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Abstract—The purpose of this article is to compare time
based maintenance (TBM) with condition based
maintenance (CBM) relative to cutting tools in the process
for removing material. We describe the fault detection
(FD), method based on the use of the analytical model of
the roughness of the work pieces to be machined. This
model is established under given cutting conditions and
calculated according to the maximum desired roughness.
Experimental results are presented for the cutting tool
TBM on the one hand, and for the validation of the FD
method allowing CBM on the other hand.

Index Terms—Condition-based maintenance, roughness
measurements, fault detection.

I. INTRODUCTION

Maintenance strategies in the manufacturing industry are
traditionally based on operations of time-based
maintenance (TBM), also known as periodic-based
maintenance [1], to ensure the availability of the
equipment. The instructions of maintenance are given
starting from predetermined values of working duration of
the pieces of the equipments. These values are generally
obtained from average statistics. The TBM can lead either
to premature thus useless interventions, or to too late
interventions, thus prejudicial to the correct operating of the
system. It must be noticed that generally less than 20% of
the equipments are used according to their predetermined
lifetime in TBM [2].
Condition-based maintenance (CBM) proves to be an
adequate answer to avoiding these risks because it refers to
the real state of the system, provided it satisfies its
implementation requirements [3, 4, 5, 6]. Currently, in
order to determine and understand the ongoing physical
behavior of machines, and further identify normal and
abnormal patterns, various sensors have been developed
and adopted to monitor and record information such as
temperature, lubricating oil, contaminants, pressure, sound,
and vibration [1, 7].

Fault detection (FD) is the first critical step in the CBM
design. Developing FD algorithms is a constant aim of
many researchers and refers to various principles. One of
the main methods is based on the analytical model of the
considered process [8, 9]. The model is computed and
works parallel to the system. The principle of the model-
based fault detection approach consists of a comparison
between the measured outputs of the system and the
estimated outputs of the model. The same input value is
applied to the system and to its model. In fault-free mode,
these two outputs are identical (neglecting the noise and
modelling errors). The difference between the two values is
called residual, r(t), and it should be close to zero. Any
occurrence of faults results in a deviation of the measured
output and r(t) deviates from zero. A decision logic reduced
to a thresholding makes it possible to determine the
occurrence of a fault. The threshold is selected to take into
account noise levels and modelling uncertainties. This
principle of fault detection and diagnosis is used by [10] for
two system components of diesel engines (the intake
system and the injection system together with the
combustion process) and by [11] for both a vehicle lateral
dynamics system and an active suspension system. [12]
used this principle of detection for the design of an
industrial fault tolerant robot. Fault tolerance attempts to
equip the system with detection, isolation and
accommodation capacities allowing the normal functioning
of the equipment despite the occurrence of faults. This
concept is detailed in [13].
This contribution from the community of the control
engineers is now directly exploitable in the implementation
of CBM techniques having the implementation of FD
stages in common with fault tolerance.
The study we present aims to optimize the maintenance
function of the machine’s tools. The proposed approach is to
compare between two maintenance strategies for the cutting
tool. The first one is TBM used for cutting tools in
machining, and based on the determination of the tool life.
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The second one is CBM, which is based on the real state of
the cutting tool. The specifications in this very context are to
produce batches of parts with precise dimensions and
surface qualities. As quality control is being related to the
roughness of the machined parts [14, 15, 16, 17], we
propose to couple these requirements of the specifications to
some actions of CBM on the production equipment,
knowing that any tool degradation leads to a deterioration of
the surface quality, resulting in a variation of its roughness.
Thus, we consider this roughness, modelled by a R(t)
function, where t is the machining time, as the main
indicator of the monitoring stage. In normal operations, the
surface roughness depends on several factors [14, 18, 19]
and these factors are set up, from the outset, according to the
machining process conditions. Roughness modelling is a
crucial step of this work and this is the concern of the
following section. A case study is then developed in section
three and the selected cutting parameters are listed. We use
criterion Ra (arithmetic mean roughness) wich is the one
used by [14, 17, 20], since it reveals details with good
accuracy. The fourth section of the paper deals with the tool
wear and enables the use of TBM and the last section is
devoted to CBM of the cutting tool.

II. ROUGHNESS MODELLING

The surface roughness of the machined parts depends on
several factors. Some are systematic such as the
geometrical conditions of the cutting tool associated with
the cinematic conditions of the generation process. They are
modelled by a constant term referred to as generation
roughness Rg. Other factors are associated with tool wear
and random machining faults, modelled by deterministic or
random functions. These last 2 factors are generally added
to Rg.
r(t) can be expressed, in a deterministic way, as a linear
combination of Rg and of a term ctm :

m
g ctRtR =)( (1)

The 2 parameters c and m depend on the cutting conditions
used during the machining process and are generally
obtained by identification techniques.
The random machining errors of the machined workpieces
are characterized by a significant dispersion in the
experimental results of R(t). It is shown that this
measurement dispersion presents a distribution according to
the normal law. This distribution is centred, with a null
arithmetic mean (μ=0) and a standard deviation σ.
By taking into account these errors, (1) is then limited by a
confidence interval :

 sctRtRsctR m
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Where s is the variable distribution of the normal law.
The roughness variation can then be represented by Fig. 1.

Figure 1. Roughness variation

III. EXPERIMENTAL STUDY

The machining process deals with a tool material couple.
The tool is made up of a carbide grade P20, and the
material is heat-treated steel grade C38. The dimensions of
the workpiece are 100mm in diameter and 150mm in length.
Machining consists of a finish turning operation. The
maximum roughness imposed by the design drawing is : Ra
= RM = 4.8μm. In order to satisfy this roughness,
preliminary trials were conducted to determine the optimum
cutting conditions wich are given in table 1.

Table 1. Optimum cutting conditions
Cutting conditions Values

Cutting speed 250m/min
Feed rate 0.1mm/rev

Depth of cut 0.5mm
Tool radius 0.5mm

Tool clearance angle 6°
Tool cake angle 8°

A. model parameters identification
The roughness model is given by (2), so parameters Rg, c, m

and σ must be identified. Measurements have been made with
a roughness meter, with a 5.0mm basic length and a 0.8mm
cut-off. As these measurements showed a notable dispersion,
it was necessary to develop a design of experiments based on
5 series of 10 parts each, according to the statistical
measurement techniques in small quantity. Using cutting
conditions given in table 1, the results of these measurements
are displayed in Fig. 2 and their interpretation makes it
possible to break up R(t) in two distinct intervals:

- 0 < t ≤ 540s: R(t) is approximately constant, its value
corresponds to Rg.

- t > 540s: R(t) follows a variation of type ctm.



Figure 2. Roughness identification

The data set relative to the 5 curves is processed by the
traditional least squares technique and enables us to compute
the respective values of c and m. The value of σ is obtained by
identifying the greatest standard deviation value of the
roughness of all parts tested. These 4 parameters are displayed
in table 2.

Table 2. Rg, c, m and σ values
Rg c m σ

1.79μm 1 μm/s0.18 0.18/ 0.27μm

IV. PREVENTIVE MAINTENANCE APPLICATION

Before you begin to format your paper, first write and save
the content as a separate text file. Keep your text and graphic
files separate until after the text has been formatted and styled.
Do not use hard tabs, and limit use of hard returns to only one
return at the end of a paragraph. Do not add any kind of
pagination anywhere in the paper. Do not number text heads—
the template will do that for you.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar.

A. Tool life time calculation
The normal wear of the cutting tool is generally dealt with
by TBM. It is based on the lifetime of the cutting tool,
enabling a machining cycle time compatible with the
roughness constraints on the parts. This determination of
the cutting tool lifetime can be deduced from data relative
to a given tool-material couple. The cutting tool lifetime
can also be determined in a more precise way when the
lifetime model is established.
The maximum roughness value RM is imposed by the
blueprint of the part as the upper limit that cannot be
exceeded. The variable distribution of the normal law has a
value of s = 3 for a confidence interval of 99.7%.

According to the experimental results mentioned above, we
can consider that the roughness in the first interval is
constant and thus we can carry out a change of coordinates
(toR) to (t’o’R’) where times τ, τg and τc are shown in Fig. 3.

From equations (1) and (2), we can deduce:

M
m
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Using the upper limit of (3), one can deduce:

M
m
cg RscR =  (4)

Figure 3. Change of coordinates
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where τc represents the machining time cycle relative to the
second interval, for which it is necessary to add τg to obtain
τ, the maximum time of the machining cycle which meets
the roughness constraint

.= cg   (6)

τg ≈ 540s can be deduced directly from Fig. 1. Equations (5)
and (6) linked to the values of table 1 enable us to
determine τ ≈ 2815s, which is :

mn47 (7)
The cutting tool lifetime obtained by the model is thus
τ ≈ 47mn..

V. CONDITION-BASED MAINTENANCE APPLICATION

TBM only takes into account the systematic wear of the
tool. But we know that any premature wear of the cutting tool
will necessarily result in an increase in the scrap parts.
Inevitably, the tool change is not justified and becomes
premature if the cutting tool has a longer lifetime. This is our
concern in this section..



A. Fault detection scheme
Our approach is a variant of the procedure described in

section 1. The values of the cutting speed, feed rate, depth of
cut and tool geometry are the inputs applied to the lathe (real
system) while the model parameters (Rg, c, m) are the
computer inputs, as shown in Fig. 4

The estimated R(t) output is obtained by (1), so residual r(t)
is then obtained by:

     tRtRtr a = (8)
Let us note that SH and SB are respectively high and low

thresholds obtained from the experiments and allow us to take
into account the noise and modelling errors. We use the
extreme confidence level relative to the normal law (99,7%)
which makes it possible to write SB = -3σ and SH = +3σ.
- if: r(t)  [SB, SH] fault-free mode
- if : r(t)  [SB, SH] occurrence of a fault

This decision stage, based on the use of fixed thresholds,
has the advantage of being easy to implement. This technique,
when applied, gives satisfactory results. The thresholding is
made possible by the low noise levels in the residual r(t).

Figure 4. Residual implementation and decision logic

B. Fault detection results
This section deals with the validation of the fault detection
algorithms established here above. Cutting tool premature
wear w is taken into account. Statistically, in an industrial
environment, it is accepted that only one fault can occur at any
given time, so that only one fault is considered in the
experiment. In the figure giving giving r(t), two horizontal
dotted lines, representing the two values SB = -3σ = -0.81μm
and SH = +3σ = +0.81μm are shown. The maximum roughness

RM = 4.8μm is also shown by a horizontal dotted line on the
figure relating to Ra(t).
This fault is introduced at the experimental stage to assess the
deterioration of the roughness and to validate the fault
detection algorithm.

1) Cutting tool premature wear detection
Cutting tool premature wear is generally due to poor tool

quality or poor quality material used in the machined parts.
This fault has been simulated by using a worn cutting tool
instead of a new one, Fig. 5.

Figure 5. worn cutting tool

At t ≈ 5mn r(t) > SH, a fault is detected as shown in Fig. 6.
However, despite this fault, Ra(t) < RM as shown in Fig. 7, the
machining can be continued with careful monitoring. The
evolution of Ra(t) is shown, from this time, as a dotted line in
Fig. 7. The tool lifetime is reached when Ra(t) > RM with t ≈
18mn.

It would be interesting to try to estimate theoretically, from
the moment the fault occurs, the remaining time during which
the cutting tool is effective with a roughness of less than RM.
This step is known as the prognosis, but obtaining a reliable
result in an industrial environment is actually very difficult.

Figure 6. Residual variation with fault w



Figure 7. Roughness variation with fault w

VI. CONCLUSION

The purpose of the work is to show the contribution of a
condition based maintenance (CBM) compared to a time based
maintenance (TBM), particularly in machining. This study
makes it possible to completely validate the principle of the FD
stage, even if adjustments prove to be surely necessary when
the on line system of roughness measurement is adopted. The
choice of roughness, as a significant indicator of the cutting
tool state, and thus as a central element of the procedure of
CBM setting, is all the more judicious as it constitutes the main
quality parameter to be validated during the final controls. This
consideration can make decision-making concerning the
investment of an on line roughness measurement system easier.
In the reported case, we have shown that compared to the TBM
of the cutting tool, the installation of a CBM makes it possible
to avoid approximately 6% scrapped parts, what is of great
interest in reducing production costs.
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