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Abstract

We study a fluid flow traversing a porous medium and obeying the Darcy’s
law in the case when this medium is fractured in blocks by an ε-periodic
(ε > 0) distribution of fissures filled with a Stokes fluid. These two flows
are coupled by a Beavers-Joseph type interface condition. The existence
and uniqueness of this flow in our ε-periodic structure are proved. As the
small period of the distribution shrinks to zero, we study the asymptotic
behaviour of the flow when the permeability and the entire contribution on
the interface of the Beavers-Joseph transfer coefficients are of unity order. We
find the homogenized problem verified by the two-scale limits of the coupled
velocities and pressures. It is well-posed and provides the corresponding
classical homogenized problem.

Keywords: Fractured porous media, Stokes flow, Beavers-Joseph interface,
Homogenization, Two-scale convergence.
2000 MSC: 35B27, 76M50, 76S05, 76T99

1. Introduction

One major achievement of homogenization theory was the mathemat-
ical justification of Darcy’s law [23], considering the Stokes flow around
an ε-periodic system of isolated solid obstacles. It was not until this non-
connectedness assumption could be dropped out that the homogenization of
phenomena in fractured media could be studied (see [17], [1] and [18]). The
models of fluid flows through fractured porous media(see [5], [6], [22], [10]
and [19]) are usually obtained by asymptotic methods, from the alteration
of a homogeneous porous medium by a distribution of microscopic fissures.
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Here, as the process at the microscopic scale takes place under the assump-
tion of ε-periodicity, the study of its asymptotic behaviour (when ε → 0) is
amenable to the procedures of the homogenization theory. We are interested
to which extent the Darcy’s law, which is already a macroscopic approxi-
mation of a microscopic process, may be considered as existing besides the
Stokes flow. The answer is brought in the form of an original model where we
assume that the volumes of both media have the same order of magnitude.

Our study is devoted to the mathematical modelisation of the fractured
material, namely, the slip boundary condition of Beavers-Joseph type is revis-
ited in accordance with observed physical laws and the underlying arguments
of the classical mathematical theory.

We consider an incompressible viscous fluid flow in a fractured porous
media represented by a periodically structured domain consisting of two in-
terwoven regions, separated by an interface. The first region represents the
system of fissures which form the fracture, which is connected and where
the flow is governed by the Stokes system. The second region, which is also
connected, stands for the system of porous blocks, which have a certain per-
meability and where the flow is governed by Darcy’s law. These two flows are
coupled on the interface by the Saffman’s variant [20] of the Beavers-Joseph
condition [7], [13] which was confirmed by [12] as the limit of a homogeniza-
tion process. Besides the continuity of the normal component of the velocity,
it imposes the proportionality of the tangential velocity with the tangential
component of the viscous stress on the fluid-side of the interface. We prove
here the existence and uniqueness of this flow in our ε-periodic structure.

The system is rescaled in such a way that it becomes relevant that apart
ε the asymptotic behaviour depends also on two parameters, depending on
the permeability of the porous blocks and on the Beavers-Joseph transfer
coefficient. As the small period of the distribution shrinks to zero, we study
the asymptotic behaviour of the flow when the permeability of the porous
blocks is of unity order and the Beavers-Joseph transfer coefficient is of ε-
order, balancing the measure of the interface, which is of ε−1-order. Our main
result is the identification of the homogenized problem. It is a well-posed
problem, verified by the two-scale limits of the velocity, Darcy’s pressure and
a second Stokes velocity responding for the microscopic exchange of mass
through the interface. Finally, by eliminating the second Stokes velocity, we
find the corresponding classical homogenized problem.

The paper is organized as follows.
In Section 2, we present the ε-periodic structure, set the corresponding
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problem and prove the existence and uniqueness of its weak solution.
Section 3 is devoted to the a priori estimates, which serve as departure

point for adapting the compacity results of the two-scale convergence theory
(see [3] and [14]).

In Section 4 we find the so-called two-scale homogenized problem. We
prove that it is a well-posed problem. As a corollary, we get the corresponding
classical homogenized problem.

2. The flow through the ε-periodic structure

Let Ω be an open connected bounded set in R
N(N ≥ 2), locally located

on one side of the boundary ∂Ω, a Lipschitz manifold composed of a finite
number of connected components.

Let Yf be a Lipschitz open connected subset of the unit cube Y =]0, 1[N ,
such that the intersections of ∂Yf with ∂Y are reproduced identically on
the opposite faces of the cube and 0 /∈ Y f . The outward normal on ∂Yf is
denoted by ν. Repeating Y by periodicity, we assume that the reunion of all
the Ȳf parts, denoted by R

N
f , is a connected domain in R

N with a boundary

of class C2. Defining Ys = Y \ Y f , we assume also that the reunion of all the
Ȳs parts is a connected domain in R

N .
For any ε ∈]0, 1[ we denote

Zε = {k ∈ Z
N , εk + εY ⊆ Ω} (2.1)

Iε = {k ∈ Zε, εk ± εei + εY ⊆ Ω,∀i ∈ 1, N} (2.2)

where ei are the unit vectors of the canonical basis in R
N .

Finally, we define the system of fissures by

Ωεf = int
(

∪k∈Iε
(εk + εȲf )

)

(2.3)

and the porous matrix of our structure by Ωεs = Ω\Ω̄εf . The interface
between the porous blocks and the fluid is denoted by Γε = ∂Ωεf . Its normal
is:

νε(x) = ν
(x

ε

)

, x ∈ Γε (2.4)

where ν has been periodically extended to R
N .

Let us remark that Ωεs and Ωεf are connected and that the fracture ratio
of this structure is given by

m = |Yf | ∈]0, 1[, as
|Ωεf |

|Ω|
→ m when ε→ 0. (2.5)
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To the previous structure we associate a model of fluid flow through a
fractured porous medium by assuming that there is a filtration flow in Ωεs

obeying the Darcy’s law and that there is a viscous flow in Ωεf governed by
the Stokes system. These two flows are coupled by a Saffman’s variant [20]
of the Beavers-Joseph condition [7], [13]. This system is completed by an
impermeability condition on ∂Ω:

divvεs = 0 in Ωεs (2.6)

µεv
εs = Kε(gε −∇pεs) in Ωεs, (2.7)

divvεf = 0 in Ωεf , (2.8)

σε
ij = −pεfδij + 2µεeij(v

εf ) in Ωεf (2.9)

−
∂

∂xj

σε
ij = gε

i in Ωεf (2.10)

vεs · νε = vεf · νε on Γε, (2.11)

−pεsνε
i − σε

ijν
ε
j = αεµε(TrK

ε)−1/2(vεf
i − (vεf · νε)νε

i ) on Γε, (2.12)

vεs · n = 0 on ∂Ω, n the outward normal on ∂Ω, (2.13)

where vεs, vεf and pεs, pεf stand for the corresponding velocities and pres-
sures, µε > 0 is the viscosity of the fluid, Kε ∈ L∞(Ω)N×N is the positively-
defined tensor of permeability, αε ∈ L∞(Ω) is the positive non-dimensional
Beavers-Joseph number, gε ∈ L2(Ω)N is the exterior force and e(v) denotes
the symmetric tensor of the velocity gradient defined by

eij(v) =
1

2

(

∂vi

∂xj

+
∂vj

∂xi

)

.

As usual, we use the notations:

H0(div,Ω) = {v ∈ H(div,Ω), v · ν = 0 on ∂Ω} (2.14)

L2
0(Ω) = {p ∈ L2(Ω),

∫

Ω

p = 0} (2.15)

V0(div,Ω) = {v ∈ H0(div,Ω), divv = 0 in Ω} (2.16)

Next, we define

Hε = {v ∈ H0(div,Ω), v ∈ H1(Ωεf )
N}, (2.17)
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the Hilbert space endowed with the scalar product

(u, v)Hε
=

∫

Ωεs

uv +

∫

Ωεs

divu divv +

∫

Ωεf

e(u)e(v) + ε

∫

Γε

(γεu− (γε
νu)ν

ε)γεv (2.18)

where γε and γε
ν denote respectively the trace and the normal trace operators

on Γε with respect to Ωεf . Its corresponding subspace of incompressible
velocities is

Vε = {v ∈ V0(div,Ω), v ∈ H1(Ωεf )
N} (2.19)

A useful property of the present structure is the existence of a bounded
extension operator similar to that introduced in [8], [9] and [2] in the case of
isolated fractures.

Theorem 2.1. There exists an extension operator Pε : H1(Ωεf ) → H1(Ω)
such that

Pεu = u in Ωεf (2.20)

|e(Pεu)|L2(Ω) ≤ C|e(u)|L2(Ωεf ), ∀u ∈ H1(Ωεf ) (2.21)

where C is independent of ε.

A straightforward consequence, via the corresponding Korn inequality, is

Lemma 2.2. There exists some constant C > 0, independent of ε, such that

|u|H1(Ωεf ) ≤ C|u|Hε
, ∀u ∈ Hε. (2.22)

Denoting
Aε = (TrKε)(Kε)−1, (2.23)

βε = (TrKε)1/2 > 0 (2.24)

and using the positivity of Kε, we can assume without loss of genenerality
that

∃a0 > 0 such that Aε
ij(·) ξiξj ≥ a0|ξ|

2, ∀ξ ∈ R
N , a.e. in Ω. (2.25)

Rescaling the velocity by

uε =







uεs in Ωεs

uεf in Ωεf

=
µε

(TrKε)







vεs in Ωεs

vεf in Ωεf

(2.26)
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then, for any u, v ∈ Hε and q ∈ L2
0(Ω), we define

aε(u, v) =

∫

Ωεs

Aεuv + β2
ε

∫

Ωεf

e(u)e(v) + βε

∫

Γε

αε(γ
εu− (γε

νu)ν
ε)γεv (2.27)

bε(q, v) = −

∫

Ω

q divv. (2.28)

We see that if the pair (uε, pε) is a smooth solution of the problem (2.6)–
(2.13), then it is also a solution of the following problem: To find (uε, pε) ∈
Hε × L2

0(Ω) such that

aε(u
ε, v) + bε(p

ε, v) =

∫

Ω

gεv, ∀v ∈ Hε (2.29)

bε(q, u
ε) = 0, ∀q ∈ L2

0(Ω) (2.30)

Theorem 2.3. There exists a unique pair (uε, pε) ∈ Hε × L2
0(Ω) solution of

(2.29)–(2.30).

Proof. As H1
0 (Ω) is obviously included in Hε, the following inf-sup condition

is easily satisfied by bε:

∃Cε
1 > 0 such that inf

q∈L2

0
(Ω)

sup
v∈Hε

bε(q, v)

|v|Hε
|q|L2

0
(Ω)

≥ Cε
1 .

The positivity conditions (2.24) and (2.25) imply that

∃Cε
2 > 0 such that aε(v, v) ≥ Cε

2 |v|
2
Hε
, ∀v ∈ Hε,

that is the Vε-ellipticity of aε. As we also have

Vε = {v ∈ Hε, bε(q, v) = 0, ∀q ∈ L2
0(Ω)}, (2.31)

the proof is completed by Corollary 4.1, Ch. 1 of [11].

In the rest of the paper we shall study the asymptotic behaviour (when
ε→ 0) of (uε, pε), the unique solution of (2.29)–(2.30).

As Aε defined by (2.23) is of ε0-order, we assume that

∃A ∈ L∞

per(Y )N2

such that Aε(x) = A
(x

ε

)

, x ∈ Ω (2.32)

∃g ∈ L2(Ω)N such that gε → g strongly in L2(Ω). (2.33)
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Because |Γε| is of ε−1-order, we expect that macroscopic effects of the
Beavers-Joseph condition will appear only when αεβε is of ε1-order (see [15]).
Therefore, we shall work under the hypothesis:

∃α ∈ C1
per(Y ) and α0 > 0 such that ε−1βεαε(x) = α

(x

ε

)

≥ α0, x ∈ Ω. (2.34)

Thus, for the study of the asymptotic behaviour it remains only the order
of βε to be taken into account.

In the sequel we shall study the case when βε is of unity order. Without
loss of generality we can consider from now on that

∃β > 0 such that βε = β, ∀ε > 0. (2.35)

3. A priori estimates and two-scale convergences

From now on, for any function ϕ defined on Ω × Y we shall use the
notations

ϕh = ϕ|Ω×Yh
, ϕ̃h =

1

|Yh|

∫

Yh

ϕ(·, y)dy, h ∈ {s, f}, (3.1)

ϕ̃ =

∫

Y

ϕ(·, y)dy, that is ϕ̃ = (1 −m)ϕ̃s +mϕ̃f . (3.2)

Also, for any sequence (ϕε)ε, bounded in L2(Ω × Y ), we denote

ϕε 2
⇀ ϕ

iff ϕε is two-scale convergent to ϕ ∈ L2(Ω × Y ) in the sense of [3].
As usual, the asymptotic study starts by the search of a priori estimations.
Noticing that uε ∈ Vε and setting v = uε in (2.29) we get

|uε|2Hε
≤ C|uε|L2(Ω) (3.3)

Applying (2.22) we find that

{uε}ε is bounded in Vε and in V0(div,Ω). (3.4)

|uε|H1(Ωεf ) ≤ C, C being independent of ε (3.5)

It follows that ∃u ∈ L2(Ω × Y )N such that, on some subsequence

uε 2
⇀ u (3.6)
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uε ⇀

∫

Y

u(·, y)dy ∈ V0(div,Ω) weakly in L2(Ω)N (3.7)

Denoting χεf (x) = χf

(x

ε

)

and χεs(x) = χs

(x

ε

)

, where χf and χs are

the characteristic functions of Yf and Ys in Y , we see that (χεsu
ε)ε, (χεfu

ε)ε

and

(

χεf
∂uε

∂xi

)

ε

are bounded in (L2(Ω))N , ∀i ∈ {1, 2, · · · , N}.

Using the compacity result of [16], it follows that ∃ηi ∈ L2(Ω× Y )N such
that, on some subsequence of (3.6)–(3.7) convergences, we have also

uε 2
⇀ u (3.8)

χεf∇u
ε
i

2
⇀ ηi (3.9)

Denoting by

H̃1
per(Yf ) = {ϕ ∈ H1

loc(R
N
f ), ϕ is Y -periodic,

∫

Yf

ϕ = 0} (3.10)

we can present a first result.

Lemma 3.1. uf = ũf ∈ H1
0 (Ω)N and there exists w ∈ L2(Ω, (H̃1

per(Yf ))
N)

such that
ηi = χf

(

∇uf
i + ∇ywi

)

(3.11)

Proof. Let ψ ∈ D(Ω, C∞

per(Yf )) with

∫

Y

ψ = 0 in Ω. Let us consider ϕ ∈

D(Ω, H1
per(Yf )

N) satisfying

divyϕ = ψ in Ω × Yf (3.12)

ϕ ν = 0 in Ω × Γ. (3.13)

Defining ϕε(x) = ϕ
(

x,
x

ε

)

we find that ϕε ∈ H1(Ωεf )
N and γε

νϕ
ε = 0 on Γε.

As uε ∈ H1(Ωεf )
N with uε = 0 on ∂Ω ∩ ∂Ωεf it follows

∫

Ωεf

uε(x)ψ
(

x,
x

ε

)

dx =

= −ε

∫

Ωεf

∂uε

∂xi

(x)ϕi

(

x,
x

ε

)

dx− ε

∫

Ωεf

uε(x)(divxϕ)
(

x,
x

ε

)

dx. (3.14)
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Passing at the limit on the subsequence on which (3.6)–(3.9) hold, we find
∫

Ω×Yf

u(x, y)ψ(x, y)dxdy = 0. (3.15)

It follows that ∃v ∈ L2(Ω)N such that uf = v and hence

χεfu
ε ⇀ muf weakly in L2(Ω)N . (3.16)

But from Lemma A.3 [4] we know that ∃v̂ ∈ H1
0 (Ω) such that, by extracting

a subsequence of (3.16) we have

χεfu
ε ⇀ mv̂ weakly in L2(Ω)N , (3.17)

that is uf = v̂ ∈ H1
0 (Ω).

It remains to prove (3.11). First, we remark that ηi|Ω×Ys
= 0.

Let us introduce

V per
0 (div, Yf ) = {ϕ ∈ Hloc(div,RN

f ), divyϕ = 0 in RN
f ,

ϕ · ν = 0 on Γ, ϕ is Y -periodic}. (3.18)

In the classical way (see Th.2.7, Ch.I [11]), we find that the orthogonal space
of V per

0 (div, Yf ) in L(Ω × Y ) is:

∇H̃1
per(Yf ) = {∇q, q ∈ H̃1

per(Yf )} (3.19)

Let ψ ∈ L2(Ω, V per
0 (div, Yf )); denoting ψε(x) = ψ

(

x,
x

ε

)

, we have

ψε ∈ H1(Ωεf )
N and ψενε = 0 on Γε (3.20)

∫

Ωεf

∇uε
i (x)ψ

ε(x)dx = −

∫

Ωεf

uε
i (x)(divxψ)

(

x,
x

ε

)

dx. (3.21)

Using the two-scale convergences (3.6)–(3.9) we find
∫

Ω×Yf

ηi(x, y)ψ(x, y)dxdy = −

∫

Ω

uf (x)divx

(

∫

Yf

ψ(x, y)dy

)

dx =

=

∫

Ω×Yf

∇uf
i (x)ψ(x, y)dxdy (3.22)

which yields (ηi −∇uf
i ) ∈ L2(Ω,∇H̃1

per(Yf )) for any i ∈ {1, . . . , N} and the
proof is completed.

In the following, we sum the convergence results obtained until now.
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Theorem 3.2. There exist w ∈ L2(Ω, H̃1
per(Yf )

N) and u ∈ L2(Ω, V per
0 (div, Yf ))

with uf ∈ H1
0 (Ω) such that the following convergences hold on some subse-

quence:

uε 2
⇀ u (3.23)

χεf∇u
ε
i

2
⇀ χf (∇u

f
i + ∇ywi), ∀i (3.24)

Moreover, we have
γnũ

s = 0 on ∂Ω (3.25)

(1 −m) divũs +m divuf = 0 in Ω (3.26)

divyu = 0 in Ω × Y (3.27)

divyw + divuf = 0 in Ω × Yf (3.28)

where γn denotes the normal trace on ∂Ω.

Proof. The convergences (3.23)–(3.24) are straight consequences of (3.8)–
(3.9) and Lemma 3.1. The properties (3.25)–(3.26) follow from (3.7).
Now let ϕ ∈ D(Ω, H1

per(Y )) with

ϕ = 0 in Ω × Yf . (3.29)

Defining ϕε(x) = ϕ
(

x,
x

ε

)

, we notice that ϕε ∈ D(Ω) and hence

0 = ε

∫

Ω

uε∇ϕε(x)dx =

=

∫

Ω

uε(x)(∇yϕ)
(

x,
x

ε

)

dx+ ε

∫

Ω

uε(x)(∇xϕ)
(

x,
x

ε

)

dx. (3.30)

Using (3.23), we pass to the limit and get
∫

Ω×Ys

u(x, y)∇yϕ(x, y)dxdy = 0. (3.31)

Hence, we have since now:

divyu
s = 0 in Ω × Ys and divyu

f = 0 in Ω × Yf .

Let ϕ ∈ D(Ω, H1
per(Y )). Denoting

ϕε(x) = εϕ
(

x,
x

ε

)

for a.e. x ∈ Ω, (3.32)
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we get ϕε ∈ H1
0 (Ω). As uε ∈ Vε, we easily obtain

∫

Ω

(χεsu
ε)(x)(∇yϕ)

(

x,
x

ε

)

dx+

∫

Ω

(χεfu
ε)(x)(∇yϕ)

(

x,
x

ε

)

dx = O(ε) (3.33)

Using (3.23) we find that
∫

Ω×Ys

u(x, y)(∇yϕ)(x, y)dxdy +

∫

Ω×Yf

v(x)(∇yϕ)(x, y)dxdy = 0 (3.34)

which implies
∫

Ω×Γ

(γνv − γνu)ϕ = 0 (3.35)

where γν denotes the normal trace on Γ; the property (3.27) is proved.
The property (3.28) can be proved similarly.

Theorem 3.3. There exists p ∈ L2
0(Ω×Y ) with ps = p̃s ∈ H1(Ω), such that

on some subsequence we have

pε 2
⇀ p. (3.36)

Proof. As pε ∈ L2
0(Ω), it follows that there exists ϕε ∈ H1

0 (Ω)N such that

divϕε = pε in Ω (3.37)

|∇ϕε|L2(Ω) ≤ C|pε|L2(Ω) with C independent of ε. (3.38)

For any ϕ ∈ H1
0 (Ω)N , we have like in [10]:

ε1/2|ϕ|L2(Γε) ≤ C
(

ε|∇ϕ|L2(Ωεf ) + |ϕ|L2(Ωεf )

)

. (3.39)

Combining it with (2.22) we get, via (3.39):

ε1/2|γεϕε − (γε
νϕ

ε)νε|L2(Γε) ≤ C|∇ϕε|L2(Ωεf ) ≤ C|pε|L2(Ω). (3.40)

Then, puting v = ϕε in (2.29) we obtain immediately

|pε|L2(Ω) ≤ C, for some C > 0 independent of ε. (3.41)

Using the compacity result of [16], we find that there exists p ∈ L2
0(Ω × Y )

such that the convergence (3.36) holds on some subsequence.
Now, choosing v ∈ Hε in (2.29) with v = 0 in Ωεf , we get

−∇pεs = Aεuε − gε in Ωεs, (3.42)

that is, (χεsp
εs)ε is bounded in H1(Ω). Then, by standard procedures we

prove that ps = p̃s ∈ H1(Ω) and the proof is completed.
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4. The two-scale homogenized problem

Now, we introduce the so-called two-scale homogenized problem, verified
by the limits u, w and p, given by Theorems 3.2–3.3. By proving that this
problem is well-posed, it turns that all the convergences in Theorems 3.2–3.3
and so forth hold on the entire sequence. We concludethat the asymptotic
behaviour of ((uε, wε), pε) is completely described by ((u,w), p), the unique
solution of the homogenized problem.

Denoting

H={u ∈ L2(Ω × Y ), uf = ũf ∈ H1
0 (Ω)N , ũ ∈ H0(div,Ω),

divyu = 0 in Ω × Y } (4.1)

V = {u ∈ H, divũ = 0}

we introduce the Hilbert space

X = H × L2(Ω, H̃1
per(Yf )

N) (4.2)

endowed with the scalar product:

((u,w), (v, z))X =

∫

Ω×Ys

u v+

∫

Ω

divũ divṽ+

∫

Ω×Yf

(e(u)+ey(w))(e(v)+ey(z)).

The last associated spaces are:

M = {q ∈ L2
0(Ω, L

2
per(Y )), qs = q̃s ∈ H1(Ω)}

X0 = {(u,w) ∈ X, divũ = 0 in Ω, divyw + divuf = 0 in Ω × Yf}

The two-scale homogenized problem is the following:
To find (v, z) ∈ X and q ∈M such that

a((v, z), (ϕ, ψ)) + b(q, (ϕ, ψ)) =

∫

Ω

gϕ̃, ∀(ϕ, ψ) ∈ X (4.3)

b(π, (v, z)) = 0, ∀π ∈M (4.4)

where a and b are defined by

a((v, z), (ϕ, ψ)) =

∫

Ω×Ys

Av ϕ+ β2

∫

Ω×Yf

(e(v) + ey(z))(e(ϕ) + ey(ψ))+

12



+β

∫

Ω×Γ

α(γv − (γνv)ν)ϕ

b(π, (v, z)) =

∫

Ω×Y

π divxv −

∫

Ω×Γ

πs(z · ν) +

∫

Ω×Yf

πdivyz

Theorem 4.1. u, w and p introduced by the Theorems 3.2–3.3 form a pair
((u,w), p) ∈ X ×M which verifies the homogenized problem (4.3)–(4.4).

Proof. From Theorem 3.2 we see that (4.3) is readily verified.
Let ϕ ∈ D(Ω, C∞

per(Y ))N , ψ ∈ D(Ω, C∞

per(Yf ))
N such that (ϕ, ψ) ∈ X. Let ψ̂ a

prolongation of ψ to D(Ω, H̃per(div, Y )), which can be done, for instance, by
considering a certain Neumann problem in Ys. Denoting, as usual, ϕε(x) =

ϕ
(

x,
x

ε

)

and ψε(x) = ψ̂
(

x,
x

ε

)

, we can set v(x) = ϕε(x) + εψε(x) in (2.29).

Passing to the limit with ε → 0 and using the two-scale convergences of
Theorems 3.2–3.3, we obtain:

bε(p
ε, ϕε + εψε) → −

∫

Ω×Ys

p (divxϕ+ divyψ̂) −

∫

Ω×Yf

p (divxϕ+ divyψ) =

= b(p, (ϕ, ψ)),

where we have used also ps = p̃s and ψ̂s · ν = ψf · ν on Γ.
Next, we obtain:

aε(u
ε, ϕε + εψε) → a((u,w), (ϕ, ψ)),

all the convergences being straightforward, except the one involving Γε; we
present it here.
Let ϕ ∈ D(Ω)N ; for any i, j ∈ {1, 2, · · · , N}, there existsGij ∈ D(Ω, C1

per(Yf ))
such that

Gij(x, y) = (ϕi(x) − ϕk(x)νk(y)νi(y))νj(y) on Γ. (4.5)

This follows from the C1-property on Γ of the right-hand side of (4.5) and
from the smoothness of its prolongation with zero on ∂Yf . Thus, Gε

ij(·) =

Gij

(

·, ·

ε

)

∈ C1
0(Ωεf ) and we have

ε

∫

Γε

αε(γ
εuε − (γε

νu
ε)νε)γεϕ = ε

∫

∂Ωεf

αεG
ε
ij γ

εuε
i ν

ε
jdσ =

=

∫

Ωεf

∂(αGij)

∂yj

(

x,
x

ε

)

uε
i (x)dx+O(ε)
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→

∫

Ω

v(x)

(

∫

Yf

∂(αGij)

∂yj

(x, y)dy

)

dx =

∫

Ω×Γ

α γv (γϕ− (γνϕ)ν) (4.6)

and the proof is completed.

Let us introduce the so-called local solutions. Denoting

Vf = {ϕ ∈ (H1
per(Yf )/R)N , divyϕ = 0}, (4.7)

Kf = {ϕ ∈ (H1
per(Yf )/R)N , divyϕ = −1} (4.8)

we defineW kh ∈ Vf , k, h ∈ {1, 2, · · · , N} andW ∈ Kf as the unique solutions
of the problems:

∫

Yf

(

δikδjh + ey,ij(W
kh)
)

ey,ij(ψ) = 0, ∀ψ ∈ Vf . (4.9)

∫

Yf

ey(W )ey(ψ) = 0, ∀ψ ∈ Vf . (4.10)

The existence and uniqueness results for (4.9) are obtained by the Lax-
Milgram Theorem. In order to prove (4.10) we notice that W is the pro-
jection of 0 on the closed convex Kf 6= ∅ in (H1

per(Yf )/R)N and the result
follows.

Theorem 4.2. The problem (4.3)–(4.4) is well-posed.

Proof. Let q ∈ M ; as q̃ ∈ L2
0(Ω), there exists u0 ∈ H1

0 (Ω)N with the
properties

divu0 = q̃ (4.11)

∃c1 > 0 such that |u0|H1

0
(Ω)N ≤ c1|q̃|L2(Ω) (4.12)

Similarly, as qf − q̃f ∈ L2(Ω, L2
0(Yf )), there exists v0 ∈ L2(Ω, H1

0 (Yf )
N) with

the properties
divyv0 = qf − q̃f (4.13)

∃c2 > 0 such that |v0|L2(Ω,H1

0
(Yf )N ) ≤ c2|q

f − q̃f |L2(Ω×Yf ) (4.14)

Denoting w0 = (v0 + (q̃ − q̃f )W ) ∈ L2(Ω, H1
per(Yf )

N), where W is the local
solution defined by (4.10), we obtain

b(q, (u0, w0)) = |q|2L2(Ω×Y ) (4.15)
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|(u0, w0)|X ≤ C
(

|u0|H1

0
(Ω)N + |v0|L2(Ω,H1

0
(Yf )N ) + |q̃ − q̃f |L2(Ω)

)

≤

≤ C|q|2L2(Ω×Y ) (4.16)

and the inf-sup condition of b is obviously satisfied on M ×X.
We prove now that

X0 = {(u,w) ∈ X, b(q, (u,w)) = 0, ∀q ∈M}. (4.17)

If (u,w) ∈ X0, then for any q ∈M ,

b(q, (u,w)) =

∫

Ω×Ys

qsdivxu−

∫

Ω×Γ

qs(w · ν) =

=

∫

Ω

qs(1 −m)divũs −

∫

Ω

qs

∫

Yf

divyw =

∫

Ω

qsdivũ = 0.

Conversely, if (u,w) ∈ X with the property that b(q, (u,w)) = 0, ∀q ∈ M ,
then, choosing qs = 0 it follows that there exists C1 ∈ R such that

divuf + divw = C1 in Ω × Yf

and consequently

(1 −m)divũs −

∫

Γ

γνw = C1(1 −m) in Ω

(1 −m)divũs +mdivuf = C1 in Ω.

Integrating this last relation on Ω we finally get C1 = 0.
As we have

∫

Ω×Γ

α(γv − (γνv)ν)γv ≥ α0|γv − (γνv)ν|
2
L2(Ω×Γ) ≥ 0

the X0-ellipticity of a in X is obvious and the proof is completed by Corol-
lary 4.1, Ch.1 of [11].

By a straightforward test we have:

Theorem 4.3. If ((u,w), p) ∈ X is the solution of (4.3)–(4.4) then w is
uniquely determined with respect to uf ∈ H1

0 (Ω) by

w(x, y) = W ij(y)eij(u
f )(x) +W (y)divuf (x). (4.18)
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Finally, we eliminate w from (4.3)–(4.4) and find the corresponding clas-
sical homogenized problem verified by (u, ps) ∈ H × H̃1(Ω):

To find (u, ps) ∈ V × H̃1(Ω) such that

∫

Ω×Ys

Auϕ+B

∫

Ω

e(uf ) e(ϕf ) + C

∫

Ω

uf ϕf =

∫

Ω

(g−∇ps)ϕ̃, ∀ϕ ∈ H, (4.19)

where the so-called effective coefficients which appear in (4.19) are given by

λ =

∫

Yf

ey(W )ey(W ) > 0 (4.20)

Bijkh = β2

∫

Yf

(

δkiδhj + ey,ij(W
kh)
)

+ β2λδikδjh =

= β2

∫

Yf

(

δℓkδmh + ey,ℓm(W kh)
) (

δℓiδmj + ey,ℓm(W ij)
)

+ λβ2δikδjh. (4.21)

Cij = β

∫

Γ

α(y)(δij − νi(y)νj(y))dσy (4.22)

Remark 4.4. The tensor Bijkh is positive-definite and has the usual sym-
metry properties Bijkh = Bkhij = Bjikh. Also, we have to notice that

Cij

∫

Ω

ϕiϕj =

∫

Ω×Γ

α(γϕ− (γνϕ)ν)2 ≥ 0, ∀ϕ ∈ H1
0 (Ω)N . (4.23)
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