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Abstract— This paper describes a methodology to conduct a 

sequential test defined by an optimal accelerated testing plan. This 

test plan is based on an economic approach defined in previous 

work, a prior knowledge on reliability parameters (choice of 

reliability function, scale and shape parameters …) and 

acceleration model (choice of model, model parameters …) to 

evaluate the proportions of failure at each accelerated level. When 

conducting a test, it is possible to verify the compatibility of 

results with prior knowledge from a consistency criterion that 

measures the compatibility between prior distribution and 

likelihood provided by the data. We can also reduce the 

censoring time in case of "Good results" while keeping the same 

level of risk. This possibility is authorized because the robust test 

is longer than basic optimal test plan. In the process of product 

development, we will use the qualification. Qualification is an 

application-specific process involving the evaluation of the 

product with respect to its quality and reliability. The purpose of 

qualification is to define the acceptable range of variability for all 

critical product parameters affected by design and 

manufacturing. The methodology will be illustrated by a 

numerical example. 

Keywords: Test planning, accelerated test, reliability, 

optimization, Bayesian estimation, testing cost, operational cost, 

robustness, Qualification. 

I. INTRODUCTION  

An Accelerated Life Test (ALT) is the process of determining 

the reliability of a product in a short period of time by 

accelerating the use environment. ALTs are also good for 

finding dominant failure mechanisms. Thus, an accelerated 

Life Test (ALT) is a test method which subjects test units to 

higher than use stress levels in order to compress the time to 

failure of the units. Conducting a Quantitative Accelerated 

Life Test (QALT) requires the determination or development 

of an appropriate life-stress relationship model. In the case of 

robust optimization of an accelerated testing plan, a plan is 

provided with a sample size, stress levels and censoring time. 

This plan provides a robust estimate of the probability of 

failure during the warranty period (reliability metric is 

selected to estimate the operation cost of the test plan), the 

robustness to guaranteeing the best cost with a given risk  

integrating the uncertainties on input data (reliability, 

activation energy …). To define the test plan, in some 

approaches, we consider an objective function based on 

economic approach, Bayesian inference for optimizing the test 

plan. The prior knowledge is based on a feedback from 

expert’s opinion, Field data analysis on old product, 

Reliability Standard... This information contains the 

uncertainty on the real reliability of the new product tested. 

During the test, the observation of data makes possible to 

verify the consistency of these points with the assumptions of 

prior information having fixed the test plan. The establishment 

of batch test to launch the tests needs to fix some parameters 

of the plan as the number of units tested, the level of each 

stress, and the number of units tested by stress level. However, 

other parameters can be modified. In this paper, an 

optimization test plan is proposed integrating the Bayesian 

inference and an objective function based on economical 

formulation. The proposed method consists of 3 subsequent 

steps: 

- Definition of a robust  accelerated testing plan 

Accelerated testing is an approach for obtaining more 

information from a given test time than would normally be 

possible. A detailed test plan is usually designed before 

conducting an accelerated life test. The plan requires the 

determination of the type of stress, stress levels, number of 

units to be tested at each stress level and an applicable 

accelerated life testing model that relates the failure times at 

accelerated conditions to those at normal conditions. To define 

these parameters, an optimization procedure is developed to 

minimize an economical function (testing and operational 

costs) with taking into account the uncertainties on input data 

(reliability, activation energy …) by the Bayesian inference. 

The optimization process is performed using genetic 

algorithm. 

- Consistency of prior knowledge 

Among the articles on Bayesian inference for estimating the 

parameter many of them insist on opposing the behavior of the 

posterior estimation when the prior information is badly 

conditioned. The objective knowledge of reality given by the 

likelihood may be lost by choosing an improper prior. In most 

cases, articles are brought to a reinforcement of the robustness 

later. However, the first difficulty is to correctly regard that 

prior knowledge and likelihood are not contradictory. We 

propose a prior validation using a criterion of coherence that 

measures the compatibility between the prior and the 

likelihood.  

- Stopping criteria of test plan 

The previous compatibility criterion take a metric between 0 

and 1 and is further used as a weighting factor for the prior 

distribution. The use of the weighting over the prior 
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distribution should be seen as a diminution of confidence over 

the prior information for the  parameters. Periodically (during 

the test), the posterior reliability metric is estimated and the 

risk to validate the deisgn is evaluated and compared to target 

risk. When the confidence level on estimation of reliability 

metric is reached, the test is stopped. 

The verification whether a product meets or exceeds the 

reliability and quality requirements of its intended application, 

is the aim of qualification. Qualification plays an important 

role in the process of product development. Product 

qualification can be used to baseline the design and processes. 

It determines the product performance degradation under 

normal application conditions. It can also be used to compare 

different designs to help make design decisions. Product 

qualification is used to meet the requirements of customers 

with consideration of the intended application and application 

conditions. 

II. ESTIMATION IN PARAMETRIC ALT MODEL 

We consider the parametric ALT model has been 

described in [1]. After selecting the model, in order to provide 

estimates for the model's parameters, we apply maximum-

likelihood estimation as point estimators. The maximum 

likelihood estimators return a single point estimate for a given 

data set. In contrast, the Bayesian posterior is an entire 

distribution over the parameter space. We can turn this in to a 

point estimate by taking some measure of central tendency, 

such as the conditional mean of the parameter given the data. 

In Bayesian Inference by Maximum of A Posteriori, the 

Bayesian approach is based on the concept of subjective 

probability depending on the degree of belief in the 

occurrence of an event [2]. This is not a point value, which is 

estimated, but the probability distribution of the random 

variable (probability of non-functioning), the degree of belief 

that each probability value can be true. In Bayesian statistics, 

the uncertainty about the unknown parameters is quantified 

used probability so that the unknown parameters are regarded 

as random variables.  

To simplify the parametric model, we develop the 

methodology with one accelerating variable and a linear 

relationship between the location parameter and the stress 

level. Without adding complexity, the methodology can be 

generalized to multiple accelerating variables with linear 

relationship. 

It is assumed that the survival function R (t) belongs to a 

class of functions depending only on the parameters of scale  

and shape   [2]: 
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Several models, such as Weibull and lognormal, are just 

particular cases of the above form 

  )(ln1)(, 00 ttRetR t    respectively as detailed in [3]. 

In this section, we assume, for a particular case of a 

constant stress with one accelerating variable, which the 

logarithm of scale parameter   follow a linear function of 

transformed stress S as: 

 

  S.ln 10    

 

For our particular case of constant stress, S, with one 

accelerating variable, the reliability function the equation (1) 

becomes: 
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The notations    ueRuR 0 , u , )ln(tu  ,  10 ,  , 

allow us to rewrite the equation (2) as: 
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The likelihood function can be written as: 
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Note: Tij is the life time observed or censored of the j
th

 unit 

from i
th

 stress level group. 

We consider a prior information on unknown parameters 

modeled by the functions π(γ0), π(γ1), π(β). We assume that the 

variables   ,, 10  are independent and the joint prior 

distribution can be defined as: 

          1010 10
,,   (5) 

The choice of the form of 

knowledge on parameter  or. 

The continuous form of Bayes theorem for the random 

variable  over the  domain, having ti, i = 1...n as test 

results, is: 
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with  () the mathematical form, which formalizes the prior 

information. 

With regard to the aspect of reversing in statistics, we consider 

a probability density as apo( 10 , ,β). As consequence, the 

ML theory can be applied. So a search of values that 

maximizes the  apo( 10 , ,β) and the covariance matrix 

associated to these estimators will be searched. MAP method 

considers the a posteriori density function ),,( 10 Tapo   

and the punctual estimators of unknown parameters 

  ,, 10  are estimated so that they maximize: 

 ),,(max)ˆ,ˆ,ˆ( 1010 TArg apo  
 

(7) 

By differentiating after the variables   ,, 10  of the function 

ln [apo( 10 , ,β)] , the MAP estimators )ˆ,ˆ,ˆ( 10   can be 

obtained by solving the equation system [1]:  
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Fisher information applies to the function that describes the 

information on the parameters, ),,( 0 Tapo   [1, 4] 

becomes: 
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So, the estimator of the reliability function 
0

ˆ
SR is defined 

by: 
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The parameters  ˆ,ˆ,ˆ
01  and )ˆ,ˆ,ˆ( 10 MAPI are obtained 

by Monte Carlo simulation [5]. 

III. PRIOR COMPATIBILITY AND WEIGHTING 

Among the articles on Bayesian inference for estimating 

the   parameter many of them insist on opposing the behavior 

of the posterior estimation when the prior information is badly 

conditioned. 

The objective knowledge of reality given by the 

likelihood may be lost by choosing an improper prior. In most 

cases, articles are brought to a reinforcement of the robustness 

later. However, the first difficulty is to correctly regard that 

prior knowledge and likelihood are not contradictory. 

[6] proposes to use a Fisher test between prior and 

empiric measures of uncertainty. [7] proposes a prior 

validation using a criterion of coherence that measures the 

compatibility between the prior   and the likelihood. 

[8] proposes a method to validate the prior distribution 

by studying its compatibility with the likelihood. Further 

development is carried out in [9]. 

The methodology proposed by [8] compares the 

information contained by the prior for each parameter i  with 

the information contained by the likelihood. This is done by 

using a factor, which is proportional to the convolution 

product “Fig. 1” between the prior )( ii
  and the 

likelihood )( if  . It is thus possible to define the real C (  ) 

by the convolution product )()( ii f
i

   as: 
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The normalized expression of )(C  , noted as K  , is: 
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with: 

  )0(iC  for 0   

  )(max iC  maximum of )(iC   
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Fig.1. Principle for determination of the weighting coefficient 

The resulted iK  takes values between 0 and 1 and is 

further used as a weighting factor for the prior distribution. 

The use of the weighting over the prior distribution 

should be seen as a diminution of confidence over the prior 

information for the i  parameter. Closer to 0 the value of iK  

is, less confidence is assigned to the prior )( i . Closer the 

value of iK  is to 1, the more confidence in the prior )( i . 

Depending on the value of iK , a new )( iK   is obtained and 

should replace the prior information )( i  (equation 6). 

 

 
Fig.2. Weighted prior for different values of K 

 

The weighted prior distribution )( iK   keeps the first 

order moment of the prior )( i . On the contrary, in order to 

decrease the confidence we have in )( i  , we shall increase 

the value of the variance associated by iK/1 . So, the 

distribution is to be "stretched" more ( iK  close to 0) or less 

( iK  close to 1), as in “Fig. 2”. 



IV. SVA MODEL APPLICATION 

Research the compatibility between a priori knowledge 

and the likelihood consists in determining the factors K for 

each parameters of the SVA model. To do this, we determine 

the marginal functions (gθ (θ)) associated with the parameters 

θ (fθi (θi) for the parameter θi) of model by: 
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Then, we determine the factor Kθi (method presented in 

Section III) by considering the marginal distributions fθi (θi) 

and a priori Πθi (θi). Once the factors Kθi are estimated, we 

determine the prior distributions weighted according to the 

method detailed in the previous paragraph. This step is not 

systematic, because the incompatibility can be explained by 

other causes of a problem a priori. Thus, we obtain a new 

formulation of Bayesian inference: 
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with notations as L (t1, .., tn / θ) the likelihood (defined by 

equations 4), i (θi, Kθi) prior distribution weighted for the 

parameter θi and πapo (θ / ti) function posteriori. 

By the MAP method, we determine the 

parameters  10
ˆ,ˆ,ˆˆ   . Then the matrix Fisher 

 10
ˆ,ˆ,ˆ MAPI   is determined for deduct the matrix variance-

covariance   10
ˆ,ˆ,ˆ  . Finally, we determine the reliability 

metrics and verify the qualification criteria. 

In the case where the qualification criterion is not 

verified, we continue the initial test plan. 

V. ROBUST TEST PLAN BASED ON COST PLANNING CRITERION 

The objective of the accelerated testing plan optimization 

is to determine the test plan parameters (stress levels, sample 

size allocation at each stress level, …) minimizing the global 

cost as defined by the costs of testing and operation. This term 

allows us to introduce a robustness analysis according through 

an objective function. 

operationtestingglobal C  C  C    (15) 

The operation cost is defined by considering risk α in 

terms of target metric m0. This term allows us to introduce a 

robustness analysis according to objective function. 

When the test plan is defined, it is implemented and the 

results are collected to estimate the parameters of SVA model. 

This is then used to deduct the reliability metric and verifies 

the validity of the qualification criteria. As we precised 

previously, the qualification criteria is defined by: 

  )Prob( 0mm   (16) 

with m0 the reliability metric target to hold, α risk fixed and 

mα unilateral terminal. 

The optimization problem is formulated as follows: 

Search the plan parameters ω from plan chosen P (ω) such 

that: 

Minimize C (ω, θ, mα (γ, β), m0) 

under constraints: 

gi (ωi) ≥ 0, i = 1,. . . , r  

β ∈ π (β) ; γl ∈ πl (γl) l = 1. . . , m 

 

Function gi (ωi) is the constraint function on the 

constraint ωi. This formulation allows to fix the some 

parameters of the test plan and to take into account the 

possible field of SVA model parameters to obtain an optimal 

plan robust against of the actual reliability of the tested 

product. 

The methodology employed to define the optimal test 

plan and robust consisted in defining the parameters of the 

plan guaranteeing the decision making as to qualification 

whatever the actual reliability of product to given risk α.  

VI. DESIGN AND CONDUCTING TEST PLAN METHODOLOGY 

The proposed methodology consists of defining a robust 

accelerated testing plan while considering an objective 

function based on economic approach, using Bayesian 

inference for optimizing the test plan, and taking into account 

the uncertainty on input data (reliability, activation energy …). 

This will produce a robust, optimal testing plan. To obtain the 

best test plan, we propose an optimization procedure using a 

specific genetic algorithm. This GA procedure allows us to 

improve best compromise test plans by searching the optimum 

with more freedom variables on ALT plan. The optimization 

process can be applying to conduct a test. It will allows to 

verify the compatibility of results with prior knowledge and 

reduce the censoring time in case of "Good results" while 

keeping the same level of risk [11]. 

During the analysis, it is possible to realize that a priori 

knowledge of the model parameters is not fully compatible 

with the test results [10]. Thus, it was defined a coefficient of 

compatibility between a priori and likelihood to measure the 

degree of coherence between the two sources of information 

(subjective and objective). This coefficient can be used to 

weight the a priori in order to give more weight to the data 

(likelihood) as presented in “section III”. 

In cases where the actual reliability corresponds to 

expected, it is possible to adjudicate more quickly. Also, 

during the test it is possible to realize periodic estimation of 

the model parameters and reliability metrics to verify the 

qualification criteria. 

 

 

 

 

 

 

 

 

 

 

 



The proposed method is decomposed in different steps as 

depicted in “Fig. 3”: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Design test plan methodology 

VII. DEFINITION OF DESIGN PROCESS 

According to Figure 3, we define a design strategy to 

obtain the optimal test plan and to conduct the test based on 

following steps: 

A. Information 

 Planning information (Identify and Design): a detailed 

test plan with determining of the type of stress, stress 

levels, number of units to be tested at each stress level, 

 Test Plan Optimization (Reliability models): the 

determination of the mathematical model which best 

describes the system from which data are measured, 

 Verify system and robustness: verify the compatibility of 

results with prior knowledge and reduce the censoring 

time in case of "Good results" while keeping the same 

level of risk (Possible when conducting a test), 

 New optimization of test plan: optimal design to obtain 

the best parameter estimates. 

B. Planning hypothesis and strategy 

By planning information, we can plan and perform the 

test at the highest stress to quickly obtain failures so we have 

preliminary information on parameters, then we can plan the 

tests at lower stress levels. 

This design strategy will conduct us towards sequential 

ALT planning. In sequential ALT planning, at the first we 

plan and run the test at the highest stress, then we verify the 

compatibility of results (Deduction of prior distributions), and 

finally we can obtain optimal test plan(Pre-Posterior Analysis 

and Optimization). 

C. How will the testing phase take place? 

To illustrate our purpose, we formalize the possible 

strategy on an example of constant ALT with three stress level. 

To conduct the test plan, several hypotheses can be taken to 

define the strategy of setting up testing as: 

 A single test bench, Tests on different stress levels are 

performed one after the other. 

 Conduct testing begins with the highest stress levels, and 

then reduced to the lowest stress levels. This allows 

observing the maximum of failure initially for a minimum 

time in order to verify compatibility. Here, there may be 

several strategies, but it seems to be the best. 

 We exploit the intermediate results of the test, once the 

censoring time completed for a given stress level on a test 

bench. 

According to the strategy defined, the operating sequence 

of test is represented in Figure. 4 : 

 

Fig.4. Operating sequence of  test bench representing the stress levels as a  
function of time 

 

VIII. RELIABILITY VERIFICATION TESTING 

Reliability verification testing is almost always included 

as a quality specification for new products. Qualification 

includes all activities that ensure that the nominal design and 

manufacturing specifications will meet or exceed the desired 

reliability targets. Qualification validates the ability of the 

nominal design and manufacturing specifications of the 

product to meet the customer’s expectations, and assesses the 

probability of survival of the product over its complete life 

cycle. The purpose of qualification is to define the acceptable 

range of variability for all critical product parameters affected 

by design and manufacturing. Product attributes that are 

outside the acceptable ranges are termed defects, since they 

have the potential to compromise product reliability.  
 

 

Definition of a robust  accelerated testing plan 

- Three accelerated constant stress levels 

- Accelerated life testing model 

- Optimization procedure and robustness analysis 

 

Consistency of prior knowledge 
- Definition of reliability target 

- Prior knowledge on product 

- Likelihood provided by the data 

- Prior validation 

Stopping criteria of test plan 

- A weighting factor 

- Estimation the posterior reliability metric 

- Target risk 

- The confidence level & stopping of test 



 

Fig.5. Rejected and acceptance criterion 

 

A. Tests of Hypotheses 

Consider the target reliability metric m0, the test is 

defined by the hypotheses: 

H0: m0 < mα  

H1: m0 > mα’  

With mα and mα’ the unilateral bounds values estimated with 

testing results and in using Bayesian approach presented in 

sections II and III. 

Thus these values represent: 

mα: The upper limit of reliability metric estimated for 

consumer’s risk . 

mα’: The lower limit of reliability metric estimated  for 

producer’s risk '. 

With the estimation obtained on target metric m0, the 

bounds mα and mα’ of bilateral confidence interval allow to 

verify H0 and H1 with respectively m0 < mα and m0 > mα’. 

B. Sequential life testing 

Related to operating sequence of test, we define a 

sequence of time observation (tn) and the corresponding 

bounds sequence of bilateral confidence interval (mα)n and 

(mα’)n.  

At each time tn, we define acceptation region if m0 < mα 

and rejection region if m0 > mα’ and we continue the test 

otherwise (m α< m0 < mα’). 

IX. NUMERICAL EXAMPLE 

This example consider an electronic module for pump 

control that normally operates at 45°C.To estimate its 

reliability at the use condition, 50 units are to be tested at three 

elevated temperatures. The high one is 105°C, which is 5°C 

lower than the maximum allowable temperature. The 

censoring times are fixed for low, middle and high stress 

levels respectively at 1080, 600 and 380 hours. The unequal 

censoring times are considered to be fixed due to industrial 

constraints (test schedule and total test time fixed). 

A Weibull distribution is considered to define the 

reliability and the Arrhenius model to describe the temperature 

effect on scale parameter. The SVA model is defined by : 
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The reliability target is defined by the probability of 

failure equal to m0 = 1%.  

We use Yang’s procedure to determine the best 

compromise test plans [13]. Thus we have a test plan as can be 

seen on the following table: 

 

TABLE I. Design test Plan 

 

We define the interval values of prior knowledge for 

parameters of associated Normal distribution γ0, γ1, β as the 

following table: 

 

TABLE II. Prior knowledge for example 

 

 

 

 

 

 

 

 

 

We present different possible situations for our example 

in simulating test results by Monte Carlo. 

Case 1: Acceptance test at the first step  

The SVA parameters values selected for the simulation of 

the testing results are:  
γ0 = −21.65, γ1 = 10000, β = 1.5 

that they are the mean values of each parameter from a priori 

information. 

 
Fig.6. Simulation result in acceptance case at first level 

 

The distribution shown in Figure 6 characterizes the 

probability of failure estimated from the simulated data and a 

priori information. The horizontal line at 1% marks an target 

 Group 1 2 3 

Yang best compromise 

test plan 

Number of Test Units 34 5 11 

Temperature(°C) 74 89 105 

βmin 
̂  

βmax  

N (1.5, 0.03) 

1.3     1.5 1.7 

min0  0̂  max0  
 

N (-21.7, 1.7) 

-31.65  -21.65 -11.65 

min1  1̂  max1  
 

N (9980, 413.3) 

7500  9980 12460 



value and we can find that the confidence interval bilateral 

symmetrical (at risk level α = ’= 0.05) drawn from the 

distribution of Pf is widely below the threshold. The lower 

bound allows in certain situations to reject the qualification. It 

is possible to construct a confidence interval dissymmetrical to 

take into account the values of different customer and supplier 

risk.  

Tests are realized at the highest stress to cause rapidly of 

failures. In this case, we obtain early information of our 

parameters allowing an acceptance of product qualification 

manner anticipates. The anticipation of the qualification 

decision will allow preserving a part of the testing cost. 

 

Case 2: Acceptance test in the second step 

The initial values selected for the simulation of testing 

results are: 

γ0 = −27, γ1 = 11500, β = 1.6 

 

The Figure 7 presents the analysis result for two levels of step-

stress test. The estimation m of failure probability at first level 

is upper than m0. At second level, The estimation m is in 

acceptance area (green area). 

 

 
Fig.7. Simulation result in acceptance case at second level 

 

In this case, we obtain early information of our 

parameters allowing an acceptance of product qualification 

manner anticipates at the second steps. The anticipation of the 

decision will again allow preserving a part of the testing cost. 

 

Case 3: Rejection of the test in the third step  

The initial values selected for the simulation of testing 

results are:  
γ0 = −27, γ1 = 11000, β = 1.6 

 

 
Fig.8. Simulation result in rejected case at third level 

 

In this case, the intermediate analysis does not allow 

anticipating the result as to the qualification decision. An 

optimization of test plan in the second step would perhaps 

increase the number of elements tested at intermediate stress 

level to provoke failures more quickly and improve the 

precision of the estimation in the second steps. 

 

Case 4: Acceptance test in the third step  

The initial values selected for the simulation of the testing 

results are: 

γ0 = −26.2, γ1 = 11000, β = 1.6 

 
Fig.9. Simulation result in acceptance case at third level 

 

The fourth case, as the previous shows the usefulness of 

the need for an optimization intermediary of the test plan. 

By considering these four cases, it can be said in the first 

case we selected the initial values equal to mean values and we 

have m0 < mα thus, this will result the acceptation region. In the 

other three cases, the initial values are different with mean 

values. In the second and fourth cases, we have  mα< m0 and by 

continuing test m0 < mα that  it will result acceptation region. In 

the third case, mα< m0< mα’ but by continuing test m0> m α’ and 

we have the rejection region. These results are summarized in 

following table. 

 

TABLE III. Different possible situations for numerical example 

 

 

 

 

X. CONCLUSION 

In this paper, we are interested in monitoring during of 

the realization of the tests. In fact, the methodology presented 

in the section VI can be reemployed to anticipate the 

qualification decision and improve the cost of testing. To 

permit this monitoring, the first we use a compatibility factor 

with a priori data. This factor is used to estimate the reliability 

for each step of the realization of the plan in consistency 

between the test data and a priori information. This is 

illustrated using an example with different cases of test data 

leading to different conclusions. In some cases (1 2), it is thus 

possible to make a decision qualifying fastest to backup the  

Case1 Case2 Case3 Case4 
Accept Continuing test Reject Continuing test 
m0 < mα mα < m0< mα’ m0 >m α’ mα < m0< m α’ 



spending of test. In other cases, against, requires an 

intermediary improvement plan from a new optimization test 

plan. 

 Reliability is a characteristic inherent for any product or 

system and in today's world, it’s as one of the measurable 

quantities of design, construction and operation that in the 

process should be considered and controlled as an important 

criterion. Thus according to the previous works [5, 11] we 

design an optimal accelerated test plan and we were able to 

develop it. Now, we want to build a qualification plan 

a new product with a degree of innovation more or less 

important, it is possible that variability also relates to the 

choice of model. Also, it would be interesting to study the 

robustness integrating lack of knowledge of real models. 
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