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Abstract - The purpose of this article is to compare time 

based maintenance (TBM) with condition based 

maintenance (CBM) relative to cutting tools in the process 

for removing material. We describe the fault detection 

(FD), method based on the use of the analytical model of 

the roughness of the work pieces to be machined. This 

model is established under given cutting conditions and 

calculated according to the maximum desired roughness. 

Experimental results are presented for the cutting tool 

TBM on the one hand, and for the validation of the FD 

method allowing CBM on the other hand. 

 key words - Condition-based maintenance, roughness 

measurements, fault detection. 

INTRODUCTION  

Maintenance strategies in the manufacturing industry are 

traditionally based on operations of time-based maintenance 

(TBM), also known as periodic-based maintenance [1], to 

ensure the availability of the equipment. The instructions of 

maintenance are given starting from predetermined values of 

working duration of the pieces of the equipments. These 

values are generally obtained from average statistics. The 

TBM can lead either to premature thus useless interventions, 

or to too late interventions, thus prejudicial to the correct 

operating of the system. It must be noticed that generally less 

than 20% of the equipments are used according to their 

predetermined lifetime in TBM [2].  

Condition-based maintenance (CBM) proves to be an 

adequate answer to avoiding these risks because it refers to the 

real state of the system, provided it satisfies its 

implementation requirements [3, 4, 5, 6]. Currently, in order to 

determine and understand the ongoing physical behavior of 

machines, and further identify normal and abnormal patterns, 

various sensors have been developed and adopted to monitor 

and record information such as temperature, lubricating oil, 

contaminants, pressure, sound, and vibration [1, 7]. 

Fault detection (FD) is the first critical step in the CBM 

design. Developing FD algorithms is a constant aim of many 

researchers and refers to various principles. One of the main 

methods is based on the analytical model of the considered 

process [8, 9]. The model is computed and works parallel to 

the system. The principle of the model-based fault detection 

approach consists of a comparison between the measured 

outputs of the system and the estimated outputs of the model. 

The same input value is applied to the system and to its model. 

In fault-free mode, these two outputs are identical (neglecting 

the noise and modelling errors). The difference between the 

two values is called residual, r(t), and it should be close to 

zero. Any occurrence of faults results in a deviation of the 

measured output and r(t) deviates from zero. A decision logic 

reduced to a thresholding makes it possible to determine the 

occurrence of a fault. The threshold is selected to take into 

account noise levels and modelling uncertainties. This 

principle of fault detection and diagnosis is used by [10] for 

two system components of diesel engines (the intake system 

and the injection system together with the combustion 

process) and by [11] for both a vehicle lateral dynamics 

system and an active suspension system. [12] used this 

principle of detection for the design of an industrial fault 

tolerant robot. Fault tolerance attempts to equip the system 

with detection, isolation and accommodation capacities 

allowing the normal functioning of the equipment despite the 

occurrence of faults. This concept is detailed in [13]. 

This contribution from the community of the control 

engineers is now directly exploitable in the implementation of 

CBM techniques having the implementation of FD stages in 

common with fault tolerance. 
The study we present aims to optimize the maintenance 

function of the machine’s tools. The proposed approach is to 

compare between two maintenance strategies for the cutting 

tool. The first one is TBM used for cutting tools in machining, 

and based on the determination of the tool life. The second one 

is CBM, which is based on the real state of the cutting tool. 
The specifications in this very context are to produce batches 

of parts with precise dimensions and surface qualities. As 

quality control is being related to the roughness of the 

machined parts [14, 15, 16, 17], we propose to couple these 

requirements of the specifications to some actions of CBM on 
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the production equipment, knowing that any tool degradation 

leads to a deterioration of the surface quality, resulting in a 

variation of its roughness. Thus, we consider this roughness, 

modelled by a R(t) function, where t is the machining time, as 

the main indicator of the monitoring stage. In normal 

operations, the surface roughness depends on several factors 
[14, 18, 19] and these factors are set up, from the outset, 

according to the machining process conditions. Roughness 

modelling is a crucial step of this work and this is the concern 

of the following section. A case study is then developed in 

section three and the selected cutting parameters are listed. We 

use criterion Ra (arithmetic mean roughness) wich is the one 

used by [14, 17, 20], since it reveals details with good 

accuracy. The fourth section of the paper deals with the tool 

wear and enables the use of TBM and the last section is 

devoted to CBM of the cutting tool. 

ROUGHNESS MODELLING 

The surface roughness of the machined parts depends on 

several factors. Some are systematic such as the geometrical 

conditions of the cutting tool associated with the cinematic 

conditions of the generation process. They are modelled by a 

constant term referred to as generation roughness Rg. Other 

factors are associated with tool wear and random machining 

faults, modelled by deterministic or random functions. These 

last 2 factors are generally added to Rg. 

R(t) can be expressed, in a deterministic way, as a linear 

combination of Rg
 
and of a term ctm : 

m

g ctRtR =)(
                               

(1) 

The 2 parameters c and m depend on the cutting conditions 

used during the machining process and are generally obtained 

by identification techniques. 

The random machining errors of the machined workpieces 

are characterized by a significant dispersion in the 

experimental results of R(t). It is shown that this measurement 

dispersion presents a distribution according to the normal law. 

This distribution is centred, with a null arithmetic mean (μ=0) 

and a standard deviation σ. 

By taking into account these errors, (1) is then limited by a 

confidence interval : 
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Where s is the variable distribution of the normal law. 

The roughness variation can then be represented by Fig. 1. 

 

   

 

 

 
 

Figure 1.  Roughness variation 

 

EXPERIMENTAL STUDY 

The machining process deals with a tool material couple. 

The tool is made up of a carbide grade P20, and the material is 

heat-treated steel grade C38. The dimensions of the workpiece 

are 100mm in diameter and 150mm in length. Machining 

consists of a finish turning operation. The maximum 

roughness imposed by the design drawing is : Ra = RM = 

4.8μm. In order to satisfy this roughness, preliminary trials 

were conducted to determine the optimum cutting conditions 

wich are given in table 1. 

 

Table 1.  Optimum cutting conditions 

Cutting conditions Values 

Cutting speed 250m/min 

Feed rate 0.1mm/rev 

Depth of cut 0.5mm 

Tool radius 0.5mm 

Tool clearance angle 6° 

Tool cake angle 8° 

 

Model parameters identification 

The roughness model is given by (2), so parameters Rg, c, m 

and σ must be identified. Measurements have been made with 

a roughness meter, with a 5.0mm basic length and a 0.8mm 

cut-off. As these measurements showed a notable dispersion, 

it was necessary to develop a design of experiments based on 

5 series of 10 parts each, according to the statistical 

measurement techniques in small quantity. Using cutting 

conditions given in table 1, the results of these measurements 

are displayed in Fig. 2 and their interpretation makes it 

possible to break up R(t) in two distinct intervals: 
- 0 < t ≤ 540s: R(t) is approximately constant, its value 

corresponds to Rg. 
- t > 540s: R(t) follows a variation of type ctm. 



 
 

Figure 2.  Roughness identification 

 

The data set relative to the 5 curves is processed by the 

traditional least squares technique and enables us to compute 

the respective values of c and m. The value of σ is obtained by 

identifying the greatest standard deviation value of the 

roughness of all parts tested. These 4 parameters are displayed 

in table 2. 

 

Table 2.  Rg, c, m and σ values 

Rg c m σ 

1.79μm 1 μm/s0.18 0.18/ 0.27μm 

 

PREVENTIVE MAINTENANCE APPLICATION 

Tool life time calculation 

The normal wear of the cutting tool is generally dealt with 

by TBM. It is based on the lifetime of the cutting tool, 

enabling a machining cycle time compatible with the 

roughness constraints on the parts. This determination of the 

cutting tool lifetime can be deduced from data relative to a 

given tool-material couple. The cutting tool lifetime can also 

be determined in a more precise way when the lifetime model 

is established. 

The maximum roughness value RM is imposed by the 

blueprint of the part as the upper limit that cannot be 

exceeded. The variable distribution of the normal law has a 

value of s = 3 for a confidence interval of 99.7%. 

According to the experimental results mentioned above, 

we can consider that the roughness in the first interval is 

constant and thus we can carry out a change of coordinates 

(toR) to (t’o’R’) where times τ, τg and τc are shown in Fig. 3. 

From equations (1) and (2), we can deduce: 

M

m
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(3) 

Using the upper limit of (3), one can deduce: 

M

m
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Figure 3.  Change of coordinates 
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where τc represents the machining time cycle relative to the 

second interval, for which it is necessary to add τg to obtain 

τ, the maximum time of the machining cycle which meets 

the roughness constraint 

cg  =
                                  

(6) 

τg ≈ 540s can be deduced directly from Fig. 1. Equations (5) 

and (6) linked to the values of table 1 enable us to 

determine τ ≈ 2815s, which is : 

mn47
                                     

(7) 

The cutting tool lifetime obtained by the model is thus          

τ ≈ 47mn. 

CONDITION-BASED MAINTENANCE APPLICATION 

TBM only takes into account the systematic wear of the 

tool. But we know that any premature wear of the cutting tool 

will necessarily result in an increase in the scrap parts. 

Inevitably, the tool change is not justified and becomes 

premature if the cutting tool has a longer lifetime. This is our 

concern in this section.. 

Fault detection scheme 

Our approach is a variant of the procedure described in 

section 1. The values of the cutting speed, feed rate, depth of 

cut and tool geometry are the inputs applied to the lathe (real 

system) while the model parameters (Rg, c, m) are the 

computer inputs, as shown in Fig. 4 



The estimated R(t) output is obtained by (1), so residual r(t) 

is then obtained by: 

)()()( tRtRtr a 
                            

(8) 

Let us note that SH and SB are respectively high and low 

thresholds obtained from the experiments and allow us to take 

into account the noise and modelling errors. We use the 

extreme confidence level relative to the normal law (99,7%) 

which makes it possible to write SB = -3σ and SH = +3σ. 

- if: r(t)    [SB, SH]  fault-free mode 

- if : r(t)   [SB, SH]  occurrence of a fault 

This decision stage, based on the use of fixed thresholds, 

has the advantage of being easy to implement. This technique, 

when applied, gives satisfactory results. The thresholding is 

made possible by the low noise levels in the residual r(t).  

 

 
 

Figure 4.  Residual implementation and decision logic 

 

Fault detection results 

This section deals with the validation of the fault detection 

algorithms established here above. Cutting tool premature 

wear w is taken into account. Statistically, in an industrial 

environment, it is accepted that only one fault can occur at any 
given time, so that only one fault is considered in the 

experiment. In the figure giving giving r(t), two horizontal 

dotted lines, representing the two values      SB = -3σ = -0.81μm 

and SH = +3σ = +0.81μm are shown. The maximum roughness 

RM = 4.8μm is also shown by a horizontal dotted line on the 

figure relating to Ra(t). 

This fault is introduced at the experimental stage to assess 

the deterioration of the roughness and to validate the fault 

detection algorithm. 

 

Cutting tool premature wear detection 

Cutting tool premature wear is generally due to poor tool 

quality or poor quality material used in the machined parts.    

This fault has been simulated by using a worn cutting tool 

instead of a new one, Fig. 5. 
 

 
 

Figure 5.  worn cutting tool 

 

At t ≈ 5mn r(t) > SH, a fault is detected as shown in Fig. 6. 

However, despite this fault, Ra(t) < RM 
as shown in Fig. 7, the 

machining can be continued with careful monitoring. The 

evolution of Ra(t) is shown, from this time, as a dotted line in 

Fig. 7. The tool lifetime is reached when Ra(t) > RM  with t ≈ 

18mn. 

 

 
 

Figure 6.  Residual variation with fault w  
 

 
 

Figure 7.  Roughness variation with fault w  



It would be interesting to try to estimate theoretically, from 

the moment the fault occurs, the remaining time during which 

the cutting tool is effective with a roughness of less than RM. 

This step is known as the prognosis, but obtaining a reliable 

result in an industrial environment is actually very difficult. 

CONCLUSION 

The purpose of the work is to show the contribution of a 

condition based maintenance (CBM) compared to a time based 

maintenance (TBM), particularly in machining. This study 

makes it possible to completely validate the principle of the FD 

stage, even if adjustments prove to be surely necessary when 
the on line system of roughness measurement is adopted. The 

choice of roughness, as a significant indicator of the cutting 

tool state, and thus as a central element of the procedure of 

CBM setting, is all the more judicious as it constitutes the main 

quality parameter to be validated during the final controls. This 

consideration can make decision-making concerning the 

investment of an on line roughness measurement system easier. 

In the reported case, we have shown that compared to the TBM 

of the cutting tool, the installation of a CBM makes it possible 

to avoid approximately 6% scrapped parts, what is of great 

interest in reducing production costs. 
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