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SOLUTIONS OF THE MULTICONFIGURATION DIRAC-FOCK
EQUATIONS

ANTOINE LEVITT

Abstract. The multiconfiguration Dirac-Fock (MCDF) model uses a linear combi-
nation of Slater determinants to approximate the electronic N -body wave function of
a relativistic molecular system, resulting in a coupled system of nonlinear eigenvalue
equations, the MCDF equations. In this paper, we prove the existence of solutions
to these equations in the weakly relativistic regime. First, using results from Lewin
on the multiconfiguration nonrelativistic model, and Esteban and Séré on the single-
configuration relativistic model, we prove existence of critical points for the associated
energy functional, under the constraint that the occupation numbers are not too small.
Then, this constraint can be removed in the weakly relativistic regime, and we obtain
non-constrained critical points, i.e. solutions of the multiconfiguration Dirac-Fock equa-
tions.
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1. Introduction

Consider an atom or molecule with N electrons. Nonrelativistic quantum mechanics
dictates that, under the Born-Oppenheimer approximation, the electronic rest energy is
given by the lowest fermionic eigenvalue of the N -body Hamiltonian. The complexity
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of this problem grows exponentially with N , and approximations are used to keep the
problem tractable. Hartree-Fock theory uses the variational ansatz that the N -body
wavefunction is a single Slater determinant. The optimization of the resulting energy
over the orbitals gives rise to a nonlinear eigenvalue problem, which is solved iteratively.

It is well-known that this method overestimates the true ground state energy by a
quantity known as the correlation energy, whose size can be significant in many cases
of chemical interest [SO89]. This can be remedied by considering several Slater deter-
minants, a technique known as multiconfiguration Hartree-Fock (MCHF) theory. This
brings the model closer to the full N -body problem, and, in the limit of an infinite number
of determinants, one recovers the true ground state energy.

Another source of errors is that the Hamiltonian used is non-relativistic. Indeed, in
large atoms, the core electrons reach relativistic speeds (in atomic units, of the order of
Z, compared with the speed of light c ≈ 137). This causes a length contraction which
affects the screening by the core electrons of the attractive potential of the nucleus. This
has important consequences for the valence electrons and the chemistry of elements.
Neglecting these effects leads to incorrect conclusions, and for instance fails to account
for the difference in color between silver and gold [PD79].

For a fully relativistic treatment of the electrons, one should use quantum electrody-
namics (QED). But this very precise theory is also extremely complex for all but the sim-
plest systems. Therefore, physicists and chemists use approximate Hamiltonians to avoid
working in the full Fock space of QED. The multiconfiguration Dirac-Fock (MCDF) model
is obtained by using the Dirac operator in the multiconfiguration Hartree-Fock model. It
incorporates relativistic effects into the multiconfiguration Hartree-Fock model, and has
been used successfully in a number of applications [DFJ07, Gra07].

Although these models, and more complicated ones, are used routinely by physicists,
many problems still remain in their mathematical analysis. The first rigorous proof of
existence of ground states of the Hartree-Fock equations dates to Lieb and Simon [LS77],
later generalized to excited states by Lions [Lio87]. The multiconfiguration equations
were studied by Le Bris [LB94], who proved existence in the particular case of doubly
excited states. Friesecke later proved the existence of minimizers for an arbitrary number
of determinants [Fri03a], and Lewin generalized his proof to excited states, in the spirit of
the method of Lions [Lew04]. For relativistic models, Esteban and Séré proved existence
of single-configuration solutions to the Dirac-Fock equations [ES99], and studied their
non-relativistic limit [ES01]. To our knowledge, the present work is the first mathematical
study of a relativistic multiconfiguration model.

The main mathematical difficulty of the multiconfiguration equations, apart from the
increased algebraic complexity, is that one cannot simultaneously diagonalize the Fock
operator and the matrix of Lagrange multipliers. Lewin rewrote the Euler-Lagrange
equations in a vector formalism and used the same arguments as in the Hartree-Fock
case [LS77, Lio87] to prove the existence of solutions.

The Dirac-Fock equations are considerably more difficult to handle than the Hartree-
Fock equations. The main difficulty is that the Dirac operator is not bounded from below.
This fact, which causes important problems already in the linear theory, complicates the
search for solutions of the equations, because every critical point has an infinite Morse
index. One can therefore no longer minimize the energy functional, or even use standard
critical point theory. Esteban and Séré [ES99], later generalized by Buffoni, Esteban and
Séré [BES06], used the concavity of the energy with respect to the negative directions of
the free Dirac operator to reduce the problem to one whose critical points have a finite
Morse index.
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The MCDF model combines the two mathematical problems and adds the difficulty
that, for the theory to make sense, the speed of light has to be above a constant that
depends on a lower bound on the occupation numbers. Note that this difficulty with
small occupation numbers is also encountered in numerical computations [ID93], and
theoretical studies of the nonrelativistic evolution problem [BCMT10].

In this paper, we prove the existence of solutions, when the speed of light is large
enough (weakly relativistic regime). We now describe our formalism.

2. Definitions

In atomic units, the Dirac operator is given by

Dc = −ic(α · ∇) + c2β. (1)

In standard representation, α and β are 4× 4 matrices given by

αk =
(

0 σk
σk 0

)
, βk =

(
I2 0
0 −I2

)
,

where the σk are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The speed of light c has value c = 1/α ≈ 137.
The operatorDc is self-adjoint on L2(R3,C4) with domainH1(R3,C4) and form domain

H1/2(R3,C4). It verifies the relativistic identity D2
c = c4− c2∆. More precisely, it admits

the spectral decomposition

Dc = P+
c

√
c4 − c2∆P+

c − P−c
√
c4 − c2∆P−c , (2)

where the projectors P±c are given in the Fourier domain by

P±c (ξ) = 1
2

(
1C4 +±cα · ξ + c2β√

c4 + c2ξ2

)
. (3)

We denote by E = H1/2(R3,C4) the form-domain of Dc, and E±c = P±c E the two
positive and negative spectral subspaces.

A molecule made of M nuclei with positions zi and charges Zi creates an attractive
potential

V (x) = −
M∑
i=1

Zi
|x− zi|

.

More generally, we consider a charge distribution µ ≥ 0 with µ(R3) = Z, which creates a
potential

V = −µ ? 1
|x|
.

In the sequel, we shall always assume that N < Z + 1, which is the only case where we
can prove existence of solutions to our equations. This assumption is made in existence
proofs for the Hartree-Fock model to ensure that an electron cannot “escape to infinity”,
because it will then feel the effective attractive potential (N−1)−Z

|x| . Mathematically, it is
used to prove that second order information on Palais-Smale sequence implies that the
Lagrange multipliers are not in the essential spectrum.
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The Hamiltonian Dc + V has a spectral gap around zero as long as

Z <
2

π/2 + 2/πc.

This is related to the following Hardy-type inequalities (see [Tix98, Her77, Kat66]) :

〈φ, V φ〉 ≤ 1
2(π/2 + 2/π)

〈
φ,
√

1−∆φ
〉

(4)

for all φ ∈ E±1 , and

〈φ, V φ〉 ≤ π

2
〈
φ,
√

1−∆φ
〉

(5)

for all φ ∈ E. These inequalities will be extensively used in our proof of existence of
solutions.

The N -body relativistic Hamiltonian is given by

HN =
N∑
i=1

(Dc,xi + V (xi)) +
∑

1≤i<j≤N

1∣∣∣xi − xj∣∣∣ ,
This Hamiltonian acts on L2

a(R3N ,C4), the fermionic N -body space. Its interpretation is
problematic : in particular, its essential spectrum is all of R, and it is not even known
whether eigenvectors exists [Der12].

For a given K ≥ N , the multiconfiguration ansatz is

ψ =
∑

1≤i1<···<iN≤K
ai1,...,iN

∣∣∣ψi1 . . . ψiN〉 , (6)

where ∣∣∣ψi1 . . . ψiN〉 (x1, . . . , xN) = 1√
N !

det(ψik(xl))k,l

are Slater determinants, and a ∈ S,Ψ ∈ Σ, where

S = {a ∈ C(KN),‖a‖2 =
∑

1≤i1<···<iN≤K

∣∣∣ai1,...,iN ∣∣∣2 = 1}, (7)

Σ = {Ψ ∈ EK ,GramL2 Ψ = 1K}. (8)

Following [Lew04], we define

αi1...iN =

0 if #(i1 . . . iN) < N,
ε(σ)√
N !aiσ(1),...,iσ(N) otherwise,

where, for all i1, . . . , iN with #(i1 . . . iN) = N , σ is the unique permutation such that
iσ(1) < · · · < iσ(N).

With this definition,

ψ(x1, . . . , xN) =
∑

1≤i1≤N, ..., 1≤iN≤N,
αi1,...,iNψi1(x1) . . . ψiN (xN).

Then, substituting into the relativistic energy
〈
ψ,HNψ

〉
, we obtain [Lew04]

E(a,Ψ) =
〈

Ψ,
(
(Dc + V )Γa +Wa,Ψ

)
·Ψ
〉

(L2(R3,C4)K)
, (9)
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with the K ×K hermitian matrices
(Γa)i,j = N

∑
k2...kN

αi,k2...kNα
∗
j,k2...kN

,

(Wa,Ψ)i,j = N(N − 1)
2

∑
k3...kN

∑
k,l

αi,k,k3...kNα
∗
j,l,k3...kN

(
ψkψ

∗
l ?

1
|x|

)
,

where we denote by z∗ the complex conjugate of z. The eigenvalues γi of Γa, for a ∈ S,
satisfy 0 ≤ γi ≤ 1, and are called occupation numbers. They measure the total weight of
the corresponding orbital in the N -body wave function.

For reference, we define similarly the multiconfiguration Hartree-Fock energy

EHF(a,Φ) =
〈

Φ,
(−1

2∆ + V

)
Γa +Wa,Φ

 · Φ〉
(L2(R3,C2))K

, (10)

on S × {Φ ∈ (H1(R3,C2))K ,Gram Φ = 1}.
One can define a group action on S×Σ that leaves E invariant : for any unitary matrix

U ∈ U(K),
U · (a,Ψ) = (a′, UΨ), (11)

where a′ is defined via the equivalent variables α′ :
α′i1,...,iN =

∑
j1,...,jN

U∗i1,j1 . . . U
∗
iN ,jN

αj1,...,jN . (12)

This group action is the multiconfiguration analogue of the well-known unitary invariance
of the Hartree-Fock equations.

The MCDF equations, obtained as the Euler-Lagrange equations of E under the con-
straints a ∈ S and Ψ ∈ Σ, are, for Ψ,

Ha,Ψ ·Ψ = ΛΨ, (13)
where

Ha,Ψ = (DcΓa + V Γa + 2Wa,Ψ) (14)
is the Fock operator, and, for a,

HΨa = Ea, (15)
where

(HΨ)I,J =
〈∣∣∣ψi1 . . . ψiN〉 , HN

∣∣∣ψj1 . . . ψjN〉〉 (16)

are the coefficients of the
(
K
N

)
×
(
K
N

)
matrix of the N -body Hamiltonian HN in the basis

of the Slater determinants. Our goal in this paper is to prove the existence of solutions
to (13) and (15) by finding critical points of E on S × Σ.

3. Strategy of proof

We can now see the major mathematical difficulties in the study of the MCDF model.
One can use the group action (11) to diagonalize Γa or Λ, but not both at the same time.
Furthermore, because Wa,Ψ does not in general commute with Γa, one can only prove
that the Fock operator Ha,Ψ has a spectral gap around 0 for values of c that depend on a
lower bound on Γa. This gap is used centrally to prove the convergence of Palais-Smale
sequences. Therefore, one needs a lower bound on Γ.
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We prove the existence of solutions in two steps. First, for a given γ, we look for a
critical point of E in Sγ × Σ, where

Sγ = {a ∈ S, det Γa > γ}. (17)

To ensure that Palais-Smale sequences do not accumulate at the border of Sγ (which
would prevent their convergence), we penalize E by θγ(det Γa), where θγ is a smooth
function from (γ,+∞) to R+ such that (see Figure 1)

θγ(x)→ +∞ as x→ γ+,

θγ(x) is decreasing on (γ, 2γ),
θγ(x) = 0 on [2γ,+∞).

(18)

γ 2γ x

θγ(x)

0

Figure 1. Plot of the θ function.

Since det Γa > γ, under a lower bound on c that depends on γ, one can prove the
existence of a critical point of E(a,Ψ) + θγ(det Γa) by the same techniques as in [Lew04,
ES99]. This (a,Ψ) is a solution of (13), but is only a solution of (15) if det Γa > 2γ.

To prove that this is the case, we examine the nonrelativistic case. There, we may
assume that IK < IK−1, where

IK = inf
{
EHF(a,Φ), a ∈ S,Φ ∈ (H1(R3,C2))K ,Gram Φ = 1

}
(19)

is the ground-state energy of the nonrelativistic multiconfiguration method of rank K ≥
N . The cases where IK < IK−1 are not known exactly, but a result by Friesecke [Fri03b]
shows that IK+2 < IK . Therefore, IK < IK−1 at least for one every two K.

The inequality IK < IK−1 implies that det Γ is bounded from below on the minimizers
of the nonrelativistic functional. The compactness of these minimizers (implicitly proved
in [Lew04]) shows that the bound is uniform.

Because there is no well-defined “ground state energy” in the relativistic case, we
cannot use information of this type directly. Rather, we take the nonrelativistic (c→∞)
limit of the critical points found in the first step. By arguments similar to the ones of
[ES01], we prove that these critical points converge, up to a subsequence, to a minimizer
of the (penalized) Hartree-Fock functional. If IK < IK−1, det Γ is bounded from below
by γ0 > 0 on the minimizers. By taking γ < 1

2γ0, we obtain for c large enough critical
points that satisfy det Γa > 2γ, which are solutions of the MCDF equations (13)-(15).
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4. Results

Our first theorem is the existence of a critical point of E(a,Φ) + θγ(det Γa) on Sγ ×Σ.
This is a direct generalisation of the main theorem of [ES99], using the formalism of
[Lew04].

We need the following definition to state our theorem. For all Ψ ∈ Σ, let R(K) be the
set of hermitian matrices R of size K such that 0 < R < 1. Then, for (a0,Ψ0) ∈ S × Σ,
let

D(a0,Ψ0) = {(a,Ψ) ∈ Sγ × EK , there are U ∈ U(K), R ∈ R(K) such that
(a,Ψ) = U · (a0, RΨ0)},

(20)

where U · (a0, RΨ0) is given by the group action (11).
Theorem 1. Let γ > 0, N < K + 1. There are constants c0, K1, K2 > 0 such that, for
all c ≥ c0, there is a solution (ac,Ψc) of Hac,Ψc ·Ψc = ΛΨc in Sγ × Σ that satisfies

(c2 −K1)Γac ≤ Λ ≤ (c2 −K2)Γac . (21)
If det Γac > 2γ, there is E ∈ R such that HΨcac = Eac.
For any (a∗,Ψ+

∗ ) ∈ Sγ × (Σ ∩ (E+
c )K),

E(ac,Ψc) + θ(det Γac) ≤ sup
{
E(a,Ψ+ + Ψ−) + θ(det Γa),

(a,Ψ+) ∈ D(a∗,Ψ+
∗ ),Ψ− ∈ (E−c )K ,Gram(Ψ+ + Ψ−) ≤ 1

}
.

(22)
Remarks. The constant c0 can be made explicit as a function of γ. We do not do it

because our main result (Corollary 1) is only valid for large c, with no explicit estimate
on its minimum size.

Although there is no minimum of E(a,Ψ) + θγ(det Γa) on Sγ × Σ, the property (22)
makes (a,Ψ) a good candidate for a “ground state”. In particular, it can be used to prove
that the nonrelativistic limit of the solutions obtained is a minimizer of the Hartree-Fock
functional (Theorem 2 below).

The same scheme of proof would also yield the existence of an infinite number of critical
points. But, even in the nonrelativistic limit, we are unable to prove that det Γ ≥ 2γ for
these critical points. Therefore, we only concern ourselves with “ground states”.

We now study the nonrelativistic limit of these “ground states”:
Theorem 2. Let γ > 0, N < Z + 1, cn → ∞ with cn ≥ c0 for all n ∈ N, and (an,Ψn)
the solution of (13) obtained by Theorem 1 with c = cn. Then, up to a subsequence,

(an,Ψn)→
a,(Φ

0

) in Sγ × Σ, where (a,Φ) is a minimizer of

IKγ = inf
{
EHF(a,Φ) + θγ(det Γa), a ∈ Sγ,Φ ∈ (H1(R3,C2))K ,Gram Φ = 1

}
. (23)

Our main result is now
Corollary 1. If IK < IK−1, for c large enough, there are solutions of the multiconfigu-
ration Dirac-Fock equations (13)-(15).
Proof. Recall the definition (19)

IK = inf
{
EHF(a,Φ), a ∈ S,Φ ∈ (H1(R3,C2))K ,Gram Φ = 1

}
.

Because IK < IK−1, det Γ is bounded from below on each minimizer of the multicon-
figuration Hartree-Fock functional. From Theorem 1 of [Lew04], these minimizers form
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a compact set, and therefore there is γ0 > 0 such that det Γ ≥ γ0 uniformly on the
minimizers.

We now choose γ = 1
4γ0. By definition, IKγ ≥ IK . But any minimizer (a,Φ) of the

variational problem (19) that defines IK satisfies det Γa ≥ 2γ, and therefore achieves the
value IK in the variational problem (23) that defines IKγ . Therefore, we get IKγ = IK .
We obtain from Theorem 1 a sequence (an,Ψn) of solutions of (13). By Theorem 2, this

sequence converges to a
a,(Φ

0

), which satisfies

EHF(a,Φ) + θγ(det Γa) = IKγ = IK .

(a,Φ) is a minimizer of the nonrelativistic Hartree-Fock functional, and therefore det Γa ≥
γ0 > 2γ. Since an → a, for n large enough det Γan > 2γ. By Theorem 1, (an,Φn) is then
a solution of (13)-(15). �

5. Solutions of the constrained MCDF equations

In this section we prove Theorem 1. We use the method of proof of Theorem 1.2 of
[ES99], with the formalism of [Lew04]. The proof is essentially identical to the one in
[ES99], with only technical modifications to accomodate the multiconfiguration formal-
ism. We will only outline the main lemmas, and indicate which parts of the proof have
to be modified in our case. We use centrally the fact that det Γ > γ, and therefore the
occupation numbers are uniformly bounded away from zero.

5.1. The modified functional. First, we regularize the potential 1/|x| appearing in the
potential energy term (both the nucleus attraction and the eletron repulsion). We make
the replacement

1
|x|
→ fν ?

1
|x|
,

where

fν(x) = 1
ν3f(x

ν
),

with f a fixed positive smooth function, normalized in L1. This substitution leaves
unchanged the inequality (4), and is only used for the technical Lemma 4. In the limit
ν → 0, we recover the original Coulomb potential.

We replace the normalization condition Ψ ∈ Σ by a penalization term
πp(Ψ) = tr

(
(Gram Ψ)p(1−Gram Ψ)−1

)
. (24)

=
K∑
k=1

fp(σk),

where the σk are the eigenvalues of Gram Ψ, and

fp(x) = xp

1− x
(see Figure 2.)

We now look for critical points of the functional
Fν,p(a,Ψ) = Eν(a,Ψ)− πp(Ψ) + θγ(det Γa), (25)

on Sγ × A, where
A = {Ψ ∈ EK , 0 < Gram Ψ < 1}. (26)
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Figure 2. Plot of the fp function.

The Euler-Lagrange equation with respect to Ψ is

Ha,Ψ ·Ψ = ∇πp(Ψ)Ψ. (27)

Furthermore, if det Γa > 2γ, then there is E ∈ R such that HΨa = Ea.
In the proof of Theorem 1, we obtain a critical point (aν,p,Ψν,p) at a fixed ν, p. Then,

we pass to the limit ν → 0, p → ∞. As f ′p(xp) → 0 as p → ∞ unless xp → 1, a lower
bound on the Lagrange multipliers Λ will imply that Gram Ψp → 1, and we will recover
a critical point of E(a,Ψ) + θγ(Γa) in Sγ × Σ.

5.2. Convergence of Palais-Smale sequences. First, we study the convergence of
Palais-Smale sequences for E with an upper bound on the Lagrange multipliers Λ. Because
of our lower bound on the occupation numbers, the proof proceeds exactly as in Lemma
2.1 of [ES99], and we refer to this paper for details. The only technical modification is
that the inequalities on Λ have to be taken with respect to the Γ metric. For instance,
lim sup Λn < c2 becomes lim sup Λn − c2Γn < 0.

Lemma 1. Let γ > 0, N < Z + 1. Then there are constants c0, K1 > 0 such that, for
c ≥ c0, νn ∈ (0, 1), pn a non-decreasing sequence of integers, (an,Ψn) ∈ Sγ×A satisfying:

(1) lim inf Gram Ψn > 0,
(2) HΨnΨn − ΛnΨn = ∆n → 0 in (H−1/2)K ,
(3) lim sup Λn − c2Γn < 0,

we have, up to a subsequence,
(1) lim inf Λn − (c2 −K1)Γn ≥ 0,
(2) (an,Ψn)→ (a,Ψ) strongly in Sγ × A,
(3) If pn → p, νn → ν ∈ (0, 1), then (a,Ψ) is a solution of HΨΨ = ΛΨ in Sγ ×A, and
Fν,p(a,Ψ) = limn→∞Fνn,pn(an,Ψn),

(4) If pn → ∞, νn → 0, then (a,Ψ) is a solution of HΨΨ = ΛΨ in Sγ × Σ, and
E(a,Ψ) = limn→∞Fνn,pn(an,Ψn).

5.3. Elimination of the negative directions. Next, we use the concavity in the E−c
directions to get rid of the infinite Morse index of the critical points.
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Lemma 2. Let γ > 0, N < Z + 1. Then there are c0, s > 0 such that, for c ≥ c0, ν ∈
(0, 1), p ≥ 1, (a,Ψ) ∈ Sγ × A,Φ− ∈ (E−c )K,

∂2
ΨFν,p(a,Ψ) · [Φ−,Φ−] ≤ −s

∥∥∥Φ−∥∥∥2

EK
(28)

Proof. The proof proceeds as in Lemma 2.2 of [ES99]. The penalization term −πp is
concave, and therefore it suffices to compute the second derivative of Eν :

∂2
Ψ Eν(a,Ψ) · [Φ−,Φ−] =

〈
Φ−, (−

√
c4 − c2∆ + fν ? V )ΓaΦ−

〉
+ EE,

where EE regroups the terms arising from the electron-electron interaction. We can
bound EE by the inequality (4) :

EE ≤ C
∥∥∥Φ−∥∥∥2

EK
,

where C only depends on N and Z. Since det Γa > γ, we have Γa > γ in the sense of
hermitian matrices, and

∂2
Ψ Eν(a,Ψ) · [Φ−,Φ−] ≤ (−c2γ + C)

∥∥∥Φ−∥∥∥2

EK
,

hence the result.
�

Since, for a fixed Ψ+, Fν,p(a,Ψ+ + Ψ−) → −∞ as det(1 − Gram(Ψ+ + Ψ−)) → 0, we
can define the new functional

Iν,p(a,Ψ+) = sup
Ψ−∈(E−

c )K ,Gram(Ψ−+Ψ+)<1
Fν,p(a,Ψ+ + Ψ−). (29)

This functional is smooth on Sγ × A+, where A+ = A ∩ (E+
c )K .

5.4. Convergence of Palais-Smale sequences for Iν,p. We now look for critical points
of Iν,p on Sγ ×A+. On this functional, second order information implies an upper bound
on the Lagrange multipliers :

Lemma 3. Let γ > 0, N < Z + 1 and d a positive integer. Then there are c0, K2 > 0
such that, if c ≥ c0, ν ∈ (0, 1), p ≥ 2,M > 0, (an,Ψ+

n ) ∈ Sγ × A+ are such that
(1) lim inf Gram Ψ+

n > 0,
(2) lim sup Iν,p(an,Ψ+

n ) ≤M ,
(3) ∂Ψ+Iν,p(an,Ψ+

n )→ 0 in H−1/2,
(4) There is a sequence δn → 0 such that ∂2

Ψ+Iν,p(an,Ψ+
n )[Ψ,Ψ] + δn‖Ψ‖2

H1/2 has a
negative space of dimension at most d for all n,

then

lim sup Λn − (c2 −K2)Γn ≤ 0.

Proof. By the same reasoning as in the proof of Lemma 4.3 of [ES99], there is a C > 0 such
that for all a ∈ Sγ, Ψ+ ∈ A+, Φ+ ∈ (E+

c ∩H1(R3,C4))K such that
〈
Φ+
i ,Ψ+

j

〉
= 0 ∀i, j,

1
2∂

2
Ψ+Iν,p(a,Ψ+) · [Φ+,Φ+] ≤1

2∂
2
Ψ+ Eν(a,Ψ+) · [Φ+,Φ+]− 〈Φ,ΛΦ〉+ C

∥∥∥∇Φ+
∥∥∥2
,

with Λ = ∇πp(Ψ+ + Ψ−), where Ψ− is the unique maximizer in the variational problem
(29) defining Iν,p(a,Ψ+).
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Now, choosing Φ+ composed of radial orbitals, we get from the proof of Lemma 4.4 of
[ES99] that

1
2∂

2
Ψ+ Eν(a,Ψ+) · [Φ+,Φ+] ≤

〈
Φ+,

(√
c4 − c2∆ + (N − 1)fν ?

1
|x|
− Zfν ? V

)
ΓaΦ+

〉
When Φ is composed of orbitals of the form f(x/λ) for λ large, the term ∇Φ becomes

negligible, and the potential (N−1)fν? 1
|x|−Zfν?V can be approximated by (Z−N+1) 1

|x| .
One can find (see Lemma 4.5 of [ES99]) a well-chosen subspace Xm ⊂ (E+

c ∩H1(R3,C4)∩
(ψ+

1 , . . . , ψ
+
K)⊥)K of arbitrary dimension m such that

1
2∂

2
Ψ+Iν,p(a,Ψ+) · [Φ+,Φ+] ≤

〈
Φ+, ((c2 −K2)Γa − Λ)Φ+

〉
for all Ψ+ ∈ Xm, with K2 > 0 only depending on N,Z, γ and m. The result follows. �

5.5. Existence of Palais-Smale sequences for Iν,p. We are looking for Palais-Smale
sequences with second order information of Iν,p on Sγ × A+. Note that, even after the
sup in the E−c directions, this functional is still indefinite. We cannot use a minimization
argument, and will use a generalization of the mountain pass theorem with second order
information proved by Fang and Ghoussoub [FG92, Gho93].

Following [ES99], define ∆(Ψ+) = det(Gram Ψ+). The problem we now face is that Iν,p
may stay positive as ∆(Ψ+) → 0, and therefore violate the conditions of the mountain
pass theorem (see Figure 3). To avoid this, we prove that, when det Gram Ψ+ is small,
“increasing the mass” of Ψ+ increases the value of Iν,p, in the following sense:

Lemma 4. Let γ > 0, N < Z + 1, ν > 0. There are d(ν), e(ν) > 0 such that, for all
p ≥ 2, if (a,Ψ+) ∈ Sγ × A+ satisfies d(ν) ≤ ∆(Ψ+) ≤ 2d(ν), then there is X ∈ (E+

c )K
such that ∂Ψ+Iν,p(a,Ψ+) ·X ≥ e(ν)‖X‖EK ,

∆′(Ψ+) ·X > 0.
(30)

This is the only place where the regularization of the potential 1
|x| is used.

We restrict our search to the domain ∆(Ψ+) > 2d(ν) by defining a new functional. Let
αν ∈ C∞((d(ν), 1),R) be such that

αν(x) = 0 ∀x ≥ 2d(ν),
αν(x) > 0 ∀x < 2d(ν),
αν(x)→ −∞ as x→ d(ν),

(31)

and β ∈ C∞(R,R) such that 
β(t) = −1 ∀t ∈ (−∞,−1),
β(t) ≤ 0 ∀t ∈ [−1, 0],
β(t) = t ∀t > 0.

(32)

We now define

Jν,p(a,Ψ+) =

β
(
Iν,p(a,Ψ+) + αν ◦∆(Ψ+)

)
if Ψ+ ∈ A+ and ∆(Ψ+) > d(ν)

−1 otherwise
(33)

If (a,Ψ+) is a critical point of Jν,p with Jν,p(Ψ+) ≥ 0, then it must also be a critical
point of Iν,p + αnu ◦∆. By (30), this cannot be the case unless ∆(Ψ+) > 2d(ν), in which

11



2d(ν)
d(ν)

det(1−GramΨ+) = 0

A+

−∞

−∞−∞

−∞

Figure 3. Schematic view of the minimization domain A+. Between d(ν)
and 2d(ν), the gradient field points towards increasing mass, and Iν,p →
−∞ as det(1−Gram Ψ+)→ 0. We obtain critical points using a mountain-
pass type theorem.

case Jν,p coincides with Iν,p in a neighborhood of Ψ+. Therefore, Palais-Smale sequences
of Jν,p at positive levels are also Palais-Smale sequences of Iν,p at the same level. Since
Jν,p = −1 on ∂A+, we are now in the setting of the mountain-pass theorem, as long as
we can find a point (a,Ψ+) with Iν,p(a,Ψ+) > 0.

We now setup our min-max level. In [ES01], for a finite-dimensional subspace F of
E+
c , using the dependence of EHF(Ψ) only on the subspace spanned by Ψ, the min-max

was defined over continuous deformations of

D(F ) =
{

Ψ+ ∈ FN ,Gram Ψ+ ≤ 1
}

equivariant with respect to unitary transformation.
In our case, the U(K) symmetry has to act on a and Ψ both, by way of the group

action U ·(a,Ψ) defined in (11), and the definition of the deformed set has to be modified.
Recall the definition (20) of D(a0,Ψ0) :

D(a0,Ψ0) = {(a,Ψ) ∈ Sγ × EK , there is U ∈ U(K), R ∈ R(K) such that
(a,Ψ) = U · (a0, RΨ0)}.

We now define the set of deformations : a homotopy

h ∈ C
(

[0, 1]×
(
Sγ × (E+

c )K
)
,
(
Sγ × (E+

c )K
))

is admissible if it preserves the boundary of A+ and is equivariant with respect to the
U(K) group action :h(λ, a,Ψ+) ∈ Sγ × ∂A+ ∀a ∈ Sγ,Ψ+ ∈ ∂A+,

h(λ, U · (a,Ψ+)) = U · h(λ, (a,Ψ+)) ∀U ∈ U(K), λ ∈ [0, 1], a ∈ Sγ,Ψ+ ∈ (E+
c )K .
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Let now Q(F ) be the admissible deformations of D(a0,Ψ+
0 ):

Q(a0,Ψ+
0 ) = {Q ⊂ Sγ × A+, there is h admissible such that (34)

h(0, ·) = Id, h(1, D(a0,Ψ+
0 )) = Q}. (35)

We can now define the min-max level
cν,p(a0,Ψ+

0 ) = inf
Q∈Q(a0,Ψ+

0 )
sup

(a,Ψ+)∈Q
Jν,p(a,Ψ+). (36)

It verifies the following properties:
Lemma 5. Let γ > 0, N < Z + 1. Then there is a constant c0 > 0 such that, for all
(a0,Ψ+

0 ) ∈ Sγ × Σ ∩ (E+
c )K, there are a > 0, p0 such that, for c ≥ c0, ν ∈ (0, 1), p ≥ p0,

0 < a ≤ cν,p(a0,Ψ+
0 ) ≤ sup

{
Fν,p(a,Ψ+ + Ψ−), (a,Ψ+) ∈ D(a0,Ψ+

0 ),

Ψ− ∈ (E−c )K ,Gram(Ψ+ + Ψ−) ≤ 1
}
.

Proof. The upper bound is immediately obtained by using the trivial deformation h(λ, (a,Ψ+)) =
(a,Ψ+) in (36). For the lower bound, it results from the intersection result of Lemma 5.4
in [ES01] that, for every path Q ∈ Q(a0,Ψ+

0 ), there is (a,Ψ+) ∈ Q with Gram Ψ+ = 1/2.
For such a point,

Iν,p(a,Ψ+) ≥ Eν,p(a,Ψ+)− πp(Ψ+)

≥
〈
Ψ+, (Dc + V )ΓaΨ+

〉
−
(

1
2

)p−1

≥ γKλ1(c)
2 −

(
1
2

)p−1

,

for c large enough, where λ1(c) is the (positive) first eigenvalue of
√
c4 − c2∆ + V . Since

λ1(c) is increasing with c, the result follows. �

Using now arguments by Fang and Ghoussoub [FG92, Gho93], we obtain Palais-Smale
sequences with second order information.
Lemma 6. Let γ > 0, N < Z + 1. There is c0 such that, for all c ≥ c0, (a0,Ψ+

0 ) ∈
Sγ × (Σ ∩ (E+

c )K), ν ∈ (0, 1), p ≥ p0, there exists a sequence (an,Ψ+
n ) ∈ Sγ × A+, such

that
(1) Iν,p(an,Ψ+

n )→ cν,p(a0,Ψ+
0 ),

(2) ∂ΨIν,p(Ψ+
n )→ 0,

(3) lim inf Gram Ψ+
n ≥ d(ν) > 0,

(4) There is a sequence δn → 0 such that ∂2
Ψ+Iν,p(Ψ+

n )[Ψ,Ψ]+δn‖Ψ‖2
H1/2 has a negative

space of dimension at most K2,
(5) an → a ∈ Sγ, and ∂aIν,p(an,Ψn) = 0.
It follows from Lemmas 3 and 1 that there is a critical point of Fν,p on Sγ ×A at level

cν,p(a0,Ψ+
0 ).

Although cν,p is defined using a particular (a0,Ψ+
0 ), Sard’s theorem forbids continuous

families of critical points. Therefore, we have
Lemma 7. cν,p(a0,Ψ+

0 ) does not depend on (a0,Ψ+
0 ).

To prove this, we need an infinite-dimensional version of Sard’s theorem :
Lemma 8. Let F ∈ C∞(X,R), with X a separable Hilbert manifold. Then the set
C = {y ∈ R,∃x ∈ E,F (x) = y, dF (x) = 0, d2 F (x) is Fredholm} is of measure zero.
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The proof of this theorem can be found in [FKN+74] (Corollary 2.1). The main idea
is to use a Lyapunov-Schmidt reduction in a neighborhood of every critical point, which,
by the classical Sard theorem, proves that the set of critical points in this neighborhood
is of measure zero. Then, using the separability of X, one can piece together these
informations and obtain the result.

We can now prove Lemma 7 :

Proof. Let Y = cν,p(Sγ × (Σ ∩ (E+
c )K)). By the previous construction, for all y ∈ Y ,

there is a critical point of Fν,p at level y satisfying the inequality Λ ≤ (c2 − K2)Γ. It
follows that d2 E is Fredholm on this critical point, and therefore, by Lemma 8, that Y
is of measure zero. But since cν,p is continuous on (Sγ × Σ ∩ (E+

c )K), Y is reduced to a
point. �

Note that we do not actually need this to prove our main theorem (Corollary 1).
We could use a particular (a0,Ψ+

0 ) chosen to make the c → ∞ limit converge to a
nonrelativistic minimizer (see section 6). This lemma only makes the result cleaner.

5.6. Proof of Theorem 1. We can now prove Theorem 1. Take p ≥ p0, ν = 1/p. By
Lemma 6 then 3, there is a sequence that satisfies the hypotheses of Lemma 1, and
therefore converges to (ap,Ψp).

Because∇πp(Ψp) = Λp > (c2−K1)Γp, and∇πp(Ψp)→ 0 uniformly if lim inf Gram Ψp <
1, we conclude that lim Gram Ψp = 1.

We now apply again Lemma 1 to the sequence (ap,Ψp), and obtain strong convergence
to (a,Ψ) ∈ Sγ × Σ. Because ∂aIν,p(ap,Ψp) = 0, if det Γa > 2γ, we obtain HΨa = Ea.

6. Nonrelativistic limit

We begin with a lemma that is the multiconfiguration analogue of Theorem 3 of [ES01].

Lemma 9. Let γ > 0, cn →∞, (an,Ψn) ∈ Sγ × Σ solutions of

Hcn
an,ΨnΨn = ΛnΨn

such that

(cn2 −K1)Γn ≤ Λn ≤ (cn2 −K2)Γn
for constants K1, K2 > 0.

Then, up to a subsequence, an → a ∈ Sγ, Ψn →
(

Φ
0

)
in H1, and E(an,Ψn) −Nc2 →

EHF(a,Φ)

6.1. Proof of Lemma 9.

Proof. First, we need an upper bound on Ψn in H1, which we obtain using the Hardy
inequality.

cn
4‖ΓnΨn‖2

L2 + cn
2‖Γn∇Ψn‖2

L2 =‖H0ΓnΨn‖2
L2

=
∥∥∥(V Γ + 2Wan,Ψn)Ψn − ΛnΨn

∥∥∥2

L2

≤ cn
4‖ΓnΨn‖2

L2 +K3‖∇Ψn‖2
L2 +K4cn

2‖Γn∇Ψn‖L2 ,

with constants K3, K4 > 0 independent of n. Therefore, because det Γn > γ, Ψn is
bounded in H1.
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We now write Ψn =
(

Φn

Xn

)
, where Φn,Xn ∈ H1(R3,C2). We rewrite the Dirac-Fock

equations as

cnΓnLXn + (V Γn + 2Wan,Ψn)Φn = (Λn − cn2Γn)Φn, (37)
cnΓnLΦn + (V Γn + 2Wan,Ψn)Xn = (Λn + cn

2Γn)Xn, (38)

with the operator

L = −i∇ · σ (39)

such that L2 = −∆.
Because lim inf Λn− cn2Γn < −∞, using the Hardy inequality and the boundedness of

Φn in H1, the first equation (37) yields

‖ΓnLXn‖L2 =‖Γn∇Xn‖L2 = O(1/cn) (40)

The second equation (38) gives

Xn = 1
2c(1

2(Γn + Λn/cn
2))−1ΓnLΦn + 1

cn2O(‖Xn‖H1)

= KB(Φn) + 1
cn2O(‖Xn‖H1) +O( 1

cn3 ) (41)

in L2 norm, where the “kinetic balance” operator KB is given by

KB(Φ) = 1
2cLΦ. (42)

Equation (41) gives ‖Xn‖L2 = 1
2c‖LΦn‖L2 +O(1/cn2) = O(1/cn), and then

Xn = KB(Φn) +O( 1
cn3 ) (43)

again in L2 norm. Φn satisfies(
−1

2∆Γn + V Γn + 2WΦn

)
Φn = (Λn − cn2Γn)Φn + hn

Gram Φn = 1 + o(1)

with hn → 0 in L2 and therefore H−1 norm. (an,Φn) is a Palais-Smale sequence for the
nonrelativistic functional, with control on the Lagrange multipliers lim sup(Λn−cn2Γn) <
0 and non-degeneracy information det Γn > γ. By the arguments in the proof of Theorem
1 of [Lew04], (an,Φn) converges, up to a subsequence, to (a,Φ) in H1 norm, and it is
easy to compute from (43) that

〈
Ψn, DcnnΓnΨn

〉
= Ncn

2 + 1
2
〈
Φn, (−∆)Φn

〉
+ o(1).

�

We are now ready to prove Theorem 2.
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6.2. Proof of Theorem 2.

Proof. The sequence (an,Ψn) satisfies the hypotheses of Lemma 9 : up to a subsequence,

it converges strongly in H1 to
a,(Φ

0

), with lim E(an,Ψn)−Ncn2 = EHF(a,Φ), so that

EHF(a,Φ) + θγ(det Γa) ≥ IKγ . We now prove that EHF(a,Φ) + θγ(det Γa) ≤ IKγ .
By arguments of [Lew04], there is a (a∗,Φ∗) ∈ Sγ × H1(R3,C2) which is a minimizer

of the nonrelativistic problem IKγ . Set

Ψ∗,n =
GramP+

cn

(
Φ∗
0

)−1/2P+
cn

(
Φ∗
0

) . (44)

Ψ∗,n belongs to Σ ∩ (E+
cn)K , and converges to

(
Φ∗
0

)
.

By the property of Theorem 1, the critical points (an,Ψn) satisfy

E(an,Ψn) + θγ(det Γan) ≤ sup
{
E(a,Ψ+ + Ψ−) + θγ(det Γa),

(a,Ψ+) ∈ D(a∗,Ψ∗,n),Ψ− ∈ (E−cn)K ,Gram(Ψ+ + Ψ−) ≤ 1
}

(45)
Let a ∈ Sγ,Ψ± ∈ (E±cn)K be such that Gram(Ψ+ + Ψ−) ≤ 1. By concavity of E in the

E−cn directions (see Lemma 2), for large n we have

E(a,Ψ+ + Ψ−) ≤ E(a,Ψ+) + ∂Ψ E(a,Ψ+) ·Ψ− − 1
4

〈
Ψ−,

√
cn4 − cn2∆ΓaΨ−

〉
≤ E(a,Ψ+) +M

∥∥∥Ψ−∥∥∥
L2
− cn2γ

∥∥∥Ψ−∥∥∥2

L2
,

where M > 0 is independent of n. For n large, we have for all a ∈ Sγ
E(an,Ψn) ≤ sup

(a,Ψ+)∈D(a∗,Ψ∗,n),Gram Ψ+≤1
E(a,Ψ+), (46)

By strict convexity of E in the E+
cn directions for n large, the sup is achieved at a point

(a,Ψ+
max) such that Gram Ψ+

max = 1. Therefore,
E(an,Ψn) ≤ sup

(a,Ψ+)∈U ·(a∗,Ψ∗,n),U∈U(K)
E(a,Ψ+)

≤ E(a∗,Ψ∗,n). (47)

We now use the inequality that, for all ψ ∈ H1(R3,C2),〈
ψ,
√
cn4 − cn2∆ψ

〉
≤
〈

Ψ,
(
cn

2 − 1
2∆

)
Ψ
〉
.

This is a simple consequence of the concavity inequality
√

1 + x ≤ 1 + 1
2x in Fourier

domain.
Therefore,

EHF(a,Φ) + θγ(det Γa) = lim E(an,Ψn)−Ncn2 + θγ(det Γan)
≤ lim sup E(a∗,Ψ∗,n)−Ncn2 + θγ(det Γa∗)
≤ EHF(a∗,Φ∗) + θγ(det Γa∗)
= IKγ .

�
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