation between A and B in Figure 3). In our second transformation, we
transform from one language to another, the input and output meta-models are
different. So this partial verdict is a good piece of information for the tester.

Also to fill the gap of our only partial verdict, we could use contracts. While
global contracts are too complex, we could use smaller ones to control the un-
predictable part. This way we could benefit from our approach and add simple
contracts to obtain a complete verdict.

5.4 Threats to Validity

We have successfully applied our approach to build partial test oracles for two
model transformations. A major threat to the validity of our experiments is the
question of the representativity of our case studies. Can we conclude about the
efficiency of our approach for any model transformation? While with our case
studies we do not cover the whole range of possibilities of model transformations,
they still are quite distinct from one another. One, a refactoring transformation,
modifies only part of the input model; the other transforms the input model into



a completely different one. Also the first one directly transforms UML models,
its inputs and outputs conform to the UML model.

Another threat, this time to the global usability of our approach is the prob-
lem of the identification of the predictable part. Unfortunately this step is still
manual, with the tester having to understand the transformation’s specification.
Yet she can find clues, for instance elements that indicate possible polymorphism,
such as binary operators for polymorphic outputs, like in our second case study.
If part of the specification is too complex for her to handle, then she should be
able to describe it. When performing regression testing of a refactoring trans-
formation, the part of the meta-model appearing in the specification is the one
modified by the transformation, therefore this part is the unpredictable part.

6 Related Work
Model transformation testing has been studied several times.

Model transformations can be seen as graph transformations, Darabos et
al. [14] tested such transformations. They identified and classified most common
faults in erroneous transformations.

In Section 2.3, we discussed the use of generic contracts for the oracle. Braga
et al. [15] [16], specify a transformation using a meta-model. In order to verify
a transformation they use contracts expressed as a transformation meta-model
along with a set of properties over it. Similarly, Büttner et al. [17] model an
ATL transformation for its validation. Cabot et al. [18] also build on this con-
cept of transformation model, to which they add an invariant. Guerra et al. [19]
developed transML, a family of modeling languages for the engineering of trans-
formations. They generate both test inputs and oracles, relying on a transML
specification of the TUT. This specification can be seen as contracts. As we al-
ready mentioned the main drawback of contracts is that they are as complex to
write as the transformations and thus as error prone.

Tiso et al. [20] are particularly interested in testing model to text transfor-
mations. They use assertions to check properties on the produced output. They
argue that the assertions’ writing should be white box, because they have to
know of some choice made by the developer. Several syntaxes exists for the same
semantics, this is a case of polymorphic outputs. As discussed in Section 2.1, the
oracle is strictly black box, thus their approach is not suited.

7 Conclusion and Future Work
In this paper, we presented an approach to write a partial oracle to validate a
part of output models. This approach produces a partial verdict by comparing
the output model with an expected one. Running experiments on two trans-
formations with polymorphic outputs, we measured our approach against two
classical oracle functions, global model comparison and contracts. These experi-
ments showed that our approach is more appropriate to produce a verdict when
considering part of the output model.

Beyond this work, the next step is to complete the partial verdict we obtain
with our approach. As discussed in Section 5.3, our idea is to use small contracts
to control the unpredictable part’s properties.
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