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We study a fluid flow traversing a porous medium and obeying the Darcy's law in the case when this medium is fractured in blocks by an ε-periodic (ε > 0) distribution of fissures filled with a Stokes fluid. These two flows are coupled by a Beavers-Joseph type interface condition. The existence and uniqueness of this flow in our ε-periodic structure are proved. As the small period of the distribution shrinks to zero, we study the asymptotic behaviour of the flow when the permeability and the entire contribution on the interface of the Beavers-Joseph transfer coefficients are of unity order. We find the homogenized problem verified by the two-scale limits of the coupled velocities and pressures. It is well-posed and provides the corresponding classical homogenized problem.

Introduction

One major achievement of homogenization theory was the mathematical justification of Darcy's law [START_REF] Tartar | Incompressible fluid flow in a porous medium. Convergence of the homogenization process[END_REF], considering the Stokes flow around an ε-periodic system of isolated solid obstacles. It was not until this nonconnectedness assumption could be dropped out that the homogenization of phenomena in fractured media could be studied (see [START_REF] Poliševski | On the homogenization of fluid flows through periodic media[END_REF], [START_REF] Allaire | Homogenization of the Stokes flow in a connected porous medium[END_REF] and [START_REF] Poliševski | Basic homogenization results for a biconnected ǫ-periodic structure[END_REF]). The models of fluid flows through fractured porous media(see [START_REF] Barenblatt | On basic conceptions of the theory of homogeneous fluids seepage in fractured rocks (in Russian)[END_REF], [START_REF] Barenblatt | Theory of Fluid Flows Through Natural Rocks[END_REF], [START_REF] Showalter | Micro-structure models of diffusion in fissured media[END_REF], [START_REF] Ene | Model of diffusion in partially fissured media[END_REF] and [START_REF] Poliševski | The Regularized Diffusion in Partially Fractured Porous Media[END_REF]) are usually obtained by asymptotic methods, from the alteration of a homogeneous porous medium by a distribution of microscopic fissures.

Here, as the process at the microscopic scale takes place under the assumption of ε-periodicity, the study of its asymptotic behaviour (when ε → 0) is amenable to the procedures of the homogenization theory. We are interested to which extent the Darcy's law, which is already a macroscopic approximation of a microscopic process, may be considered as existing besides the Stokes flow. The answer is brought in the form of an original model where we assume that the volumes of both media have the same order of magnitude.

Our study is devoted to the mathematical modelisation of the fractured material, namely, the slip boundary condition of Beavers-Joseph type is revisited in accordance with observed physical laws and the underlying arguments of the classical mathematical theory.

We consider an incompressible viscous fluid flow in a fractured porous media represented by a periodically structured domain consisting of two interwoven regions, separated by an interface. The first region represents the system of fissures which form the fracture, which is connected and where the flow is governed by the Stokes system. The second region, which is also connected, stands for the system of porous blocks, which have a certain permeability and where the flow is governed by Darcy's law. These two flows are coupled on the interface by the Saffman's variant [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF] of the Beavers-Joseph condition [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF], [START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF] which was confirmed by [START_REF] Jäger | Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] as the limit of a homogenization process. Besides the continuity of the normal component of the velocity, it imposes the proportionality of the tangential velocity with the tangential component of the viscous stress on the fluid-side of the interface. We prove here the existence and uniqueness of this flow in our ε-periodic structure.

The system is rescaled in such a way that it becomes relevant that apart ε the asymptotic behaviour depends also on two parameters, depending on the permeability of the porous blocks and on the Beavers-Joseph transfer coefficient. As the small period of the distribution shrinks to zero, we study the asymptotic behaviour of the flow when the permeability of the porous blocks is of unity order and the Beavers-Joseph transfer coefficient is of εorder, balancing the measure of the interface, which is of ε -1 -order. Our main result is the identification of the homogenized problem. It is a well-posed problem, verified by the two-scale limits of the velocity, Darcy's pressure and a second Stokes velocity responding for the microscopic exchange of mass through the interface. Finally, by eliminating the second Stokes velocity, we find the corresponding classical homogenized problem.

The paper is organized as follows.

In Section 2, we present the ε-periodic structure, set the corresponding problem and prove the existence and uniqueness of its weak solution. Section 3 is devoted to the a priori estimates, which serve as departure point for adapting the compacity results of the two-scale convergence theory (see [START_REF] Allaire | Homogenization and two-scale convergence[END_REF] and [START_REF] Lukkassen | Two-scale convergence[END_REF]).

In Section 4 we find the so-called two-scale homogenized problem. We prove that it is a well-posed problem. As a corollary, we get the corresponding classical homogenized problem.

The flow through the ε-periodic structure

Let Ω be an open connected bounded set in R N (N ≥ 2), locally located on one side of the boundary ∂Ω, a Lipschitz manifold composed of a finite number of connected components.

Let Y f be a Lipschitz open connected subset of the unit cube Y =]0, 1[ N , such that the intersections of ∂Y f with ∂Y are reproduced identically on the opposite faces of the cube and 0 / ∈ Y f . The outward normal on ∂Y f is denoted by ν. Repeating Y by periodicity, we assume that the reunion of all the Ȳf parts, denoted by R N f , is a connected domain in R N with a boundary of class C 2 . Defining Y s = Y \ Y f , we assume also that the reunion of all the Ȳs parts is a connected domain in R N .

For any ε ∈]0, 1[ we denote

Z ε = {k ∈ Z N , εk + εY ⊆ Ω} (2.1)
I ε = {k ∈ Z ε , εk ± εe i + εY ⊆ Ω, ∀i ∈ 1, N } (2.2)
where e i are the unit vectors of the canonical basis in R N . Finally, we define the system of fissures by

Ω εf = int ∪ k∈Iε (εk + ε Ȳf ) (2.3)
and the porous matrix of our structure by Ω εs = Ω\ Ωεf . The interface between the porous blocks and the fluid is denoted by Γ ε = ∂Ω εf . Its normal is:

ν ε (x) = ν x ε , x ∈ Γ ε (2.4)
where ν has been periodically extended to R N . Let us remark that Ω εs and Ω εf are connected and that the fracture ratio of this structure is given by

m = |Y f | ∈]0, 1[, as |Ω εf | |Ω| → m when ε → 0. (2.5)
To the previous structure we associate a model of fluid flow through a fractured porous medium by assuming that there is a filtration flow in Ω εs obeying the Darcy's law and that there is a viscous flow in Ω εf governed by the Stokes system. These two flows are coupled by a Saffman's variant [START_REF] Saffman | On the boundary condition at the interface of a porous medium[END_REF] of the Beavers-Joseph condition [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF], [START_REF] Jones | Low Reynolds number flow past a porous spherical shell[END_REF]. This system is completed by an impermeability condition on ∂Ω:

divv εs = 0 in Ω εs (2.6)
µ ε v εs = K ε (g ε -∇p εs ) in Ω εs , (2.7 
)

divv εf = 0 in Ω εf , (2.8) 
σ ε ij = -p εf δ ij + 2µ ε e ij (v εf ) in Ω εf (2.9) - ∂ ∂x j σ ε ij = g ε i in Ω εf (2.10) v εs • ν ε = v εf • ν ε on Γ ε , (2.11) 
-p εs ν ε i -σ ε ij ν ε j = α ε µ ε (T rK ε ) -1/2 (v εf i -(v εf • ν ε )ν ε i ) on Γ ε , (2.12 
)

v εs • n = 0 on ∂Ω, n the outward normal on ∂Ω, (2.13) 
where v εs , v εf and p εs , p εf stand for the corresponding velocities and pressures, µ ε > 0 is the viscosity of the fluid, K ε ∈ L ∞ (Ω) N ×N is the positivelydefined tensor of permeability, α ε ∈ L ∞ (Ω) is the positive non-dimensional Beavers-Joseph number, g ε ∈ L 2 (Ω) N is the exterior force and e(v) denotes the symmetric tensor of the velocity gradient defined by

e ij (v) = 1 2 
∂v i ∂x j + ∂v j ∂x i .
As usual, we use the notations:

H 0 (div, Ω) = {v ∈ H(div, Ω), v • ν = 0 on ∂Ω} (2.14) L 2 0 (Ω) = {p ∈ L 2 (Ω), Ω p = 0} (2.15) V 0 (div, Ω) = {v ∈ H 0 (div, Ω), divv = 0 in Ω} (2.16)
Next, we define

H ε = {v ∈ H 0 (div, Ω), v ∈ H 1 (Ω εf ) N }, (2.17) 
the Hilbert space endowed with the scalar product

(u, v) Hε = Ωεs uv + Ωεs divu divv + Ω εf e(u)e(v) + ε Γε (γ ε u -(γ ε ν u)ν ε )γ ε v (2.18)
where γ ε and γ ε ν denote respectively the trace and the normal trace operators on Γ ε with respect to Ω εf . Its corresponding subspace of incompressible velocities is

V ε = {v ∈ V 0 (div, Ω), v ∈ H 1 (Ω εf ) N } (2.19)
A useful property of the present structure is the existence of a bounded extension operator similar to that introduced in [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF], [START_REF] Conca | On the application of the homogenization theory to a class of problems arising in fluid mechanics[END_REF] and [START_REF] Allaire | Homogenization of the Navier-Stokes Equations with a Slip Boundary Condition[END_REF] in the case of isolated fractures.

Theorem 2.1. There exists an extension operator

P ε : H 1 (Ω εf ) → H 1 (Ω) such that P ε u = u in Ω εf (2.20) |e(P ε u)| L 2 (Ω) ≤ C|e(u)| L 2 (Ω εf ) , ∀u ∈ H 1 (Ω εf ) (2.21)
where C is independent of ε.

A straightforward consequence, via the corresponding Korn inequality, is Lemma 2.2. There exists some constant C > 0, independent of ε, such that

|u| H 1 (Ω εf ) ≤ C|u| Hε , ∀u ∈ H ε . (2.22) Denoting A ε = (T rK ε )(K ε ) -1 , (2.23) 
β ε = (T rK ε ) 1/2 > 0 (2.24)
and using the positivity of K ε , we can assume without loss of genenerality that

∃a 0 > 0 such that A ε ij (•) ξ i ξ j ≥ a 0 |ξ| 2 , ∀ξ ∈ R N , a.e. in Ω. (2.

25) Rescaling the velocity by

u ε =    u εs in Ω εs u εf in Ω εf = µ ε (T rK ε )    v εs in Ω εs v εf in Ω εf (2.26)
then, for any u, v ∈ H ε and q ∈ L 2 0 (Ω), we define

a ε (u, v) = Ωεs A ε uv + β 2 ε Ω εf e(u)e(v) + β ε Γε α ε (γ ε u -(γ ε ν u)ν ε )γ ε v (2.27) b ε (q, v) = - Ω q divv. (2.28)
We see that if the pair (u ε , p ε ) is a smooth solution of the problem (2.6)-(2.13), then it is also a solution of the following problem: To find (u

ε , p ε ) ∈ H ε × L 2 0 (Ω) such that a ε (u ε , v) + b ε (p ε , v) = Ω g ε v, ∀v ∈ H ε (2.29) b ε (q, u ε ) = 0, ∀q ∈ L 2 0 (Ω) (2.30) Theorem 2.3. There exists a unique pair (u ε , p ε ) ∈ H ε × L 2 0 (Ω) solution of (2.

29)-(2.30).

Proof. As H 1 0 (Ω) is obviously included in H ε , the following inf-sup condition is easily satisfied by b ε :

∃C ε 1 > 0 such that inf q∈L 2 0 (Ω) sup v∈Hε b ε (q, v) |v| Hε |q| L 2 0 (Ω) ≥ C ε 1 .
The positivity conditions (2.24) and (2.25) imply that

∃C ε 2 > 0 such that a ε (v, v) ≥ C ε 2 |v| 2 Hε , ∀v ∈ H ε , that is the V ε -ellipticity of a ε .
As we also have

V ε = {v ∈ H ε , b ε (q, v) = 0, ∀q ∈ L 2 0 (Ω)}, (2.31) 
the proof is completed by Corollary 4.1, Ch. 1 of [START_REF] Girault | Raviart Finite Element Methods for Navier-Stokes Equations[END_REF].

In the rest of the paper we shall study the asymptotic behaviour (when ε → 0) of (u ε , p ε ), the unique solution of (2.29)-(2.30).

As A ε defined by (2.23) is of ε 0 -order, we assume that

∃A ∈ L ∞ per (Y ) N 2 such that A ε (x) = A x ε , x ∈ Ω (2.32) ∃g ∈ L 2 (Ω) N such that g ε → g strongly in L 2 (Ω). (2.33) Because |Γ ε | is of ε -1
-order, we expect that macroscopic effects of the Beavers-Joseph condition will appear only when α ε β ε is of ε 1 -order (see [START_REF] Neuss-Radu | Some extensions of two-scale convergence[END_REF]). Therefore, we shall work under the hypothesis:

∃α ∈ C 1 per (Y ) and α 0 > 0 such that ε -1 β ε α ε (x) = α x ε ≥ α 0 , x ∈ Ω. (2.34)
Thus, for the study of the asymptotic behaviour it remains only the order of β ε to be taken into account.

In the sequel we shall study the case when β ε is of unity order. Without loss of generality we can consider from now on that ∃β > 0 such that β ε = β, ∀ε > 0.

(2.35)

A priori estimates and two-scale convergences

From now on, for any function ϕ defined on Ω × Y we shall use the notations

ϕ h = ϕ| Ω×Y h , φh = 1 |Y h | Y h ϕ(•, y)dy, h ∈ {s, f }, (3.1) φ 
= Y ϕ(•, y)dy, that is φ = (1 -m) φs + m φf . (3.2)
Also, for any sequence (ϕ ε ) ε , bounded in L 2 (Ω × Y ), we denote

ϕ ε 2 ⇀ ϕ iff ϕ ε is two-scale convergent to ϕ ∈ L 2 (Ω × Y ) in the sense of [3].
As usual, the asymptotic study starts by the search of a priori estimations. Noticing that u ε ∈ V ε and setting v = u ε in (2.29) we get

|u ε | 2 Hε ≤ C|u ε | L 2 (Ω) (3.3) 
Applying (2.22) we find that

{u ε } ε is bounded in V ε and in V 0 (div, Ω). (3.4) |u ε | H 1 (Ωε f ) ≤ C, C being independent of ε (3.5)
It follows that ∃u ∈ L 2 (Ω × Y ) N such that, on some subsequence

u ε 2 ⇀ u (3.6) u ε ⇀ Y u(•, y)dy ∈ V 0 (div, Ω) weakly in L 2 (Ω) N (3.7) Denoting χ εf (x) = χ f x ε and χ εs (x) = χ s x ε
, where χ f and χ s are the characteristic functions of Y f and Y s in Y , we see that (

χ εs u ε ) ε , (χ εf u ε ) ε and χ εf ∂u ε ∂x i ε are bounded in (L 2 (Ω)) N , ∀i ∈ {1, 2, • • • , N }.
Using the compacity result of [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], it follows that ∃η i ∈ L 2 (Ω × Y ) N such that, on some subsequence of (3.6)-(3.7) convergences, we have also

u ε 2 ⇀ u (3.8) χ εf ∇u ε i 2 ⇀ η i (3.9)
Denoting by

H1 per (Y f ) = {ϕ ∈ H 1 loc (R N f ), ϕ is Y -periodic, Y f ϕ = 0} (3.10)
we can present a first result.

Lemma 3.1. u f = ũf ∈ H 1 0 (Ω) N and there exists w ∈ L 2 (Ω, ( H1 It follows that ∃v ∈ L 2 (Ω) N such that u f = v and hence

per (Y f )) N ) such that η i = χ f ∇u f i + ∇ y w i (3.11) Proof. Let ψ ∈ D(Ω, C ∞ per (Y f )) with Y ψ = 0 in Ω. Let us consider ϕ ∈ D(Ω, H 1 per (Y f ) N ) satisfying div y ϕ = ψ in Ω × Y f (3.12) ϕ ν = 0 in Ω × Γ. (3.13) Defining ϕ ε (x) = ϕ x, x ε we find that ϕ ε ∈ H 1 (Ω εf ) N and γ ε ν ϕ ε = 0 on Γ ε . As u ε ∈ H 1 (Ω εf ) N with u ε = 0 on ∂Ω ∩ ∂Ω εf it follows Ωε f u ε (x)ψ x, x ε dx = = -ε Ωε f ∂u ε ∂x i (x)ϕ i x, x ε dx -ε Ωε f u ε (x)(div x ϕ) x, x ε dx. ( 3 
χ εf u ε ⇀ mu f weakly in L 2 (Ω) N . (3.16)
But from Lemma A.3 [START_REF] Allaire | Homogenization of the Neumann problem with non-isolated holes[END_REF] we know that ∃v ∈ H 1 0 (Ω) such that, by extracting a subsequence of (3.16) we have

χ εf u ε ⇀ mv weakly in L 2 (Ω) N , (3.17) 
that is u f = v ∈ H 1 0 (Ω). It remains to prove (3.11). First, we remark that η i | Ω×Ys = 0. Let us introduce

V per 0 (div, Y f ) = {ϕ ∈ H loc (div, R N f ), div y ϕ = 0 in R N f , ϕ • ν = 0 on Γ, ϕ is Y -periodic}. (3.18)
In the classical way (see Th.2.7, Ch.I [START_REF] Girault | Raviart Finite Element Methods for Navier-Stokes Equations[END_REF]), we find that the orthogonal space of

V per 0 (div, Y f ) in L ( Ω × Y ) is: ∇ H1 per (Y f ) = {∇q, q ∈ H1 per (Y f )} (3.19) Let ψ ∈ L 2 (Ω, V per 0 (div, Y f )); denoting ψ ε (x) = ψ x,
x ε , we have

ψ ε ∈ H 1 (Ω εf ) N and ψ ε ν ε = 0 on Γ ε (3.20) Ωε f ∇u ε i (x)ψ ε (x)dx = - Ωε f u ε i (x)(div x ψ) x, x ε dx. (3.21)
Using the two-scale convergences (3.6)-(3.9) we find

Ω×Y f η i (x, y)ψ(x, y)dxdy = - Ω u f (x)div x Y f ψ(x, y)dy dx = = Ω×Y f ∇u f i (x)ψ(x, y)dxdy (3.22) which yields (η i -∇u f i ) ∈ L 2 (Ω, ∇ H1 per (Y f ))
for any i ∈ {1, . . . , N } and the proof is completed.

In the following, we sum the convergence results obtained until now.

Theorem 3.2. There exist

w ∈ L 2 (Ω, H1 per (Y f ) N ) and u ∈ L 2 (Ω, V per 0 (div, Y f )) with u f ∈ H 1 0
(Ω) such that the following convergences hold on some subsequence:

u ε 2 ⇀ u (3.23) χ εf ∇u ε i 2 ⇀ χ f (∇u f i + ∇ y w i ), ∀i (3.24)
Moreover, we have

γ n ũs = 0 on ∂Ω (3.25) (1 -m) divũ s + m divu f = 0 in Ω (3.26) div y u = 0 in Ω × Y (3.27) div y w + divu f = 0 in Ω × Y f (3.28)
where γ n denotes the normal trace on ∂Ω. 

= ε Ω u ε ∇ϕ ε (x)dx = = Ω u ε (x)(∇ y ϕ) x, x ε dx + ε Ω u ε (x)(∇ x ϕ) x, x ε dx. ( 3 
div y u s = 0 in Ω × Y s and div y u f = 0 in Ω × Y f . Let ϕ ∈ D(Ω, H 1 per (Y )). Denoting ϕ ε (x) = εϕ x, x ε for a.e. x ∈ Ω, (3.32)
we get ϕ ε ∈ H 1 0 (Ω). As u ε ∈ V ε , we easily obtain

Ω (χ εs u ε )(x)(∇ y ϕ) x, x ε dx + Ω (χ εf u ε )(x)(∇ y ϕ) x, x ε dx = O(ε) (3.33)
Using (3.23) we find that Ω×Ys u(x, y)(∇ y ϕ)(x, y)dxdy

+ Ω×Y f v(x)(∇ y ϕ)(x, y)dxdy = 0 (3.34) which implies Ω×Γ (γ ν v -γ ν u)ϕ = 0 (3.35)
where γ ν denotes the normal trace on Γ; the property (3.27) is proved.

The property (3.28) can be proved similarly.

Theorem 3.3. There exists p ∈ L 2 0 (Ω × Y ) with p s = ps ∈ H 1 (Ω), such that on some subsequence we have

p ε 2 ⇀ p. (3.36) 
Proof. As p ε ∈ L 2 0 (Ω), it follows that there exists

ϕ ε ∈ H 1 0 (Ω) N such that divϕ ε = p ε in Ω (3.37) |∇ϕ ε | L 2 (Ω) ≤ C|p ε | L 2 (Ω) with C independent of ε. (3.38) 
For any ϕ ∈ H 1 0 (Ω) N , we have like in [START_REF] Ene | Model of diffusion in partially fissured media[END_REF]:

ε 1/2 |ϕ| L 2 (Γε) ≤ C ε|∇ϕ| L 2 (Ωε f ) + |ϕ| L 2 (Ωε f ) . (3.39) 
Combining it with (2.22) we get, via (3.39):

ε 1/2 |γ ε ϕ ε -(γ ε ν ϕ ε )ν ε | L 2 (Γε) ≤ C|∇ϕ ε | L 2 (Ωε f ) ≤ C|p ε | L 2 (Ω) . (3.40) 
Then, puting v = ϕ ε in (2.29) we obtain immediately

|p ε | L 2 (Ω) ≤ C, for some C > 0 independent of ε. (3.41)
Using the compacity result of [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], we find that there exists p ∈ L 2 0 (Ω × Y ) such that the convergence (3.36) holds on some subsequence. Now, choosing v ∈ H ε in (2.29) with v = 0 in Ω εf , we get

-∇p εs = A ε u ε -g ε in Ω εs , (3.42) 
that is, (χ εs p εs ) ε is bounded in H 1 (Ω). Then, by standard procedures we prove that p s = ps ∈ H 1 (Ω) and the proof is completed.

The two-scale homogenized problem

Now, we introduce the so-called two-scale homogenized problem, verified by the limits u, w and p, given by Theorems 3.2-3.3. By proving that this problem is well-posed, it turns that all the convergences in Theorems 3.2-3.3 and so forth hold on the entire sequence. We concludethat the asymptotic behaviour of ((u ε , w ε ), p ε ) is completely described by ((u, w), p), the unique solution of the homogenized problem.

Denoting

H = {u ∈ L 2 (Ω × Y ), u f = ũf ∈ H 1 0 (Ω) N , ũ ∈ H 0 (div, Ω), div y u = 0 in Ω × Y } (4.1) V = {u ∈ H, divũ = 0}
we introduce the Hilbert space

X = H × L 2 (Ω, H1 per (Y f ) N ) (4.2) 
endowed with the scalar product:

((u, w), (v, z)) X = Ω×Ys u v+ Ω divũ divṽ+ Ω×Y f
(e(u)+e y (w))(e(v)+e y (z)).

The last associated spaces are:

M = {q ∈ L 2 0 (Ω, L 2 per (Y )), q s = qs ∈ H 1 (Ω)} X 0 = {(u, w) ∈ X, divũ = 0 in Ω, div y w + divu f = 0 in Ω × Y f }
The two-scale homogenized problem is the following: To find (v, z) ∈ X and q ∈ M such that Proof. From Theorem 3.2 we see that (4.3) is readily verified.

a((v, z), (ϕ, ψ)) + b(q, (ϕ, ψ)) = Ω g φ, ∀(ϕ, ψ) ∈ X (4.3) b(π, (v, z)) = 0, ∀π ∈ M (4.
Let ϕ ∈ D(Ω, C ∞ per (Y )) N , ψ ∈ D(Ω, C ∞ per (Y f )) N such that (ϕ, ψ) ∈ X.
Let ψ a prolongation of ψ to D(Ω, Hper (div, Y )), which can be done, for instance, by considering a certain Neumann problem in Y s . Denoting, as usual, ϕ ε (x) = ϕ x, x ε and ψ ε (x) = ψ x, x ε , we can set v(x) = ϕ ε (x) + εψ ε (x) in (2.29). Passing to the limit with ε → 0 and using the two-scale convergences of Theorems 3.2-3.3, we obtain:

b ε (p ε , ϕ ε + εψ ε ) → - Ω×Ys p (div x ϕ + div y ψ) - Ω×Y f p (div x ϕ + div y ψ) = = b(p, (ϕ, ψ)),
where we have used also p s = ps and ψs • ν = ψ f • ν on Γ. Next, we obtain:

a ε (u ε , ϕ ε + εψ ε ) → a((u, w), (ϕ, ψ)),
all the convergences being straightforward, except the one involving Γ ε ; we present it here. Let ϕ ∈ D(Ω) N ; for any i, j ∈ {1, 2,

• • • , N }, there exists G ij ∈ D(Ω, C 1 per (Y f )) such that G ij (x, y) = (ϕ i (x) -ϕ k (x)ν k (y)ν i (y))ν j (y) on Γ. (4.5)
This follows from the C 1 -property on Γ of the right-hand side of (4.5) and from the smoothness of its prolongation with zero on ∂Y f . Thus,

G ε ij (•) = G ij •, • ε ∈ C 1 0 (Ω εf ) and we have ε Γε α ε (γ ε u ε -(γ ε ν u ε )ν ε )γ ε ϕ = ε ∂Ωε f α ε G ε ij γ ε u ε i ν ε j dσ = = Ωε f ∂(αG ij ) ∂y j x, x ε u ε i (x)dx + O(ε) → Ω v(x) Y f ∂(αG ij ) ∂y j (x, y)dy dx = Ω×Γ α γv (γϕ -(γ ν ϕ)ν) (4.6)
and the proof is completed.

Let us introduce the so-called local solutions. Denoting

V f = {ϕ ∈ (H 1 per (Y f )/R) N , div y ϕ = 0}, (4.7) 
K f = {ϕ ∈ (H 1 per (Y f )/R) N , div y ϕ = -1} (4.8) we define W kh ∈ V f , k, h ∈ {1, 2, • • • , N } and W ∈ K f as the unique solutions of the problems: Y f δ ik δ jh + e y,ij (W kh ) e y,ij (ψ) = 0, ∀ψ ∈ V f . (4.9) Y f e y (W )e y (ψ) = 0, ∀ψ ∈ V f . (4.10) 
The existence and uniqueness results for (4.9) are obtained by the Lax-Milgram Theorem. In order to prove (4.10) we notice that W is projection of 0 on the closed convex K f = ∅ in (H 1 per (Y f )/R) N and the result follows. Proof. Let q ∈ M ; as q ∈ L 2 0 (Ω), there exists u 0 ∈ H 1 0 (Ω) N with the properties divu 0 = q (4.11)

∃c 1 > 0 such that |u 0 | H 1 0 (Ω) N ≤ c 1 |q| L 2 (Ω) (4.12)
Similarly, as

q f -qf ∈ L 2 (Ω, L 2 0 (Y f )), there exists v 0 ∈ L 2 (Ω, H 1 0 (Y f ) N ) with the properties div y v 0 = q f -qf (4.13) ∃c 2 > 0 such that |v 0 | L 2 (Ω,H 1 0 (Y f ) N ) ≤ c 2 |q f -qf | L 2 (Ω×Y f ) (4.14) Denoting w 0 = (v 0 + (q -qf ) W ) ∈ L 2 (Ω, H 1 per (Y f ) N )
, where W is the local solution defined by (4.10), we obtain b(q, (u 0 , w

0 )) = |q| 2 L 2 (Ω×Y ) (4.15) |(u 0 , w 0 )| X ≤ C |u 0 | H 1 0 (Ω) N + |v 0 | L 2 (Ω,H 1 0 (Y f ) N ) + |q -qf | L 2 (Ω) ≤ ≤ C|q| 2 L 2 (Ω×Y ) (4.16)
and the inf-sup condition of b is obviously satisfied on M × X. We prove now that X 0 = {(u, w) ∈ X, b(q, (u, w)) = 0, ∀q ∈ M }.

(4.17)

If (u, w) ∈ X 0 , then for any q ∈ M , b(q, (u, w)) = Ω×Ys q s div x u -Ω×Γ q s (w

• ν) = = Ω q s (1 -m)divũ s - Ω q s Y f div y w = Ω q s divũ = 0.
Conversely, if (u, w) ∈ X with the property that b(q, (u, w)) = 0, ∀q ∈ M , then, choosing q s = 0 it follows that there exists C 1 ∈ R such that 

divu f + divw = C 1 in Ω × Y f

. 14 )

 14 Passing at the limit on the subsequence on which (3.6)-(3.9) hold, we find Ω×Y f u(x, y)ψ(x, y)dxdy = 0.(3.15)

Proof.

  The convergences (3.23)-(3.24) are straight consequences of (3.8)-(3.9) and Lemma 3.1. The properties (3.25)-(3.26) follow from (3.7). Now let ϕ ∈ D(Ω, H 1 per (Y )) with ϕ = 0 in Ω × Y f . (3.29) Defining ϕ ε (x) = ϕ x, x ε , we notice that ϕ ε ∈ D(Ω) and hence 0

  .30) Using (3.23), we pass to the limit and get Ω×Ys u(x, y)∇ y ϕ(x, y)dxdy = 0.(3.31)Hence, we have since now:

4 )

 4 where a and b are defined bya((v, z), (ϕ, ψ)) = Ω×Ys A v ϕ + β 2 Ω×Y f (e(v) + e y (z))(e(ϕ) + e y (ψ))+ +β Ω×Γ α(γv -(γ ν v)ν)ϕ b(π, (v, z)) = Ω×Y π div x v -Ω×Γ π s (z • ν) + Ω×Y f πdiv y zTheorem 4.1. u, w and p introduced by the Theorems 3.2-3.3 form a pair ((u, w), p) ∈ X × M which verifies the homogenized problem (4.3)-(4.4).

Theorem 4 . 2 .

 42 The problem (4.3)-(4.4) is well-posed.

and consequently ( 1 -Theorem 4 . 3 .. 22 ) 4 . 4 .

 1432244 m)divũ s -Γ γ ν w = C 1 (1m) in Ω (1m)divũ s + mdivu f = C 1 in Ω.Integrating this last relation on Ω we finally get C 1 = 0. As we haveΩ×Γ α(γv -(γ ν v)ν)γv ≥ α 0 |γv -(γ ν v)ν| 2 L 2 (Ω×Γ) ≥ 0the X 0 -ellipticity of a in X is obvious and the proof is completed by Corollary 4.1, Ch.1 of[START_REF] Girault | Raviart Finite Element Methods for Navier-Stokes Equations[END_REF].By a straightforward test we have:If ((u, w), p) ∈ X is the solution of (4.3)-(4.4) then w is uniquely determined with respect to u f ∈ H 1 0 (Ω) by w(x, y) = W ij (y)e ij (u f )(x) + W (y)divu f (x). (4.18)Finally, we eliminate w from (4.3)-(4.4) and find the corresponding classical homogenized problem verified by (u, p s ) ∈ H × H1 (Ω):To find (u, p s ) ∈ V × H1 (Ω) such that Ω×Ys Auϕ + B Ω e(u f ) e(ϕ f ) + C Ω u f ϕ f = Ω (g-∇p s ) φ, ∀ϕ ∈ H, (4.19)where the so-called effective coefficients which appear in(4.19) are given by λ = Y f e y (W )e y (W ) > 0 (4.20)B ijkh = β 2 Y f δ ki δ hj + e y,ij (W kh ) + β 2 λδ ik δ jh = = β 2 Y f δ ℓk δ mh + e y,ℓm (W kh ) δ ℓi δ mj + e y,ℓm (W ij ) + λβ 2 δ ik δ jh .(4.21)C ij = β Γ α(y)(δ ijν i (y)ν j (y))dσ y (4Remark The tensor B ijkh is positive-definite and has the usual symmetry properties B ijkh = B khij = B jikh . Also, we have to notice that C ij Ω ϕ i ϕ j = Ω×Γ α(γϕ -(γ ν ϕ)ν) 2 ≥ 0, ∀ϕ ∈ H 1 0 (Ω) N . (4.23)
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