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Abstract—This paper uses the Hidden Markov Model to model
an industrial process seen as a discrete event system. Different
graphical structures based on Markov automata, called topolo-
gies, are proposed. We designed a Synthetic Hidden Markov
Model based on a real industrial process. This Synthetic Model
is intended to produce industrial maintenance observations (or
“symbols”), with a corresponding degradation indicator. These
time series events are shown as Markov chains, also called
“signatures”. The production of symbols is generated by using
a Uniform and a Normal distribution. Hence, we implemented
these various symbols in proposed topologies using Baum-Welch
learning algorithm decoding by Forward Variable and Segmen-
tal K-means learning, decoding by Viterbi. Through different
measurements on model outputs, these frameworks (a topology
with a learning & decoding algorithm and a distribution) are
compared to determine the best part of criteria applied to
observations. Assessment results show significant differences
between the various frameworks studied. After determining the
most relevant framework, we developed an industrial application
and compared it with the best model framework found. Finally,
we propose a model adjustment to fit the industrial maintenance
activities studied. Our aim is to produce the best Synthetic Model
framework to be used to improve maintenance policy, worker
safety and process reliability in the industrial sector.

Index Terms—Hidden Markov Model, model selection, learn-
ing algorithms, decoding algorithms, statistical tests, uncertain-
ties, predictive maintenance.

I. INTRODUCTION

H IDDEN Markov Models can be used for modeling com-
plex systems. In this study, we use this kind of model to

detect faults in systems. Nowadays, industrial robots operating
in a several environment need upstream fault detection in order
to prevent any breakdowns. Indeed, it is conceivable for poorly
maintained equipment to break down, bringing the entire
production line to a halt. The two key concepts in maintenance
are: maintain and restore. The first one refers to a preventive
action, while the second refers to a corrective action. Thus,
maintenance optimization for reliability determines “optimal”
preventive maintenance. The events preceding a problem in
maintenance activities are often recurrent. Series of unusual
events should inform us about the next failure.
Most published papers aim to optimize performance using
given risk and reliability strategies. Our work, [1], has shown
that it is possible to model degradation levels of a process.
Moreover, we built a Synthetic Model based on a reference
model, which fits real industrial processes ([1]). We also
showed in [1], that this reference model provided good failure
prediction. This Synthetic Model produced observations or

symbols, commonly used in a CMMS1 and degradation indi-
cators: S1, S2, S3 and S4 (see figure 1). In this paper, we try
to assess the relevancy of these observations based on different
HMM topologies, depicted in figure 1. Different kinds of
framework2 are tested: Uniform and Normal distributions,
Baum-Welch learning [2], decoding by Forward Variable [3]
and Segmental K-means learning [4], decoding by Viterbi.
Assessment of the produced observations was made by using
criteria usually used in model selection: Shannon Entropy,
Maximum Likelihood, Bayesian Information Criterion and
several statistical tests. We also evaluated epistemic uncertain-
ties in order to frame the margin error of the model design.
The structure of this paper is as follows: in section II we out-
line HMM, describe the Synthetic Model design and present
methods to assess the relevancy of model parameters. The
results are given in section III and discussed in section IV.
Finally the findings are compared with an industrial applica-
tion in section V and some adjustments of the Synthetic Model
are proposed.
The purpose of this study is to validate a model framework and
show that our design choice meets objectives in the improve-
ment of preventive maintenance and breakdown prediction, in
the industrial sector.

II. METHODOLOGY

A. Hidden Markov Model

In this study, we chose HMM to describe industrial
maintenance events. An HMM consists of a hidden stochastic
process modeled by a Markov chain and an observable
stochastic process. This kind of model is represented by
automaton with hidden states which consists of unobservable
variables ([3]). These unobservable variables represent the
system status to be modeled. Only output variables are
observable. Moreover, this automaton is intended to generate
observation sequences from its outputs. (see an example of
model topology depicted in figure 1). Indeed, we attempted
to assess symbols relevancy.

HMM is characterized by:
• State number;

1A Computerized Maintenance Management System is an information
database about maintenance operations. This information is intended to make
a decision support for maintenance experts.

2A framework includes: a topology, a learning & decoding algorithm and
a distribution.
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• Number of distinct observation symbols per state, obser-
vation symbols corresponding to the physical output of
the system being modeled;

• Distribution probability of state transitions;
• Distribution probability of observation symbols;
• Initial states distribution.
1) Markov assumption: States prediction is not made any

more accurate by adding a priori knowledge of the infor-
mation, i.e. all useful information for future prediction is
contained in the present state of the process (i.e. it’s a Markov
chain of order 1).

P (Xn+1 = j|X0, X1, . . . , Xn = i) =

P (Xn+1 = j|Xn = i).
(1)

We used this assumption to take into account several orders
of a Markov chain.

2) Definitions of a discrete HMM: In this section, we
describe the variables used in an HMM:

• Let N , be the number of workable hidden states and S =
{S1, S2, . . . , SN}, the set of this variable. Let qt, be the
value of this variable at time t;

• The modeled process must match first-order Markov
assumption (see §II-A1);

• Let T , be the full number of observation symbols and
let X = {x1, x2, . . . , xT }, observations sequence of the
modeled process;

• Let A = {aij}, distribution probability of state transitions
where:

aij = P (qt+1 = sj |qt = si)

1 6 i, j 6 N,
(2)

• Let B = {bj(m)}, distribution probability of observation
symbols in j state, where:

bj(m) = P (Xt = xm|qt = sj)

1 6 j 6 N 1 6 m 6 T,
(3)

where Xt, is the value of observation variable at time t.
• Let π = {πi}, initial states distribution where:

π = P (q1 = si) 1 6 i 6 N, (4)

• HMM will be set as: (A,B, π).

B. HMM topologies
Candidate models are represented by automata with four

oriented states. These stochastic automata, depicted in figure
1, represent the degradation level of an industrial process, S4 to
S1. {S4, S3, S2} states, when the process is running (“RUN”),
and {S1} state, when the process is stopped (“STOP”). Topol-
ogy 1, depicted in figure 1(a) describes all possible transitions.
With topology 2 in figure 1(b) we need to go through all states
(S2 and S3) to go from a high level of availability (S4) to a
low level of availability (S1). Figure 1(c) depicts the difference
between topologies 2 and 3: S1 becomes a first state of a
breakdown.
Regular temporal sampling is a requisite to have a Markov
process. Both the simulated process and industrial database
must have the same temporal sampling. We can therefore use
Markov modeling. These 3 topologies are intended to simulate
an industrial process as presented in the next paragraph.
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Fig. 1. The four-state Hidden Markov Model. Different topologies are
represented. All transitions are permitted on 1(a). In 1(b) and 1(c) we
removed some transitions, in order to have a more representative topology
that was more representative of an industrial situation. S1 to S4 represent
the degradation levels. S1: the system is stopped. S4 to S2: progressive
degradations of the process. The production of symbols represents the Markov
chain given by a maintenance database. λi is the failure rate and µi is the
repair rate. π is the initialization matrix.

C. Simulated industrial Computerized Maintenance Manage-
ment System

Nowadays, many industrial factories use preventive main-
tenance. Maintenance operators consign their actions and
observations in a centralized database. We show an example
of such database in table I. For instance, symbols “PM, OT,
SP, . . . ” could characterize maintenance activities carried out
on industrial processes. We recall the meaning of selected
symbols resulting from observations given in table II. The
“SP” symbol corresponds to a stop of production units: process
state = “STOP” in table II. It is a critical condition, which
our research aims to minimize. Process state = “RUN” when
production units are running without failure.
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Name Date Ope. Cd IT N° Code
Dupond 11/01/2007 Lubrication PM 20 1 9
Dupond 11/01/2007 Lubrication PM 20 2 9
Dupond 12/01/2007 Lubrication SEC 30 3 5
Dupond 12/01/2007 Lubrication PM 30 4 5
Dupond 13/01/2007 Padlock PM 10 5 6
Dupond 13/01/2007 Padlock NTR 30 6 5
Dupond 13/01/2007 Padlock NTR 30 7 5
Dupond 16/01/2007 Lubrication SP 90 8 1
Dupond 19/01/2007 Padlock OT 10 9 3

TABLE I
EXAMPLE OF RECORDED EVENTS FROM A MAINTENANCE DATABASE.

We conceptualized this kind of maintenance here by using

Process states
RUN
STOP

N°Obs. Interventions type
1 SP (Troubleshooting / Stop Production)
2 SM (Setting Machine)
3 OT (Other)
4 OBS (Observation)
5 PM (Preventive Maintenance, Production not stopped)
6 SEC (Security)
7 PUP (Planified Upgrading)
8 CM (Cleaning Machine)
9 PMV (Preventive Maintenance Visit)

10 NTR (Nothing to report)

TABLE II
SYMBOLIC CODING SYSTEM OF MAINTENANCE INTERVENTIONS.

a Synthetic Model presented in the next paragraph (§II-D)
to simulate this real industrial environment. We chose “λi”
(failure rate) and “µi” (repair rate) of HMM parameters, to
match the maintenance register as closely as possible (table
I).

D. Conceptual Synthetic Model

We designed a Synthetic Model with Matlab by using four-
state oriented HMM, with the reference topology 2 presented
in figure 1(b).
HMM topology only depends on matrix elements, where
{aij} 6= 0 (If all matrix elements are different from zero,
we have a “total connectivity matrix”). The transition matrix
(A) defined in the paragraph II-A2 has been specified in [1]
by:

A =


0.500 0.250 0 0.250
0.100 0.070 0.500 0.330

0 0.005 0.495 0.500
0 0 0.001 0.999

 . (5)

The Synthetic Model built sequences of data (also named
“signatures”) by using the uniform distribution and the normal
distribution.

We used these symbol sequences as a Markov chain (see
table III), to model the degradation level of a process (see an
example of degradation sequence in figure 2).

We will now describe the framework specifications used
for data analysis. We produced 12 sequences distributed
among 1000 2-tuple (Symb_U, State_U) for a Uniform
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Fig. 2. Example of a degradation sequence of a process. The process starts
at level 4. It becomes more and more degraded over time. After a Preventive
Maintenance Visit (PMV), you can see that the degradation level increases on
level 3. It decreases again until nothing is done (NTR: Nothing To Report)
see label 10 and 11. Then, the process stops on label 12 (SP). PM is the
symbol for Preventive Maintenance and SEC for a Security report.

PM PM SEC PM PM NTR NTR SP . . .

TABLE III
SEQUENCE OF A MESSAGE FROM MAINTENANCE DATABASE.

distribution and 1000 2-tuple (Symb_N,State_N), for a
Normal law. Each sequence ends with a production stop
(symbol SP). Hence, we implemented these Symbols and
States in the 3 HMM topologies described in figure 1.
Thus, implementing the last 2-tuple through the 3 topolo-
gies, we obtained new States: (Symb_U, State_Ui) and
(Symb_N,State_Ni) with i ∈ [1, 3]. Afterwards, we used
two different learning and decoding algorithms in order to
estimate the new States through the topologies:

• Baum-Welch learning ([2]), decoding by Forward Vari-
able ([3]),

• Segmental K-means learning ([4]), decoding by Viterbi,
([5]).

We then obtained (Symb_U, State_UiBW ),
(Symb_U, State_UiSK), (Symb_N,State_NiBW )
and (Symb_N,State_NiSK). Finally, all theses
2-tuple were compared with (Symb_U, State_U) and
(Symb_N,State_N).

E. Evaluation methods

To model industrial processes, different topologies of the
Hidden Markov Model have been used, in the aim of finding
the best topology, the best learning & decoding algorithm and
the best distribution of symbols. We try to evaluate the best
HMM topology proposed in [1], by using Shannon entropy [6],
especially maximum entropy principle used in [7]. Calculation
is made with states and observations: production of symbols
of Synthetic HMM. To emphasize our analysis, we also use
some criteria which penalize the likelihood value, in order
to overcome over-parameterization models, like Akaike (AIC)
and Bayes (BIC) criteria. Finally, we determine the stochastic
nature of our given symbols and use some statistical tests
to see if the model fits the reference one. A diagram of the
evaluation process is given in figure 3.
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Fig. 3. The matching model method, using a Synthetic Model: We first used
the Synthetic Model (also called reference model), to generate stochastic 2-
tuple (Symbols, States) by using the Normal and the Uniform distribution.
Thus, we injected these signatures into the 3 topologies of Hidden Markov
Model. To achieve learning models, we use Baum-Welch learning, decoding
by Forward Variable and Segmental K-means learning, decoding by Viterbi.
We obtained new sequences of (Symbols, States) that we analyzed. We
evaluated the best topology, best learning algorithm and best distribution. To
evaluate this "signature", the following widely-used criteria have been applied:
Shannon Entropy, Maximum Likelihood, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) and Kolmogorov-Smirnov & Aspin-
Welch statistical tests. Finally, epistemic uncertainties make it possible to
frame the margin error of the model design. The synthesis of all these criteria,
yielded the best relevant framework.

1) Shannon entropy: The first criterion to evaluate rele-
vancy of the “signatures” is the Shannon Entropy. Namely, we
evaluated different order Markov chains. Hence, we calculated
the Shannon entropy in the one, two, three or four state
Markov-chain.
Shannon entropy is a function which calculates the information
rate contained in an information source. This source can be
a text written in any language, an electrical signal or an
unspecified electronic file.

2) Entropy definition: Shannon entropy is defined in [8] as
follows:

H(S) = −
n∑
i=1

Pi logb Pi, (6)

Pi is the average probability to find the i symbol in S.

Our implemented method to evaluate Entropy used the “max-
imum entropy principles”.

3) Maximum likelihood: The second criterion for the eval-
uation is the maximum likelihood principle: Let Pα, be a sta-
tistical model, and X , an observation sequence, the probability
of seeing X according to P can be measured by f(X,α) a
function which represents the density of X when α appears.
Since α is unknown, it seems natural to promote values of α
where f(X,α) is maximal: this is the notion of the likelihood
of α for observation X .

– Expression of the likelihood V :

V (x1, . . . , xn;α) =

n∏
i=1

f(xi;α), (7)

α is mathematical expectation.

– The maximum likelihood for a discrete sample Pα(xi)
representing the discrete probability where α appears:

log(V (x1, . . . , xn;α)) =

n∑
i=1

log(Pα(xi)). (8)

We maximize the logarithm of the likelihood function to
compare with the candidate models. According to [9], the prin-
ciple of maximum likelihood results in over-parameterization
of the model to produce good performances. Penalization of
the likelihood value can overcome this disadvantage. The
most famous penalized log-likelihood criterion is the AIC
[10], even if it is not completely satisfactory: it improves
the maximum likelihood principle but also leads to an over-
parameterization. Other traditional criteria, BIC and HQC,
ensure a better estimation by penalizing oversizing models.
In the following paragraphs, we introduce the Akaike Infor-
mation Criterion and Bayesian Information Criterion. Both
methods of model evaluation penalize the number of estimated
parameters.

4) AIC and BIC: The best model is the one which has the
weakest AIC ([11]) or BIC. BIC was introduced in [12]
and penalizes more over-parameterized models.

AIC = −2 lnV + 2k, (9)

BIC = −2 lnV + k ln(n), (10)

V is the likelihood, k is the number of free parameters of
Markov Model [13], n is the number of data, k ln(n) is the
penalty term.

These criteria use the maximum likelihood principle seen in
(8). It penalizes models with too many variables, and avoids
overfitting models [14].
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F. Statistical tests

Another kind of assessment criterion, generally used in
model selection, is that of statistical tests. Most statistical tests
assume that samples are taken randomly to achieve [15]. That
sounds easy but it is actually quite difficult to achieve. The
adequacy of the technical design of the Synthetic Model has
been improved by using some statical tests.
We used the Kolmogorov-Smirnov test [16] and the Aspin-
Welch test [17] These may be used to determine if a set of
data comes from a particular probability distribution.

G. Epistemic uncertainties

Finally we tested the model design by calculating Epistemic
uncertainties. This uncertainty is explicitly due to the design
of the mathematical model. It is related to the human interpre-
tation of the phenomenon which leads to imperfections in the
design. We examined epistemic errors on the Synthetic Model
and determined design elements with the lowest uncertainty.

For a n measures series of x1, x2, . . . , xn, the uncertainty
on the average according to [18] is:

∆x =
σ√
n

=

√√√√ 1

n(n− 1)

n∑
i=1

(xi − x)2. (11)

• σ: samples standard deviation.

H. Industrial application

This approach involves understanding the signatures of any
industrial CMMS by using HMM topologies. Furthermore, our
best framework would be able to provide decision support
for organizing daily maintenance and would help experts to
schedule maintenance activities.

III. RESULTS

• Shannon Entropy: Topology 2 had significantly greater
Entropy than the others, with the Normal distribution
and with the Baum-Welch learning algorithm decoding
by Forward Variable,

• Likelihood Criteria: The results show a maximum log-
likelihood for the topology 2 and the Normal distribu-
tion. We have also the same conclusion for the AIC and
the BIC criteria,

• The Aspin-Welch and the Kolmogorov-Smirnov ade-
quacy test have the lowest p-value result for the follow-
ing framework: Topology 2, Normal distribution, and
Baum-Welch learning, decoding by Forward Variable,

• The best epistemic uncertainties are given for the topol-
ogy 2 with the Baum-Welch learning algorithm decod-
ing by Forward Variable and a Normal distribution.

The reader can find all results in table IV.

A. Other results

We calculated the Shannon Entropy for the 2nd, 3rd and 4th

order Markov chains given by the Synthetic Model. Calcula-
tion is made whatever the transition from one state to another.
Unfortunately, these different orders did not yield interesting

Topology Learn algo Distribution
Evaluation criteria 1 2 3 B.W. S.K. Nor. Uni.
Shannon Entropy 1st order × × ×
Shannon Entropy 2nd order No finding No finding No finding
Shannon Entropy 3rd order No finding No finding No finding
Shannon Entropy 4th order No finding No finding No finding
Maximum likelihood × No finding ×
Akaike Information Criterion × No finding ×
Bayesian Information Criterion × No finding ×
Aspin-welch test × × ×
Kolmogorov-Smirnov test × × ×
Best uncertainty × × ×

TABLE IV
GENERAL RESULTS FOR SOME CRITERIA.

results. Nevertheless, we applied the Entropic Filter ([19]) in
the 2nd, 3rd and 4th order Markov chains. We obtained a
maximum Entropy only for the 4th order. In particular for all
sequences ending with a SP symbol (see table V).

Symbols sequences Entropy
OT PM PM SP 0.352

OBS PMV PMV SP 0.352
PMV PMV OT SP 0.352

Others 4-tuple 6 0.178

TABLE V
SYMBOLS SEQUENCES (4th ORDER) WITH MAXIMUM ENTROPY, THROUGH

ENTROPIC FILTER.

IV. DISCUSSION

Through various criteria, we validated the best HMM
framework on topology, learning & decoding algorithm and
distribution:

• Topology 2 of HMM studied for all criteria,
• Baum-Welch learning algorithm decoding by Forward

Variable excepted for the likelihood criteria,
• Normal distribution.

A. Measurement of Shannon Entropy

1) First order measurement: Without a priori knowledge,
we evaluated the relevancy of the signatures by measuring the
Shannon entropy. We considered this signature as a 1st order
Markov Chain. Indeed, it is conceivable that some symbols
can disturb the harmony of the signatures we explored. We
removed discriminated symbols of zero entropy: Stop Produc-
tion symbol (SP). We have also removed the most representa-
tive symbols, where entropy is maximal: Nothing To Report
symbol (NTR). Then, we measured the Shannon entropy on
the various topology, learning & decoding algorithm and dis-
tribution, to see if it was correlated with the Synthetic Model
variables. To analyze the signatures, we made calculations with
the Entropic filter and without this filter. This figure shows the
most relevant framework according to Shannon. Namely, we
verify that the best model (which provides the better estimation
of the degradation level [1]) obtains a good “Entropy” score
through the entropic filter. The different distributions tested,
give the following results. Indeed, the best framework is the
Normal distribution, topology 2 and the Baum-Welch learning,
decoding by Forward Variable, where entropy is maximal.
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According to the two Entropy principles, we expected a better
Entropy for the Normal distribution. This is probably due to
the biggest value of the Normal distribution. Insofar as the
Normal distribution has the greatest differential entropy for a
given variance [20].

2) Other order measurements: We calculated this previous
criterion for 2nd, 3rd and 4th order Markov Chains. Unfor-
tunately, Shannon Entropy with different orders yielded a lot
of small and identical results (not presented in the paper).
We only found that Entropy is maximal for the following
Markov chains: 2nd order: (NTR, NTR), 3rd order: (NTR,
NTR, NTR) and 4th order: (NTR, NTR, NTR, NTR). NTR
is not a representative symbol since it is a no action symbol
(Nothing To Report). Then, we applied the Entropic Filter
through all symbol sequences. The 2nd and 3rd yielded no
interesting results.
On the other hand, with 4th order, we observed in table V that
the SP symbol only appears in all sequences where Entropy is
maximal. We can conclude that these particular signatures of
three symbols, induce a state of a Stop Production. As we
have seen before, this state is the S1 state of the considered
automata. These sequences could give us an indication of the
order of operations not to do, in order to avoid a critical
situation. Indeed, sequences (OT, PM, PM), (OBS, PMV,
PMV) or (PMV, PMV, OT) could lead us to a breakdown
that our research aims to avoid. According to the Markov
assumption seen in § II-A1, knowledge of the three previous
states could tell us about the next state. Hence, with these
particular sequences, an expert should decide to undertake
preventive maintenance actions, before a halt of the entire
production line.

B. Likelihood effects

After implementing these symbols in different learning
algorithms, we evaluated the log-likelihood of the frameworks
studied: This graph shows that topology 2 with a Normal
distribution, gives the best results. Unfortunately, Baum-
Welch learning Normal law and Segmental K-means learning
Normal law are too close to each other to conclude about
the best learning and decoding algorithm. Compared with the
other distributions, the Segmental K–means algorithm has a
bad distribution of symbols.
AIC and BIC are both similar methods of assessing model
fit. Though AIC and BIC are driven and penalize free
parameters in an effort to overcome overfitting, they are both
maximum likelihood estimates. AIC only differs with log-
likelihood by the penalty term (see equation 9). This additional
term depends on the number of free parameters. So, there is
no interest in presenting AIC results with the log-likelihood
ones. On the other hand, BIC is AIC taking into account the
number of data. Indeed, the penalty term of BIC depends
on the number of data (“k ln(n)” in equation 10). Hence,
measurement of BIC is a better way to take into account
our 1000 events. The results of BIC highlight the most
relevant topology (topology 2) (figure 1(b)) and the most
relevant distribution (Normal). That corroborates the results
in [1]. On the other hand, like the log-likelihood, results don’t

clearly show differences between algorithms then, we can not
conclude for the best learning and decoding algorithm.

C. Towards a stochastic generator

We first verified the randomness of the Synthetic Model
generator. The results show that all p-value > 0.01 for all
the parameters of all frameworks studied. According to the
standard definition of a stochastic process: it is a family of
random variables indexed by a parameter ([21]), so we can
consider that sequences of the generator are random enough.
In this case, the generator of the Synthetic Model gives a real
stochastic process.
In this way, we can conclude that the Synthetic Model is not
a biased model.

D. Statistical discussion

Next, we applied statistical tests on various frameworks.
Aspin-Welch and Kolmogorov-Smirnov test are used to eval-
uate if two distributions are roughly equal. The results of the
Aspin-Welch test (see paragraph II-F) show that only one value
achieved the threshold limit of the test. Under this “p-value”
limit, the two samples compared are considered to follow the
same law. Given a set of observation sequences simulated
by the Synthetic Model, we verified that the most relevant
topology had the “goodness of fit” i.e. how well model fits the
set of observations sequences. It appears now clearly that in a
statistical way, topology 2, using the Baum-Welch learning
algorithm decoding by Forward Variable, with a Normal
distribution is the best one.
To confirm the validity of the last results, we performed the
Kolmogorov-Smirnov test. This last test determines if two
datasets differ significantly. It has the advantage of making no
assumptions about data distribution. This test is less sensitive
than the Aspin-Welch test and it is intended for use with
samples having unequal variances.
The results give the same conclusions as previous tests for
topology, learning & decoding algorithm and distribution of
studied symbols.
Two different statistical tests: Aspin-Welch and Kolmogorov-
Smirnov showed the same results: the most relevant model
is obtained for topology 2, using the Baum-Welch learning
algorithm with Forward Variable decoding, with the Normal
distribution of stochastic symbols.

E. Epistemic uncertainties on the Synthetic Model design

We said that knowledge helps us to conceptualize a phe-
nomenon as different models. Therefore, we can make more or
less accurate predictions on the phenomenon. But what can we
say about the reliability of these predictions? We can answer
this question by given a margin error. But based on what
concepts can we calculate this margin?. . . So many questions,
so many uncertainties. Hence the need to frame this margin
of error.

According to [22], including uncertainties in the study,
allows:

• Optimization of safety, delimiting qualitatively system
failures,
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• Conceptual optimization, to improve the system and the
model.

Sensitivity analysis on various frameworks gave the epis-
temic uncertainties on different HMM studied. Epistemic
uncertainties highlight that topology 2, Baum-Welch learning
algorithm with Forward Variable decoding and a Normal
distribution gives the lowest error rate. Obviously, when
probability distributions have a finite standard deviation, the
uncertainty of [18] converges inexorably to zero. Otherwise,
we can see that the other topologies have higher uncertainties.
Hence, we can say that our conceptual Synthetic Model has
a better design with the following framework: topology 2,
Baum-Welch learning and a Normal distribution. Epistemic
errors due to human conceptualization are negligible with this
framework. Unfortunately, we failed to establish any ranking
between these various criteria. The results emphasized our
choice for topology 2 by limiting error on the relevance of
the symbols and therefore, in the model design.

V. CONFRONTATION OF THE SYNTHETIC MODEL WITH AN
INDUSTRIAL APPLICATION

A. Context

The industrial case consists in studying a continuous process
of bread production. When any failure occurs on the subsys-
tems of the line that involves stopping the entire production
line (a lot of bakery products are wasted). Therefore, preven-
tive maintenance has been scheduled to prevent such cases.
The factory operates all over the year, without any interruption.
Teams are organized in shifts. Every maintenance operation
or problem in the process must be recorded in the CMMS
database. According to the internal maintenance policy, one
day sampling is chosen. This regular temporal sampling makes
it possible to be in a Markov process situation. We made
comparisons with data for a period of 2 years. We had 611
records from their database (see table I).

B. Confrontation with Industrial data

To confront the Synthetic Model with the real industrial
case, we compared data from this industrial CMMS, with data
given by the Synthetic Model Symb_U and Symb_N . The
two tested distributions are the Normal and the Uniform one.
To compare objectively with the most relevant symbols, we
used the entropic filter. The densities of the compared models
are given in table VI. Comparisons are made by using the
Kolmogorov-Smirnov test as the adequacy between models
and the correlation coefficient. Hence, measurements of the
Synthetic Model adequacy reach up 93.75% and 0.7554 for
the correlation coefficient with a Normal distribution. We
only found 5.62% of adequacy for the Uniform distribution.
By observing the different shapes in figure 4, it appears now
clearly that the Normal distribution has almost the same shape
as the real industrial case. Whereas the Synthetic Model with
the Uniform distribution does not follow the industrial shape
studied.

C. Synthetic Model adjustment

Density comparison with the industrial case in figure 4 leads
us to make some adjustments. The Synthetic Model should
be improved, to have a better correlation coefficient. Several
improvements are suggested to fit the real industrial study, by
exchanging some symbols:

• SEC→ PMV (the right arrow means a symbol exchange),
• PM → SEC,
• PMV → PM.

Green dotted arrows in figure 4, show the proposed improve-
ments. Hence, we obtain the red dotted shape which is now
almost the same as the factory symbols densities.

D. Model adjustment results

Despite having the same results of the adequacy test
(93.75%), the correlation coefficient increased up to 0.9611.
Indeed, our proposed changes made the Synthetic Model more
efficient.
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Fig. 4. Densities comparison, between the Synthetic Model and a real
maintenance database from a bread production factory. You can see that the
Synthetic Model with the Normal distribution, has almost the same shape
as the real industrial data. Whereas the Synthetic Model with the Uniform
distribution does not follow the industrial shape. We made an adjustment of the
Synthetic Model (in red dotted), to have a better correlation coefficient. Green
dotted arrows are the proposed changes for the new model. SEC → PMV,
PM → SEC and PMV → PM. The blue area is the difference between the
industrial database and the adjusted Synthetic model. The (blue + red) area
is the difference without the adjustment.

VI. CONCLUSION

To model industrial processes, we built a Synthetic Model
and studied relevancy of the proposed frameworks. Differ-
ent topologies of HMM, different distributions and different
learning & decoding algorithms were used, with a view to
finding the best framework. We have provided several different
methods to help maintenance experts to select the best way to
optimize their daily maintenance policies. We also presented
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Symbols Symbols Densities
Industrial Data Model Normal law Model Normal law Adjusted Model Uniform law

OT 0.0769 0.0590 0.0590 0.0883
OBS 0.0288 0.0150 0.0150 0.0883
PUP 0.0288 0.0210 0.0210 0.0910
SM 0.0385 0.0530 0.0530 0.0831
SEC 0.0673 0.0760 0.1110 0.0857
PM 0.0922 0.0990 0.0760 0.0934
PMV 0.1395 0.1110 0.0990 0.0902

Correlation coefficient: Industrial Data VS Others Models 0.7554 0.9611 0.3750
Kolmogorov-Smirnov: Industrial Data VS Others Models 93.75% 93.75% 5.62%

TABLE VI
COMPARISON BETWEEN SYNTHETIC MODEL AND MAINTENANCE DATABASE FROM A BREAD PRODUCTION FACTORY (YEARS 2005–2006).

an approach to assessing the sensitivity of the Synthetic
Models. Good relevancy and good error rates for the following
framework: topology 2, Baum-Welch algorithm & decoding
by Forward Variable and a Normal distribution. Moreover,
with the 4th order Markov chain, we showed that we could
provide potential critical sequences to the maintenance experts,
before a breakdown occurs. After a confrontation with an
industrial case, we proposed a model adjustment to improve
the Synthetic Model. This makes it possible to apply these
results as part of preventive maintenance applications. After
having chosen the best framework, we should be able to
improve their preventive maintenance policy by providing
the maintenance experts with indicators of future potential
failures. Indeed, when HMM output indicates an orange
level (S2), the expert can decide to undertake preventive
maintenance before a breakdown occurs. In our work on
industrial breakdown prediction, determining the best frame-
work of HMM is expected to significantly reduce the failure
rate in production. Minimizing the failure rate will reduce
dangerous human intervention in maintenance, especially in
an unsafe working environment. Decreasing machine failures
will furthermore increase processes reliability. These criteria
could be used in relevance assessment for HMM modeling.
Thus we could propose a best model among a candidate set.
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