Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux - Archive ouverte HAL
Article Dans Une Revue Advances in Mathematics Année : 2010

Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux

Jean-Christophe Novelli
  • Fonction : Auteur
  • PersonId : 1286032
  • IdRef : 050202596
Lauren K. Williams
  • Fonction : Auteur

Résumé

We introduce a new family of noncommutative analogues of the Hall-Littlewood symmetric functions. Our construction relies upon Tevlin's bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explicit formula for: the steady state probability of each state in the partially asymmetric exclusion process (PASEP); the polynomial enumerating permutations with a fixed set of weak excedances according to crossings; the polynomial enumerating permutations with a fixed set of descent bottoms according to occurrences of the generalized pattern 2-31.

Dates et versions

hal-00823073 , version 1 (16-05-2013)

Identifiants

Citer

Jean-Christophe Novelli, Jean-Yves Thibon, Lauren K. Williams. Combinatorial Hopf algebras, noncommutative Hall-Littlewood functions, and permutation tableaux. Advances in Mathematics, 2010, 224 (4), pp.1311-1348. ⟨10.1016/j.aim.2010.01.006⟩. ⟨hal-00823073⟩
664 Consultations
0 Téléchargements

Altmetric

Partager

More