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S U M M A R Y
Several studies, both theoretical and experimental, show that sedimentary rocks have a fractal
pore–grain interface. In this paper a computer simulated 3-D sedimentary rock structure
generated by the Relaxed Ballistic Bidisperse Deposition Model (RBBDM), is investigated
to characterize the micro structure of its pores. The pore volume and the rock–pore interface
show the same fractal dimension indicating that the pore volume is a fractal. The two point
density correlation is computed for the pore space and the results compare favourably with
the range reported from experiments. An array of 2-D X-ray tomography micrograph sections
of a real sedimentary rock, an oolitic limestone (pure calcite) from the Mondeville formation
of Middle Jurassic age (Paris Basin, France), was used to generate a 3-D bitmap. The 3-D
real rock sample generated in this manner, was analysed for similar studies as the simulated
structure. The results were compared with those obtained from simulation. The simulation
results agree qualitatively with the real rock sample. Diffusion through the connected pore
space of the simulated structure was studied using a random walk algorithm and the results
compared with the similar simulation study done on the 3-D oolitic limestone specimen. In
both cases diffusion was found to be anomalous indicating that the sedimentary rock has a
fractal geometry. The favourable comparability of results between the simulated and real rock
supports the usefulness of the model of sedimentary rock generation which can be applicable
to transport phenomena.

Key words: Image processing; Fractals and multifractals; Microstructures; Sedimentary
basin processes; mechanics, theory and modelling.

1 I N T RO D U C T I O N

Transport of fluids through the connected pore space in sedimentary
rocks is of profound importance in the extraction process of oil
and natural gas, the problem of CO2 sequestration, groundwater
flow, to give a few examples. This transport process is intimately
connected to the nature of the pore space which often gets modified
if the flow is reactive diffusive and/or advective. In this work we
intend to investigate and characterize the pore and rock phase of
the sedimentary rock generated by the RBBDM. Several studies on
sedimentary rocks (Katz 1985; Wong 1987; Krohn 1988a,b) have
suggested that the pore system has a fractal nature. Although the
pore–rock interface has been shown definitely to be a fractal, there
is a controversy about whether the pore space is a volume fractal
too. Not many measurements have been possible to probe the pore
volume directly. Any fractal nature of the pore space is possibly a
consequence of the formation of the rocks by sedimentation and
diagenesis of granular matter.

In an earlier work (Roy & Tarafdar 1998; Dutta & Tarafdar 2003),
the authors simulated a 3-D sedimentary rock structure using the

Bidisperse Ballistic Deposition Model (BBDM) and investigated
its pore structure. The model mimicked the deposition process of
grains under gravity to generate the rock structure. This model was
extended under the ‘Relaxed Bidisperse Ballistic Deposition Model’
(RBBDM; Sadhukhan et al. 2007) where the deposited grains were
allowed to relax to mimic the process of compaction. Although
the RBBDM has been used to study transport properties such as
permeability and conductivity through the pore space (Sadhukhan
et al. 2007a,b, 2008), the pore structure generated by this process
has not been investigated. The study of the microstructure is very
important if any model for sedimentary rock generation is to be used
for the investigation of transport properties. We shall investigate the
effect of the relaxation of the grains that mimics the process of
compaction, on the micro geometry of the pore space by comparing
our results with that obtained in (Dutta & Tarafdar 2003).

In the following sections we briefly discuss the model RBBDM
used for generating the sedimentary rock structure of varying poros-
ity. Two different grain sizes are used in the deposition process. The
dependence of porosity on the fractional composition of the grains
is studied. The effect of relaxation of the grains is studied with

C© The Authors 2012. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1059

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/192/3/1059/819491 by guest on 11 June 2021



1060 A. Giri et al.

respect to the BBDM model. Two-point density correlation func-
tion is calculated for the entire pore space of the generated rock
structure. The results are compared with the values calculated on
real rock samples and those obtained from BBDM (Dutta & Taraf-
dar 2003). A study of the nature of both, the connected pore space
and the total pore space in the generated rock structure, is done. In
the study using BBDM (Dutta & Tarafdar 2003), we had observed
that only the connected pore space has a fractal nature. If the total
pore space which is made up of all isolated pores and also the con-
nected pore is considered, there is no evidence of fractal behaviour.
The contribution from the disconnected pores masks any signature
of a fractal nature. The pore space becomes homogeneous on aver-
age. In this study we find that the behaviour in both cases is exactly
the same, that is, they exhibit the same fractal nature. The rock–
pore interface is also checked for any fractal nature. The results are
compared with those of BBDM to study the role of compaction of
grains. These results are also compared with the calculations done
on real sedimentary rocks. We also study diffusion of a random
walker in the connected pore space. A random walk through a frac-
tal pore volume is expected to show anomalous behaviour. This is
evident from our study and reinforces the fractal picture of the pore
space. Finally, we draw the conclusions of our investigation and
share some of the future plans on this subject.

2 M O D E L

The details of the BBDM and RBBDM are discussed in Dutta &
Tarafdar (2003) and Sadhukhan et al. (2007), respectively. However
the basics of the RBBDM will be described briefly here for the
sake of completeness. The porous structure is generated by ballis-
tic deposition of grains of two different sizes. We drop cubes 1 ×
1 × 1 and parallelepiped 2 × 1 × 1 grains on a square substrate.
Models on disordered systems usually consider particles to be spher-
ical, unlike RBBDM. However real sand grains are often angular
(Pettijohn 1984). In this respect our approximation of rectangular
parallelepiped grains is no worse than a spherical grain approxima-
tion. Due to abrasion at points of contact, mature grains meet along
planes and tend to show a slight elongation. A ratio of long to short
axis of 1.0–2.5, generally close to 1.5, is not uncommon. So the
aspect ratio 2 is realistic. The cubes are chosen with a probability p
and elongated grains with probability (1 − p). The presence of the
longer grains leads to gaps in the structure. The porosity φ, defined
as the vacant fraction of the total volume, depends on the value
of p.

For p = 1, a compact rock structure with zero porosity is formed.
As p is decreased, isolated pore ‘clusters’ start appearing and the
porosity increases. For a specific value of p, a structure spanning
cluster is generated. However this cannot be called a ‘percolation
threshold’ as in the case of random percolation (Stauffer & Aharony
1994). The RBBDM, being a modification of the Random Depo-
sition Model, for p = 1, the surface width keeps increasing with
height. In fact, in the limit of infinite height, at least one narrow
structure spanning pore cluster is always present. Thus one cannot
speak of a ‘percolation threshold’. When p is gradually decreased
to below 1, larger grains are introduced and the grains settle on the
structure following the Ballistic Deposition Model. The introduc-
tion of even an infinitesimal quantity of the larger grain, can close
a deep surface trench creating an elongated pore cluster. Obviously
these pore clusters are longer near the surface of the structure than
at the bottom. The presence of a single large grain sitting atop a long
pore cluster, introduces correlation between adjacent columns. As

Figure 1. Toppling rule of the larger grains—when a larger grain develops
a two-step overhang, marked 1 in the figure, with at least two vacant sites
immediately below the overhang, it topples over in the direction indicated
by the arrow to assume a more stable state, marked 2.

the fraction of large grains increase, the correlation spreads through
the system. So a substrate of sufficient height needs to be generated
so that the porosity value can stabilize. This has been demonstrated
for the BBDM (Karmakar et al. 2005). In fact in spite of relaxation
of longer grains in RBBDM, the situation here is similar to BBDM.
Our model is different from the random percolation problem as even
an infinitesimally small fraction of larger grains introduces correla-
tion between columns, thus robbing the system of its randomness.

The RBBDM has the potential of generating a structure with a
connected rock phase that is needed for any stable structure, and a
tunable porosity. As the fraction of longer grains is increased, un-
stable overhangs can develop. If a larger particle settles on a smaller
particle, a one-step overhang is created. If a second larger particle
settles midway on the previous large particle, a two-step overhang
is created, when there is no supporting particle immediately below
the protrusion of the second overhang. This two-step overhang is
not stable and the second large particle topples over if possible,
according to the rule shown schematically in Fig. 1. This leads to to
compaction.

It had been discussed in BBDM (Manna et al. 2002; Dutta &
Tarafdar 2003) that the sample attains a constant porosity only after
a sufficient number of grains (depending on sample size) have been
deposited to overcome substrate effects. Here, a Lx × Lx × Lz
size sample was generated, from which a Lx × Lx × Lx sample
was selected after the porosity had stabilized to within a fluctuation
of 0.001 per cent. The selected sample was chosen from below
the deepest trough at the surface to eliminate surface effects. All
simulations were carried out on this sample. To check for finite size
effects, we carried out our studies for Lx = 32, 64, 128, 256 for which
Lz = 1000, 2000, 4000, 7000, respectively. The results reported in
this work did not show any finite size dependence. All results on
simulation are reported for 256 × 256 × 256. An elongated grain is
expected to have its long axis vertical, while falling under gravity.
However, when it reaches the ground, its stable position is more
likely to be with the long axis horizontal as this will keep the centre
of mass of the grain at a lower height. This will in turn lower the total
energy and stabilize the structure. This process was mimicked in
the deposition algorithm where the elongated grains are deposited
with their long axis horizontal and parallel to either the x- or y-axes
with equal probability. The vertical direction is the direction of the
z-axis and coincides with the direction of grain deposition.

Sedimentary rocks usually have a porosity that rarely exceeds
0.5. As the fraction of larger grains is increased, the porosity of
the sample increases. A vertical (x–z), and horizontal section (x–y),
of the sample at its maximum porosity φmax = 0.45 are shown in
Figs 2(a) and (b), respectively. It is evident that the sample looks
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Figure 2. Panel (a) shows x–z section of simulated structure for φmax =
0.45, that is, high porosity. (b) x–y section at same porosity. Structure looks
more isotropic. The white indicate pore clusters.

Figure 3. Panels (a) and (b) show x–z and y–z section of simulated structure
for φ = 0.072, that is, low porosity, matching the porosity of the real rock.
The z-axis indicates the vertical direction. The white indicate pore clusters.
Panel (c) x–y section at same porosity. Anisotropy in pore cluster structure
is quite pronounced.The white indicate pore clusters.

quite isotropic and starts to resemble a real rock. Vertical sections
(x–z plane) and (y–z) planes, of the generated sample at very low
porosity φ = 0.072, are shown in Figs 3(a) and (b). A horizontal
section (x–y plane) of the sample at the same porosity value is shown
in Fig. 3(c). The anisotropy in the pore geometry is clearly visible. At
low porosities, elongated and isolated pore clusters appear along the
z-direction, the direction of particle assembly, while the distribution
of pores along the horizontal plane is quite homogeneous.

In our model, the presence of large grains introduces correlation
between neighbouring grains. The toppling rule of the larger grains
decreases the porosity somewhat. Therefore as the fraction of large
grains increase, the porosity increases though not monotonically as
in the BBDM. Compaction of the grains results in the porosity show-
ing a maximum at p = 0.5. To compare our simulation results with
real rock samples, X-ray tomography micrographs of 2-D sections
of real sedimentary rock sample obtained from an oolitic limestone
(pure calcite) from the Mondeville formation of Middle Jurassic
age (Paris Basin, France). This rock has been used by (Luquot &

Figure 4. Each section is a square of side 2.58 × 10−3 m. Panels (a) and
(b) show sections of the real rock cut in mutually perpendicular planes.
These are perpendicular to bedding planes. Panel (c) shows a section of
the bedding plane. These are sections of oolitic limestone(pure calcite)from
the Mondeville formation of Middle Jurassic age (Paris Basin, France).
The graphical files were constructed from X-ray microtomographs of 2-D
sections of the rock. The real structure seems to be isotropic.

Gouze 2009) and is essentially composed of recrystallized ooliths
with a mean diameter of less than a few hundred micrometres. Each
pixel of the micrograph corresponds to 5.06 µm. Each section was
converted to a binary file form such that 0 corresponded to a pore
site and 1 corresponded to a rock site. A binary file picture of the
real rock is obtained by suitable thresholding of a grey-scaled pic-
ture, using MATLAB, Fig. 4. An array of 1000 consecutive sections
were put together precisely to reconstruct the binary file form of
the real 3-D rock structure. The real structure was 1000 × 1000 ×
1000 voxels in size, and all study on real rock was carried out on this
structure. 2-D sections, (x–z) plane and (y–z) plane, cut in the direc-
tion of assembly (growth) of the of the reconstructed 3-D structure,
are shown in Figs 4(a) and (b), respectively. Comparison between
Figs 4(a) and (b) shows the pore distribution to be isotropic. A
2-D section of the bedding plane of the rock structure is shown in
Fig. 4(c). There seems to be slight anisotropy in the pore distribution
in the bedding plane and the direction of growth.

For every p value studied, we have calculated the total porosity of
the sample and also the porosity of the connected pore space. The
variation of porosity with the fraction of cubes p obtained in the
RBBDM, for both these cases is shown in Fig. 5. The two graphs
are almost parallel to each other. The porosity shows a maximum at
p = 0.5 unlike BBDM (Dutta & Tarafdar 2003), where a monotonic
decrease of porosity with increase in p was noted. From Fig. 5 it
appears that there are some p values for which combinations of
larger grains to smaller grains yield the same value of porosity.
A case study of φ = 0.44 may be made in this respect. It is well
known that sedimentary rocks that have same value of porosity,
may have very different pore structure leading to very different
transport properties. The shape and size distribution of pores and
their connectedness is responsible for such variations. In our model,
the same value of porosity φ = 0.44, for example, is obtained for
p = 0.2 and also p = 0.7. The difference lies in the micro geometry
of the pore space. This point is dealt with in detail in the next section
where we have studied the two-point density correlation function
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Figure 5. Variation of porosity with p. The solid line denotes the total porosity of the simulated structure, while the dotted line corresponds to the porosity of
the connected pore space. The values corresponding to the real rock studied are marked on each graph.

that throws light on the pore distribution. The RBBDM produces a
porosity range from φmax = 0.451–0.0. The increase in fraction of
large grains has two competing effects: (1) the creation of more gaps
increasing porosity and (2) the increased toppling events tending to
decrease φ. This competition leads to a non-monotonic variation in
φ with p with a maximum porosity φmax = 0.45.

The total porosity of the real rock studied was 0.073 which cor-
responds to a p = 0.995, Fig. 5. The porosity of the connected pore
space of the real sample was found to be 0.067 which corresponds
to p = 0.970. From Fig. 5 we see that a connected pore system is
obtained upto p = 0.99 for the finite system we have considered
in the simulation. The number of pore sites (voxels) at this value
of p is 1532 which is greater than Lx, the system size. Clearly the
connected pore cluster at this stage is not a straight channel but has
a tortuous path.

The RBBDM can create any porosity in the range φmax to 0
by varying p. This covers the range of porosity of real sedimentary
rocks which have a porosity that rarely exceeds 0.5. The real sample
we have analysed has φ = 0.073 (p = 0.997) which falls in the range
of RBBDM, but the model gives more realistic structures for higher
φ. Very low, φ ∼ 0.1 or less, creates mostly long linear pores as
seen in Fig. 3.

3 T W O - P O I N T D E N S I T Y C O R R E L AT I O N
F U N C T I O N

The two-point density correlation function is defined as the expec-
tation value that two points are separated by r and belong to the
same phase, though not necessarily connected by the same phase.
Mathematically,

S2 = 〈ρ(r′)ρ(r′ + r)〉, (1)

where the average is done over the entire pore volume and all values
of r′ are considered. ρ takes value 1 if there exists a pore, else it takes
the value 0. Ordinary fractals are typically isotropic implying that
the density correlation depends only on r and not on the direction.

In our calculation , the two-point density correlation has been
calculated for the pore phase in all the three orthogonal directions

and for every pair of points r′ and (r′ + rei) with r = 0, 1, 2, .... rc.
rc is the cut-off value determined by system size, ei is the unit
vector along the ith orthogonal axis. Therefore a calculation of the
two-point density correlation function along the z-axis involves

S2(z) = 〈ρ(z′)ρ(z′ + z)〉. (2)

A study of S2(x), S2(y) and S2(z) reveals transverse isotropy in the
x–y plane with S2(x) = S2(y). Their value is different from S2(z)
showing anisotropy along this direction which is attributed to the
structure growth process.

The results of our simulation resemble the nature of Berea sand-
stone, Ironton-Gallesville sandstone (Berryman & Blair 1986) and
the Fontainbleau sandstones as reported by (Manwart et al. 2000),
none of which have significant clay content. S2(x) and S2(z) have
been plotted against r at the maximum porosity φ = 0.457, and a
low value of porosity φ = 0.352 in In Fig. 6(a). Thus the impen-
etrable grains of our simulation seem to have a similarity to clean
sandstone samples. The dips in the curves give information of the
average grain cluster size. A larger dip for low porosity values com-
pared to high porosity along the z-direction is evident from Fig. 6(a).
The inset in Fig. 6(a) shows the same study at very low porosity
φ = 0.077 which is almost the same as the real rock sample studied.

The variation of the two-point density correlation function for
p = 0.2 and 0.7, both of which have the same value of porosity φ =
0.44, is depicted in Fig. 6(b). For lower p value, that is, 0.2, the
minimum is higher and occurs at slightly shorter values of r than at
the higher p = 0.7. This is highlighted in the inset of Fig. 6(b). The
lower minimum of the two-point density correlation function for
p = 0.7 indicates greater anti-correlation between pores implying
that the distribution is more ordered here. The shorter distance of
the minimum at p = 0.2 implies that the average grain cluster is
smaller in size than at p = 0.7. These differences though small ,
are unmistakable. Thus the non-unique combinations of p that exist
for some values of porosity is due to variation in the shape and size
of the pore clusters. The anisotropy in pore distribution is clearly
evident at lower values of porosity and the structure becomes more
isotropic at higher porosities. The minimum in the density correla-
tion function occurs at greater distance for low porosity and shifts
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Figure 6. (a) Two-point density correlation along x- and z-direction of simulated rock structure for high and low porosity values. The anisotropy decreases as
porosity increases.The inset shows the variation for φ = 0.077. Panel (b) shows the variation of the two-point density correlation along x- and z-direction for
same φ = 0.44 for different p values. The minimum is slightly more pronounced for lower p indicating smaller pore cluster in the z direction. This is highlighted
in the inset.

to lower values as porosity increases, as evident in Fig. 6(a). This
shift is expected as the pore clusters have an elongated appearance
at lower values of porosity (Figs 2a and b) and a greater separation
between the pores. As porosity increases, the elongated pores start
disappearing as greater correlation is introduced between the pores.
The comparison of the density correlation along x- and z-directions
in Fig. 6(a) clearly shows the anisotropy along the growth direction.
It is expected that at r = 0, the two-point density correlation must
be equal to the porosity value corresponding to that p, as we have
assigned a value of 1 to a pore site and a value 0 to a grain site.
As r → ∞, here r = 200 from Fig. 6(a), the two-point correlation
function is expected to approach the value of φ2. This is also borne
out from our calculations as is evident from Fig. 6(a).

Variation of the two-point correlation function with r calculated
on the 3-D real rock sample in all the orthogonal directions is shown
in Fig. 7. One unit of r is 5.06 µm in the real limestone sample.
It seems that the real limestone sample is slightly anisotropic too.
The bedding plane, referred to in the figure as the x–y plane, is
isotropic in both directions but there is some anisotropy in the
direction of deposition of grains. The direction of deposition of
grains is the direction along which consecutive planes were cut and
X-ray tomography taken. Since the two-point correlation for the
bedding plane shows a lower minimum in the range of r = 0 to 50,
it indicates that the grain clusters in this plane have a larger size
than along the growth direction. The density correlation at r = 0 is
0.074 which matches the porosity of the limestone sample.

4 F R A C TA L D I M E N S I O N O F P O R E
V O LU M E A N D I N T E R FA C E

Once the rock structure is generated, every cluster of pores is iden-
tified and checked for connectivity along the z-direction using the
‘burning algorithm’ of Hoshen & Kopelman (1976). The study of
any transport property involves injection of fluid initially along the

growth direction as its perpendicular plane is exposed to the surface.
Any transport can occur only through the connected pore cluster and
so we have checked for connectivity only along this direction. But
of course transport along other directions cannot be ruled out. A
pore cluster is ‘connected’ if it has at least one pore on one surface
and another pore of its cluster on the opposite surface of the sam-
ple. Only the six ‘nearest neighbours’ that meet the pore site along
planes are checked for connectivity. In an earlier work of the authors
on BBDM (Dutta & Tarafdar 2003), it was observed that only the
‘connected cluster’ was a volume fractal with the mass of the void
space and the interface showing the same fractal dimension. When
the calculation was done on the entire sample which included the
disconnected pores also, the distribution of pores was found to be
homogeneous with the same dimension as the Euclidean value. To
investigate any impact of the compaction process, we checked for
any signature of fractal nature in RBBDM for ‘total pore space’ and
‘connected pore space’ separately. The ‘pore centre’ was determined
according to

rp =
N∑

i=1

ri

N
, (3)

where ri is the position of the ith pore site and N is the total number
of pore sites. Here a vacant pixel site is counted as one pore site.
The distribution of the pores when plotted against distance follows
a power law

N (r ) ∼ rd f , (4)

where N(r) is the number of vacant cubes contained within a sphere
of radius r and centred about the ‘pore centre’ as obtained from
eq.(3). N(r) was calculated for concentric spheres of increasing ra-
dius r measured with respect to the ‘pore centre’. Unlike BBDM,
here the pore phase is a volume fractal when checked both for the en-
tire structure inclusive of isolated pores and also for the ‘connected
cluster’ phase. A log–log plot of the variation of Nmass(r) with r
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Figure 7. Two-point density correlation along three orthogonal directions of oolitic limestone (pure calcite) from the Mondeville formation of Middle Jurassic
age (Paris Basin, France). A unit of r corresponds to 5.06 µm. The two almost coinciding graph are computed for direction parallel to bedding plane. The
behaviour of red plot (perpendicular to bedding) near the origin is clearly different, suggesting a slight anisotropy of the medium.

Figure 8. Log–log plot of variation of pore mass and interface with distance from ‘void-centre’, shown for high porosity, φmax = 0.457 and low porosity φ =
0.231. The inset shows the fractal dimension of pore mass and the interface for different values of p. It is clear that for all p values, the simulated rock is a
volume fractal with the interface dimension equal to the pore mass dimension.

for a high porosity value φmax = 0.456 and a low porosity value
φ = 0.231, for the connected pore cluster is depicted in Fig. 8. Real
sedimentary rocks like sandstone and dolomite have an effective
porosity between 0.21 and 0.27 (Pittmann 1984; Katz & Thompson
1985). This is higher than the porosity of the real limestone we have
studied, but low compared to the φmax as obtained from RBBDM.
So we chose φ = 0.231 as a case study of low porosity as shown in
Fig. 8. The variation of the pore–solid interface Nint(r) was also stud-
ied with increasing r. The slope of the log–log plot of Nint(r) versus
r yielded the fractal dimension of the interface at any concentration
p. In this case Nint(r) is the number of cubes with the presence of any
part of a interface contained within a sphere of radius r measured
with respect to the ‘pore centre’ of the spanning cluster. The log–log
variation of Nint(r) with r for the same two values of porosities is

also shown in Fig. 8. It is evident that the graphs follow the pore
mass curve almost exactly, the slope having the value between 2.8
and 2.95. This is greater than the Euclidian dimension of the inter-
face, 2. This implies that the interface is extremely tortuous, almost
volume filling. and has the same dimension as the mass as shown
as an inset in Fig. 8. This is the characteristic of a volume fractal
and is reminiscent of ‘peano curves’ (Vicsek 1992). The RBBDM
is a volume fractal in the ‘total pore space’ and the ‘connected pore
space’, unlike the BBDM. This difference with the BBDM is at-
tributed to the compaction of the grains allowed during the growth
process.

A closer examination of the graphs in Fig. 8 shows that each of
these graphs show two regions with different slopes. This difference
in slope is highlighted in Fig. 9 for the porosity 0.231 where the
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Figure 9. Log–log plot of variation of pore mass with distance from ‘void-centre’, shown for porosity φ = 0.231. The transition rtr is shown as the intersection
of the two regression slopes shown by solid and dotted lines. The data points are shown as circles. The inset shows the two different fractal dimensions occurring
in the two different length scales, plotted versus p. The difference decreases with higher p values indicating that the sample becomes more homogeneous at
lower porosities.

pore mass is plotted versus r. The transition point rtr, where the
change in slope occurs, is determined as the intersection point of
the two regression plots shown by solid and dotted lines in the
graph. This change in slope, though small for every p value studied,
was distinct. In the inset to Fig. 9, we have plotted the two sets of
fractal dimension of the pore mass obtained for each p value. It
is evident that the difference between the two sets of mass fractal
dimension decreases with increasing p. The fractal dimension at
distances greater than rtr, all have values ∼2.98 which is close to
3.0, the euclidean dimension. We conclude that the transition rtr

indicates the distance at which the structure for each p changes over
from its fractal nature to euclidean nature. From Fig. 2(a) we see
that though the pore clusters show more homogeneity, they retain
an elongated structure along the direction of assembly of grains
whereas from Figs 3(a) and (b), we see that the pore clusters are
almost channel-like with practically no connectivity in the direction
perpendicular to direction of assembly. With channel-like pores,
the pore space is expected to have a euclidean nature. In terms of
porosity, we conclude that the simulated rock sample shows greater
inhomogeneity in pore shape at higher porosity (lower p value) and
tend to become more homogeneous at lower porosity (higher p). It
seems that the sedimentary rock simulated by RBBDM may have
multifractal characteristic.

The variation of pore mass and interface with distance on the
reconstructed real rock structure is depicted in Fig. 10. Though the
variation of pore mass and interface with distance from the ‘void
centre’, closely follow one another on a log–log plot, a clear linear
region is not discernible. Real rocks may not be a monofractal, and
this possibility has to be investigated further. However the fact that
the pore mass and interface follow each other so closely, may be
indicative that the pore space in the real rock studied, is a volume
fractal!

The measurements on porous rocks usually report a fractal di-
mension for the pore–solid interface rather than the pore volume.
Adsorption experiments essentially look only at the interface. The
measured area of the interface depends on the length scale used as
probe, over several orders of magnitude of probe size. Scattering

experiments which can identify volume fractals as well as surface
fractals, usually indicate surface fractal results for rocks. The neu-
trons or X-ray photons are scattered by the solid grains, so the
probe in this case sees the solid grains. This information should be
interpreted as follows: the pore–solid interface is fractal, the pore
volume may or may not be fractal while the solid rock phase is non-
fractal (Sen et al. 1981; Avnir et al. 1984; Bale and Schmidt 1984;
Schaefer and Keefer 1984; Wong et al. 1984; Katz and Thompson
1985; Sen et al. 2002).

5 A N O M A L O U S D I F F U S I O N I N T H E
P O R E S PA C E

To study diffusion, we follow the ‘blind ant’ algorithm (Havlin &
Ben-Avraham 1987) on the connected cluster, also referred to as
the ‘infinite cluster’ in random walk problems. It makes sense to
restrict ourselves to infinite clusters, as the study of diffusion on
finite clusters may result in walkers spending infinite time trapped
in such clusters, giving rise to misleading results in the study of
diffusion. The ‘blind ant’ starts its random walk from a vacant
site chosen randomly from the mid-section of the generated rock
sample to ensure that the ant was allowed sufficient time before it
could reach any of the boundaries and terminate its walk. Periodic
boundary conditions are not introduced as this would destroy any
self-similarity of the fractal space. Every configuration was allowed
500 independent walks before the next new configuration was cho-
sen. The ant chooses any one of its nearest neighbours with equal
probability and attempts to jump to that site. If the chosen site is
not available (in case it is a solid grain site), it waits in its original
site and again attempts to make a jump in the next time step. So the
blind ant may or may not move in every time step. The variation of
the mean square distance 〈r2〉 traversed in a given time t gives the
diffusion equation. The displacement of the ant is measured from
its starting position and every attempt to jump is an increase in time.
The mean square displacement follows a relation

〈r2〉 = αtν, (5)
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Figure 10. Log–log plot of variation of pore mass and interface with distance from ‘void-centre’ of oolitic limestone(pure calcite)from the Mondeville
formation of Middle Jurassic age (Paris Basin, France). A unit of r corresponds to 5.06 µm. The two plots follow each other, suggesting that the pore space of
the oolitic limestone is possibly a volume fractal.

Figure 11. Variation of mean square displacement along x- and z-directions, with time on connected pore cluster of simulated rock structure at low and high
porosity. This displacement is greater in the z-direction as the pore clusters are more elongated in that direction. The anisotropy decreases as the porosity
increases.

where r is the displacement in time t. For normal diffusion, ν =
1 and the proportionality constant α would be the diffusion coef-
ficient. For ν < 1, the diffusion is anomalous and this is expected
in fractal structures (Havlin & Ben-Avraham 1987). Mean square
displacement along the x- and z-axes of the simulated structure for
a low and a high porosity value, is plotted in Fig. 11. The mean
square displacement along the y-direction was similar to the mean
square displacement along the x-direction. This once again shows
that though the simulated structure shows isotropy in the transverse
plane, it is anisotropic in the direction of growth. This anisotropy
decreases as the porosity increases. A log–log plot of 〈r2〉 versus t
for different p values is shown in Fig. 12. The slope of each plot
gives the corresponding ν value. The ν values show variation with

p, though they all have values <1 indicating anomalous diffusion.
This is expected in a fractal pore space.

The variation of 〈r2〉 versus t for a high porosity φ = 0.45 is
depicted in Fig. 13 to highlight that there is a change of slope at
time tr, which is termed transition time. It is difficult to relate the
variation of tr to the microstructure at this stage. It is possible that the
structure could have a multifractal nature which shall be investigated
in the future. The ν values before and after tr for any p, are plotted
against p in the inset of Fig. 13. The ν values before and after tr

show two clear clusters which indicate the presence of multifractal
nature. The difference between the ν values is more pronounced
at lower p values where the porosity is high. As p increases the
difference decreases and approaches 0.85 at p = 0.9, indicating that
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Figure 12. Log–log plot of mean square displacement with time on connected pore cluster of simulated rock structure for different p.

Figure 13. Log–log plot of mean square displacement with time on connected pore cluster of simulated rock structure to highlight the existence of tr. The
linear regions on either side of tr are shown by solid and dotted lines. tr is evaluated from the intersection of the two slopes. The data points are shown as
circles. The inset shows the variation of the exponent ν with p. ν for all p is always <1, indicating anomalous diffusion. There are two clear clusters of ν below
and above tr.

the structure tends to be a monofractal here. Between p = 0.9 and
1.0, ν approaches 1, implying that diffusion tends to be normal.
With reference to Fig. 3 we may conclude that since at very low
porosities corresponding to p > 0.9, the pore clusters are straight
channel-like, diffusion through them is expected to be normal.

Diffusion was studied on the 3-D real oolitic limestone(pure
calcite)from the Mondeville formation of Middle Jurassic age (Paris
Basin, France). This was generated from the array of 2-D sections of
X-ray microtomographs. The variation of mean square displacement
with time along x- and z-direction is plotted in Fig. 14. The mean
square displacement along the y-direction behaviour is almost the
same as along the x-direction. The real rock sample also shows some
amount of anisotropy, which may be attributed to the difference in
the micro geometry of the pore clusters. This is corroborated by

our study of the two-point correlation, refer to Fig. 7, and discussed
in the section on it. The variation of 〈r2〉 versus t on the real rock
sample is shown in Fig. 14. Two different slopes are evident with
ν = 0.926 in the first region and ν = 0.665 in the second region. This
difference remained even though several walks were carried out on
this structure with the walk starting from different positions within
the sample. Normal diffusion shows ν = 1.0 which is close to ν =
0.926 observed within a mean square displacement ∼10 units. This
indicates that diffusion is closer to normal here. An examination
of Figs 4(a) and (b) clearly shows large white regions, which are
the large voids between the black grains whose outlines are visible.
The white spaces are multiply connected clusters of vacant pixels,
which have a considerable volume, akin to the ‘pore bodies’ in
earlier models (Sen et al. 1981). In the present analysis of diffusion,
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Figure 14. Log–log plot of mean square displacement with time along x- and z-orthogonal directions, on connected pore cluster of oolitic limestone (pure
calcite) from the Mondeville formation of Middle Jurassic age (Paris Basin, France). A unit of r corresponds to 5.06 µm. The anisotropic nature of the pore
space is clear from the similarity of the plots. Log–log plot of mean square displacement versus time on the oolitic limestone shows two linear regions with ν

values 0.926 and 0.665.

a random walker within such a pore body will experience normal
diffusion with ν close to 1. Given a time which exceeds the time
required to explore the pore body, the walker has to move through
narrow channels, barely visible in Figs 4(a) and (b), to reach another
large pore. This time is a ‘crossover time’, after which the walker
‘sees’ a complex tortuous and non-euclidean or fractal space. This
explains the two different exponents ν, one corresponding to normal
diffusion in euclidean space and the other to anomalous diffusion
in a fractal space.

An estimate of the average pore cluster size may be done from dif-
fusion study on the real rock sample. The mean square displacement
is related to diffusion time by eq. (5). Transition time tr corresponds
to 〈r2〉 ∼ 10 from Fig. 14. Therefore, since
〈r2〉 = 10
⇒ 〈 r 〉 =3.2 pixels (1 unit ≡ 1 pixel)
⇒ 〈 r 〉 ∼16 µm

Thus the average pore body 〈rbody 〉 is ∼ 16 µm. This matches the
average value of 4 pixels , that is, ∼20 µm obtained from processed
X-ray microtomographs, thus justifying our analysis.

Beyond this distance, the average pore size distribution is hetero-
geneous and fractal in nature.

6 D I S C U S S I O N

We have investigated the pore space of a sedimentary rock using
the RBBDM for different values of porosity and compared our re-
sults with a real system. The RBBDM is an improvement on the
BBDM as it includes the compaction of the grains during the depo-
sition process. The compaction is mimicked through the toppling
of unstable overhangs that develop during growth. Compared to our
previous model BBDM, it is evident that compaction has resulted in
a non-monotonic change of porosity with p, the fraction of smaller
grains. In this case, the maximum porosity was obtained at p =
0.5. In an earlier study (Dutta & Tarafdar 2005), the authors had
generated a rock structure with RBBDM using an aspect ratio of

1: 3 for the larger grain. No discernible difference in results was
noted. However with a different combination of grain size, it may
be possible to have different variation of porosity values as the cor-
relation that is introduced between adjacent columns of grains will
be affected differently through the toppling process.

Another important effect of compaction in our model is that the
both the ‘connected’ and the ‘total’ pore space of the sedimentary
rock is a volume fractal. In the BBDM, only the ‘connected’ pore
space was found to be a volume fractal, whereas the total pore space
was Euclidean in nature. The process of toppling of the grains en-
sures that the interface always remains highly convoluted, almost
space filling, that is it has the same dimension as the embedding
space. A convenient way of distinguishing a tortuous space filling
fractal from a normal Euclidean structure, is to look at the diffu-
sion of a random walker through the structure. Diffusion will be
anomalous in the latter case. This is exactly what we find here.

The exponent ν has a value <1 for all p values, indicating that
diffusion is subdiffusive. This was also observed in our study of dif-
fusion in the pore space of the reconstructed real rock obtained from
compiling 1000 consecutive 2-D microtomographs. So RBBDM is a
good model for generating sedimentary rocks of different porosities
as it produces similar features of pore space. The study of two-point
density correlation of the pores on the RBBDM shows the same
nature as obtained in the real rock. However the growth rule of the
RBBDM results in an anisotropy in the pore space, the pore clusters
are more elongated in the direction of growth than in its transverse
plane. This anisotropy is manifested in the density correlation study
and also in the component wise mean square displacement in dif-
fusion. The anisotropy decreases as the fraction of smaller grains,
that is, p value decreases. The real rock sample was also found to
show anisotropy in correlation and diffusion studies. The bedding
plane was found to be isotropic in the two perpendicular directions,
but exhibited anisotropy in the direction of deposition.

Investigation of the pore mass and pore–rock interface indicated
that sedimentary rocks may have multiscaling properties. Studies on
both the simulated and real rock structures suggested this possibility.
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Our diffusion studies also strengthened this possibility. Whether the
sedimentary rock has a multifractal nature, has to be investigated
thoroughly before a clear conclusion can be drawn.

An estimate of average pore size was calculated from diffusion
study through the real rock studied. The result matched the data
obtained from X-ray tomography.

Our studies show that the RBBDM is a good model for simulating
sedimentary rocks as its characteristics are similar to real rock
samples. The characterization of the pore space of the RBBDM will
help us to correlate the transport properties of any fluid through it,
to its microgeometry. Our future plans are oriented in this direction.
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