Natural endomorphisms of quasi-shuffle Hopf algebras - Archive ouverte HAL
Article Dans Une Revue Bulletin de la société mathématique de France Année : 2013

Natural endomorphisms of quasi-shuffle Hopf algebras

Jean-Christophe Novelli
  • Fonction : Auteur
  • PersonId : 1286032
  • IdRef : 050202596
F. Patras

Résumé

The Hopf algebra of word-quasi-symmetric functions ($\WQSym$), a noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can be endowed with an internal product that has several compatibility properties with the other operations on $\WQSym$. This extends constructions familiar and central in the theory of free Lie algebras, noncommutative symmetric functions and their various applications fields, and allows to interpret $\WQSym$ as a convolution algebra of linear endomorphisms of quasi-shuffle algebras. We then use this interpretation to study the fine structure of quasi-shuffle algebras (MZVs, free Rota-Baxter algebras...). In particular, we compute their Adams operations and prove the existence of generalized Eulerian idempotents, that is, of a canonical left-inverse to the natural surjection map to their indecomposables, allowing for the combinatorial construction of free polynomial generators for these algebras.

Dates et versions

hal-00823090 , version 1 (16-05-2013)

Identifiants

Citer

Jean-Christophe Novelli, F. Patras, Jean-Yves Thibon. Natural endomorphisms of quasi-shuffle Hopf algebras. Bulletin de la société mathématique de France, 2013, 141, pp.107-130. ⟨10.24033/bsmf.2644⟩. ⟨hal-00823090⟩
179 Consultations
0 Téléchargements

Altmetric

Partager

More