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Abstract—Fatigue failures caused by cyclic stresses are 

commonly modeled by Birnbaum-Saunders (B-S) and Weibull 
distributions. Sometimes, materials with high cycle fatigue 
exhibit bimodal failure rates which are difficult to model with 
Weibull distribution. The objective of this paper is to investigate 
a general Birnbaum-Saunders (GB-S) distribution which covers 
diverse hazard rates such as increasing, upside down, multimodal 
and others. This paper also utilizes GB-S distribution to model 
fatigue failure data and validate its performance under different 
conditions. GB-S-based-ALT model is also developed to provide 
accurate reliability and lifetime prediction at operating 
conditions using data from accelerated life testing experiments. 

Index Terms- Birnbaum-Saunders Distribution, SB-S, GB-S, 
ALT, inverse power-law, general log-linear model, MLE 

I. INTRODUCTION  

Fatigue, recognized as one of the main causes of failures of 
mechanical and electrical components, is a class of structural 
damage that occurs when material is exposed to cyclic 
application of stress with varying or constant amplitudes. 
Failure caused by fatigue in metallic structures is a pervasive 
phenomenon and failure of structural materials under cyclic 
application of stress or strain is now a problem of increasing 
interests of industry because most of the mechanical 
components work under cyclic stresses with varying or 
constant amplitudes during their lifetime of operation. A 
single static stress or strain, which is far below the threshold 
of the structure and causes no damage to the structure if 
applied once, could induce fatigue failure if applied repeatedly. 
Thus, failure data is important, however, obtaining failure data 
under design stress level to predict components’ reliability and 
lifetime directly is not always feasible. This paper models 
fatigue failure observed in materials which are subject to 
single-type-multiple-level mechanical stress with a general 
Birnbaum-Saunders (GB-S) distribution which is more 
flexible in modeling diverse failure rates. Additionally, this 
paper investigates the application of accelerated life testing 
models to the GB-S distribution in order to estimate reliability 
at normal operating conditions. 

A. Birnbaum-Saunders Life Model 

Birnbaum and Saunders [1] propose the standard Birnbaum-
Saunders (SB-S) distribution to model fatigue failure time of 
units when a dominant crack, which is caused by cyclic or 
other types of stresses, surpasses or reaches a predetermined 
crack length threshold. If T denotes a specimen’s lifetime, the 
cumulative density function (cdf) of T is approximately given 
by: 

 Pr 1

1

=

            

t t
T t

t t

t

t

   

  



 

     

  

   
    

   
  

  
  

(1)                       

Where 

=



, 





 , >0, >0   

 is the shape parameter and  is the scale parameter of 

the distribution,  is the failure threshold level,  is the 
standard deviation of the failure time data and  is the 
cumulative normal distribution function. The expected time to 
failure, variance, skewness and kurtosis of this distribution are 
investigated by Birnbaum and Saunders [1]. Desmond [2] 
notes that the SB-S distribution applies even when the 
assumption of SB-S is relaxed, that is, crack increment in a 
certain cycle not only depends on the current loading but also 
is affected by the total crack size caused by previous cycles. 
The kth moment of SB-S distribution can be obtained by the 
moment generating function (MGF) as stated by Rieck [3]. It 
is shown that the SB-S hazard function is unimodally upside-
down and the functional approximation of the changing point 
is given by Kundu [4]. 

Statistical analysis for the SB-S distribution is also 
developed. Since exact distributions of the MLEs are not 
available, Engelhardt and Wright [5] present asymptotic 



 

 

distributions to construct confidence intervals of the 
parameters. Two modified moment estimators that both 
improve moment estimation (MME) and maximum likelihood 
estimation (MMLE) are proposed. MME and MMLE exhibit 
their own pros and cons under different conditions as studied 
by Kundu and Balakrishnan [6]. Dupuis and Mills [7] provide 
robust estimation of the parameters and quantiles of SB-S 
distribution since in practice the collected data do not always 
follow the SB-S model. The inference procedure for the SB-S 
distribution with symmetrically incomplete data is derived by 
Desmond [2] since in practice it is common to end a life 
testing before all units under test fail. Desmond [8] develops a 
log-linear model based on the SB-S distribution which 
considers random effects and studies the performance of 
various estimation and prediction methods. 

SB-S distribution is considered as one of the normal 
distribution family and its relationship with similar 
distributions is discussed and investigated by Desmond [8], 
Kundu [9], etc. Desmond [2] states that SB-S distribution is 
more flexible than Inverse Gaussian (IG) distribution, whereas 
the IG distribution seems to have applications for incomplete 
data but SB-S distribution has difficulty in incorporating such 
data.  

To generalize the SB-S model, two GB-S distributions are 
proposed by introducing a second shape parameter. One of the 
GB-S distributions proposed by Owen [10] considers the effect 
of sequence of loading and the crack extension thus the crack 
extension is modeled as a memory process. Owen [11] also 
proposes another GB-S distribution which is discussed in 
details in this paper. This GB-S distribution builds relationship 
between the lifetime T and standard normal variable Z as: 
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Where  and  are the shape parameters and  is the 

scale parameter of this GB-S distribution. Univariate and 
multivariate extensions of the SB-S distribution are given in 
Díaz-García and Dominguez-Molina [12]. Also, Díaz-García 
and Leiva-Sánchez [13] use a biological model to provide a 
more general derivation of SB-S distribution which yields a B-
S distribution family incorporating lognormal and other 
distributions. 

 

B.  Acceleration Model 

 
Statistics-based models are usually used to the failure times 

of fatigue failure data due to its ability in capturing the random 
variation of failure times due to different patterns or levels of 
cyclic forces. To model fatigue failure data, researchers usually 
utilize the normal distribution family to provide an accurate 
description of the failure time distribution. The SB-S 
distribution is derived from the normal distribution family. 
Compared with Weibull, lognormal and other distributions 
which fit failure data well especially within the central region 

of the distribution, SB-S distribution has been shown to 
provide an accurate description of failure data especially under 
low stress levels. Nevertheless, predicting reliability using 
fatigue data at normal operating conditions might not be 
feasible due to the extensive time and resource needed. 
Therefore, testing units at accelerated or other conditions and 
utilizing the failure times observed at different levels of 
stresses to predict the lifetime at operating levels of stress is an 
appropriate alternative approach. This type of test is termed an 
accelerated life test (ALT). A model which relates reliability 
and lifetime under severe conditions to normal environments is 
called an ALT model. The stress is not only referred to the 
mechanical force but also includes other types of “stresses”, 
such as humidity, voltage, temperature, etc.  

Elsayed [14] classifies ALT models mainly into several 
groups. The most widely used are the parametric models 
(statistics-based) and the physics-statistics-based models. The 
parametric models assume that failure time at different stress 
levels are related to each other by a common failure time 
distribution with different parameters (usually a mean or scale 
parameters). The life-stress function, which is the function of 
applied stress, substitutes the scale parameters for different 
levels of stresses while the shape parameter remains the same. 
Accelerated failure time (AFT) model is one of typical 
parametric models. 

The physics-statistics-based models explain the 
relationship between applied stress and failure rate by utilizing 
the parameters of the physics of the device in conjunction with 
the statistical parameters to obtain realistic models. The general 
log-linear relationship is a general life-stress relationship which 
incorporates other models, for example, the Arrhenius model, 
the inverse power law model and the Eyring model. Such life-
stress relationships can be applied in a specified underlying 
distribution and has the effect of changing the mean or scale of 
the failure distribution, but the shape parameters remain the 
same. Often, applying life-stress relationships to a distribution 
increases the number of the unknown parameters.  

The inverse power law model is applied to the SB-S 
distribution and the corresponding inference procedures are 
investigated by Owen [15]. 

II. GENERALIZED BIRNBAUM-SAUNDERS MODEL 

The hazard function of SB-S distribution is restricted to be 
unimodal which fails to cover a wide range of failure rate 
types as mentioned above. This paper investigates a 
generalized B-S model that overcomes the limitation of SB-S 
distribution in modeling diverse failure rates. As stated in Eq. 
2, with the second shape parameter   introduced, the cdf and 
hazard function of the GB-S model are: 
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The hazard rate function is 
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Note that SB-S is a special case of the GB-S distribution 

with =0.5 . 

A. Characteristics and Properties 

With Eq. 2 and the general binomial theorem, the 
transformation between T and Z is achieved as: 
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Thus, the rth moment of the GB-S model is: 
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It is worth noting that when
2

Z


  , the moments of T do 

not exist.  The expectation, variance, skewness and kurtosis 
are obtained as the special case of moments. The skewness 
and kurtosis are not affected by the scale parameter  . Figure 
1 reveals that when   becomes smaller, the kurtosis increases 
sharply. 

The pdf of GB-S distributions remains unimodal for 
different values of . Another important observation about the 
inverse of T is that: if T belongs to GB-S distribution with 
parameters ,  and   , then T-1 also belongs to GB-S 

distribution with the corresponding parameters -1,  and   , 

respectively. The skewness and kurtosis of 1T  are the same as 
the skewness and kurtosis of T . 

B. GB-S Hazard Rate 

Figure 2 shows GB-S hazard rates with constant  and 
varying since  , the scale parameter of the distribution has 

no effect on the shape so it is fixed at unity for all cases. Also 
for all value of , the hazard rate function is always upside-
down when =0.5 . In general, the hazard function of GB-S 
distribution covers three types of failure conditions: the hazard 
function can be either increasing or multimodal when 0.5  ; 
the hazard function can be either upside down or multimodal 
when 0.5   and the hazard function is always an upside 
down function of t when 0.5  . 

III. ACCELERATED MODELS 

Although the GB-S distribution is more flxible in covering 
different types of failure rates, its performance in modeling 
failure data, especially accelerated failure data, needs to be  
investigated. This sections begins with the development of GB-
S-based accelerated models, as well as Weibull and SB-S 
accelrated models, either in specific or general forms. In 
section IV, these models are applied to the experimental data 
and their performances is compared. 

A. Inverse Power Law-Based-Accelerated Model 

Once a baseline lifetime distribution with scale parameter 
or mean is adopted and an approporiate acceleration form is 
selected according to the applied stress type, the unknown 
parameters can be estimated by observing failure times at 
elevated stress levels which are then used to predict reliability 
at normal operating conditions. 

 



 

 

 
Fig.1. GB-S kurtosis for different  and    

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

t

h
(t

)

 

 

=0.3

=1

=2.5

 
Fig.2. GB-S hazard rates with constant  and varied 

  
The inverse power law model is commonly used for non-

thermal accelerated stresses and is given as:  

  -= >0, >0,h V V     

Where 

h(V) is a quantifiable life measure, such as mean life 
orcharacteristic life 

V represents the stress level 

,  are model parameters. 

By substituting the scale parameter  with the accelerated 

life model  h V , the accelerated inverse power law GB-S 

model can then be written as: 

 
1

;
t t

F t V
V V

 

 

   



  
               

      

(6) 

2 2

2

( ; )
2

          

1
           exp 2

2

t V
f t

tVat
V

t t

a V V





 

 

 



 







 

 

  

            
      

     
       

      (7) 

The estimation of the unknown model parameters in Eq. 7 
can be obtained by maxmizing the likelihood function for the 
observed accelerated failure data. Assuming two stress levels 

1 2
and V V are applied  and the corresponding two failure time 

data sets are obtained  The likelihood function is obtained as: 
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Where 

 i is the ith stress level 

 j is the jth failure data in the corresponding data set 

ni is the number of observations in ith data set 

tij represents the jth failure observation in the data set 
obtained under ith stress level 

 Vi is the ith stress level 

In this paper, data are obtained from the Instrument 
Development Unit of the Physical Research Staff, Boeing 
Aircraft Company, by subjecting metal-coupons to repeated 
alternating stresses and strains.   The three data sets obtained 
under three stress levels are listed below,  

Sample 1 (Stress/cycle:
4

2.1 10 psi): 

3.70, 7.06, 7.06, 7.46, 7.85, 7.97, 8.44, 8.55, 8.58, 8.86, 
8.86, 9.30, 9.60, 9.88, 9.90, 10.00, 10.10, 10.16, 10.18, 10.20, 
10.55, 10.85, 11.02, 11.02, 11.08, 11.15, 11.20, 11.34, 11.40, 
11.99, 12.00, 12.00, 12.03, 12.22, 12.35, 12.38, 12.52, 12.58, 
12.62, 12.69, 12.70, 12.90, 12.93, 13.00, 13.10,13.13, 13.15, 
13.30, 13.55, 13.90, 14.16, 14.19, 14.20, 14.20, 14.50, 14.52, 
14.75, 14.78, 14.81, 14.85, 15.02, 15.05, 15.13, 15.22, 15.22, 
15.30, 15.40, 15.60, 15.67, 15.78, 15.94, 16.02, 16.04, 16.08, 
16.30, 16.42, 16.74, 17.30, 17.50, 17.50, 17.63, 17.68, 17.81, 
17.82, 17.92, 18.20, 18.68, 18.81, 18.90, 18.93, 18.95, 19.10, 
19.23, 19.40, 19.45, 20.23, 21.00, 21.30, 22.15, 22.68, 24.40 

 

 



 

 

Sample 2 (Stress/cycle:
4

2.6 10 psi): 

2.33,2.58,2.68,2.76,2.90,3.10,3.12,3.15,3.18,3.21,3.21,3.29, 
3.35,3.36,3.38,3.38,3.42,3.42,3.42,3.44,3.49,3.50,3.50,3.51, 
3.51,3.52,3.52,3.56,3.58,3.58,3.60,3.62,3.63,3.66,3.67,3.70, 
3.70,3.72,3.72,3.74,3.75,3.76,3.79,3.79,3.80,3.82,3.89,3.89, 
3.95,3.96,4.00,4.00,4.00,4.03,4.04,4.06,4.08,4.08,4.10,4.12, 
4.14,4.16,4.16,4.16,4.20,4.22,4.23,4.26,4.28,4.32,4.32,4.33, 
4.33,4.37,4.38,4.39,4.39,4.43,4.45,4.45,4.52,4.56,4.56,4.60, 
4.64,4.66,4.68,4.70,4.70,4.73,4.74,4.76,4.76,4.86,4.88,4.89, 
4.90,4.91,5.03,5.17,5.40,5.60 

Sample 3 (Stress/cycle:
4

3.1 10 psi): 

0.7,0.9,0.96,0.97,0.99,1.00,1.03,1.04,1.04,1.05,1.07,1.08, 
1.08,1.08,1.09,1.09,1.12,1.121.13,1.14,1.14,1.14,1.16,1.19, 
1.20,1.20,1.20,1.21,1.21,1.23,1.24,1.24,1.24,1.24,1.24,1.28, 
1.28,1.29,1.29,1.30,1.30,1.30,1.31,1.31,1.31,1.31,1.31,1.32, 
1.32,1.32,1.33,1.34,1.34,1.34,1.34,1.34,1.36,1.36,1.37,1.38, 
1.38,1.38,1.39,1.39,1.41,1.41,1.42,1.42,1.42,1.42,1.42,1.42, 
1.44,1.44,1.45,1.46,1.48,1.48,1.49,1.51,1.51,1.52,1.55,1.56, 
1.57,1.57,1.57,1.57,1.58,1.59,1.62,1.63,1.63,1.64,1.66,1.66, 
1.68, 1.70,1.74,1.96,2.12 

To examine the performance of inverse power law GB-S 
model, failure data from any two of the three samples can be 
utilized to estimate the unknown parameters of the model and 
these estimated parameters can be used to predict the 
reliability under design stress. The estimated reliability is then 
compared with the theoretical reliability (observed data set). 

We use data sets 1 and 2 to estimate the unknown 
parameters. The log-likelihood function of the inverse power 
law GB-S model can be written as: 
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Taking partial derivatives of the log-likelihood function 

with respect to , ,  and      yields the following four 

equations: 
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Newton’s iterative method is applied to solve the partial 

derivatives of the log likelihood functions. The iteration ends 
when the estimate converges. Usually for a nonlinear equation, 
there exists more than one local optimal solution. These 
solutions are returned to the likelihood function and the global 
optimal value is obtained accordingly. 

To compare the performance of GB-S distribution with 
other models, the inverse power law Weibull accelerated 
model and the inverse power law SB-S accelerated model are 
developed as follow.  

 
The Weibull accelerated model: 
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Taking the logarithm of the likelihood function and partial 
derivates with respect to the unknown parameters of Weibull 
accelerated model we obtain as: 
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The parameters estimation procedure is similar to that of 
GB-S. The details of the power law SB-S accelerated model 
are given in Owen [15]. 

B. A General Log-linear Acceleration Form  

The inverse power law accelerated model is limited to 
modeling the relationship between lifetime and mechanical 
stress. To examine the GB-S accelerated model in a more 
general case, an exponential form of life-stress relationship, 
incorporating the inverse power law model, is considered: 
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0 1 1

exph Z a a z 
 

Where 
 Z is the stress vector (varied types of stress can be used) 

0 1
and a a are model parameters. 
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exp a z V
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 , the exponential 

model yields the inverse-power accelerated model. Substituting 
the scale parameter, we obtain the general acceleration models 
for Weibull, SB-S and GB-S distributions respectively, as 
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The likelihood functions and partial derivates with respect to 

each model’s unknown parameters can be found respectively. 

IV. COMPARISON 

As discussed earlier, an ALT model can be used to estimate 
reliability performance under the desired stress level by 
utilizing failure data obtained at different stress levels to 
obtain the parameters of the model. In this section, we 
consider all the scenarios where any two of the data sets are 
utilized to estimate the parameters of each proposed model 
and the predicted reliabilities of each model are compared 
with the third data set.   

Applying the data sets 1 and 2 to each model and 
comparing with the third data set, we obtain the following 
estimated parameters and the sum of squared errors (SSE) 
between the observed and estimated reliabilities for each 
model are obtained as summarized in Table I: 

 
 
 
 
 
 
 
 

 

 
 
 

Table I. Parameters and SSEs of each accelerated model 

 
Inverse power law Weibull accelerated model 

ˆ ˆ ˆ0.347,   1775.6,   =1.756k     SSE=19.918

 
Inverse power law SB-S accelerated model

ˆ ˆ ˆ0.249,    821.186,    =5.548     SSE=5.089

 
Inverse power law GB-S accelerated model

ˆˆ ˆ ˆ0.164, =0.333, 1045.834, =5.855     SSE=1.003

 

General Weibull accelerated model

0 1

ˆ ˆ ˆ2.618,   3.852,   1.868k a a     SSE=30.328

 
General SB-S accelerated model

0 1
ˆ ˆ ˆ0.248,   6.674,   5.533a a      SSE=4.032

 
General GB-S accelerated model

0 1

ˆˆ ˆ ˆ0.258, =0.522, 6.758, 5.62a a    

 

SSE=2.896

 

 
The Weibull accelerated model results in the largest SSEs 

for all scenarios implying that its prediction as an Accelerated 
Failure Time (AFT) model for these fatigue data is inaccurate.  
The GB-S accelerated model has the smallest SSEs for both 
inverse power law and the general cases. 

 
For the general accelerated models, the estimates of the SB-

S and GB-S’s shape parameters are almost identical (estimates 
of  are close to 0.5). For the inverse power law accelerated 
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Fig.3. cdf of three inverse power law models and theoretical cdf

Fig.4. cdf of three general models and theoretical cdf



 

 

models, there exist significant differences among the three 
models in terms of SSE and estimates of parameters. Clearly, 
GB-S model provides the most accurate prediction among all 
models. 

Similarly, data sets 1 and 3 are used to obtain the 
parameters of the models which are then used for reliability 
prediction at the stress level of data set 2.  Likewise, data sets 
2 and 3 are used to obtain the parameters of the models which 
are then used for reliability prediction at the stress level of 
data set 1.  The GB-S shows slightly better performance than 
the SB-S in terms of SSE. The estimates of the parameters of 
the GB-S and SB-S accelerated models are almost identical 
for the general (exponential) case. The ratios of the estimated 
shape parameters ( /  ) of the SB-S and GB-S accelerated 
models are close to the inverse-power-law case.  

V. CONCLUSIONS 

SB-S models are widely accepted to model fatigue failure 
data. However, it is limited in modeling different failure types 
of failure rates. In this paper, we generalize BS distribution 
and develop two GB-S-based-ALT models.  Their 
performances are compared with SB-S-based-ALT models 
and Weibull-based-ALT models using several multiple sets of 
experiment data.  The results show that the GB-S-based-ALT 
model outperforms the three accelerated.  Extensive analysis 
of different data sets show that developed GB-S ALT model 
can be used to provide accurate reliability prediction for 
fatigue and wear out data. 
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