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This paper investigates the use of musical priors for sparse expansion of audio signals of music, on an overcomplete dual-resolution dictionary taken from the union of two orthonormal bases that can describe both transient and tonal components of a music audio signal. More specifically, chord and metrical structure information are used to build a structured model that takes into account dependencies between coefficients of the decomposition, both for the tonal and for the transient layer. The denoising task application is used to provide a proof of concept of the proposed musical priors. Several configurations of the model are analyzed. Evaluation on monophonic and complex polyphonic excerpts of real music signals shows that the proposed approach provides results whose quality measured by the signal-to-noise ratio is competitive with state-of-the-art approaches, and more coherent with the semantic content of the signal. A detailed analysis of the model in terms of sparsity and in terms of interpretability of the representation is also provided, and shows that the model is capable of giving a relevant and legible representation of Western tonal music audio signals.

coefficients have to be modeled.

Among existing approaches, physical properties resulting in persistency over frequency of the transient layer can be modeled using structured hierarchical Bernoulli models on a dictionary built as the union of two MDCT bases with different time-frequency resolutions [START_REF] Kowalski | Random models for 105 sparse signals expansion on unions of bases with application 106 to audio signals[END_REF], binary Markov trees (Crouse et al., 1998;[START_REF] Molla | An hybrid audio scheme using hidden Markov models of waveforms[END_REF], or dyadic trees of wavelet coefficients used with wavelet bases (Daudet and Torrésani, 2002); persistency of the tonal layer can be favored using Markov chains, as proposed in [START_REF] Molla | An hybrid audio scheme using hidden Markov models of waveforms[END_REF] in the case of a MDCT base; in (Févotte et al., 2008), structural constraints on the coefficients that rely on physical properties of the signal are imposed for both layers. Persistencies of time-frequency coefficients of musical signal are modeled using two types of Markov chains. It results in a "horizontal structure" for the tonal layer and a "vertical structure" for the transient layer.

Enforcing structure between expansion coefficients can be managed using sequential approaches (Daudet and Torrésani, 2002;Daudet, 2004;[START_REF] Molla | An hybrid audio scheme using hidden Markov models of waveforms[END_REF] that first identify the tonal layer using the first basis, and then estimate the transient components from the residual, using the second basis. In (Daudet and Torrésani, 2002;Daudet, 2004), tonal and transient components are expanded sequentially into local cosine and dyadic wavelets bases respectively. The method does not rely on any prior segmentation of the signal. For each layer, only the largest coefficients in each time frame are retained based on threshold values that are estimated adaptively in a quantization stage. In the framework of audio coding, [START_REF] Molla | An hybrid audio scheme using hidden Markov models of waveforms[END_REF]) describes an hybrid model for the expansion of audio signals considering a redundant dictionary made out of the union of local cosine and wavelet bases. A recursive scheme is proposed to estimate the two layers, that relies on the assumption that the cardinalities of the significance maps have to be known. A priori estimates for the relative sizes of the tonal and transient layers are obtained based on an algorithm that determines local transientness of audio signals [START_REF] Molla | Determining local tran-125 sientness of audio signals[END_REF]. The approach is used to develop an hybrid audio coder that does not rely on prior (time) segmentation of the signal.

As stressed in (Daudet, 2006a), sequential approaches suffer from two limitations. First, errors in a step are systematically propagated into the next estimation stage and thus bias the estimates of the other components.

Second, the choice of a threshold that allows discriminating large significant from small residual coefficients is difficult. An alternative to sequential approaches is the simultaneous approach of both layers, as proposed in (Févotte et al., 2008).

Starting from this approach, we build a structured model for sparse signal decomposition within a Bayesian framework. The originality of our work is that we model dependencies between the expansion coefficients by using priors that are based on musical information. or chroma that correspond to the notes it is composed content of the music audio signal, is constructed.

12 It is expressed in a MIDI-note scale and is in gen-13 eral either computed from the Fourier transform or 14 from the constant-Q transform (Brown, 1991). 
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We rely in this paper on a chromagram computation 25 method, described in [START_REF] Papadopoulos | Joint estimation of chords and downbeats[END_REF],

26
that is based on a constant-Q transform applied on a 27 downsampled signal.

28

For chord estimation, we rely on the model proposed in 29 (Papadopoulos andPeeters, 2007, 2011), that is based on 30 chord templates and hidden Markov models. We briefly for instance (Dixon, 2007;[START_REF] Scheirer | Tempo and beat analysis of acoustic musical signals[END_REF]Klapuri et al., 58 2006;Davies and Plumbley, 2007). In the present work,

59

we use the beat tracker proposed in ( 3

Preliminary results of the proposed approach can be 4 found in [START_REF] Papadopoulos | Sparse Signal Decomposition on Hybrid Dictionaries Using Musical Priors[END_REF]. In this ar- The remainder of this paper is structured as follows. In

Section II, we present our model for sparse signal decomposition on hybrid dictionaries that incorporates musical priors; our main contribution is described in part II.C

where we specify our formulation of prior dependence structures in the time-frequency plane. We briefly address the problem of parameters estimation in Section III.

In Sections IV and V, we present and discuss the simulation results of our model. Conclusions and perspectives for future work are given in Section VI. 

A. Model

In this part, we describe our model for signal decomposition with sparse constraint on a hybrid dictionary of elementary waveforms (Daudet and Torrésani, 2002).

The dictionary is constructed as the union of two orthonormal bases with different time-frequency resolution that account respectively for the tonal and the transient parts of the signal. We consider a tree-layer signal model of the form:

signal = tonals + transients + residual .
Let V = {v n , n = 1, . . . , N } and U = {u m , m = 1, . . . , N } be two MDCT bases of R N with respectively long frame ℓ ton to achieve good frequency resolution for tonals and short frame ℓ tran to achieve good time resolution for transients. The MDCT is a bijective linear transform and we note n ton = N ℓton and n tran = N ℓtran the number of frames for each basis (see Figure 2). Here, n and m are time-frequency indexes and will be denoted in the following n = (q, ν)

∈ [1, n ton ] × [1, ℓ ton ] or m = (q, ν) ∈ [1, n tran ] × [1, ℓ tran ].
The signal is decomposed as a linear combination of atoms of the two basis V and U that account for the tonal and transient layers plus a residual part that accounts for the noise and that is not sparse with respect to the two considered bases. We denote D = V ∪ U the dictionary made as the union of these two bases. D is overcomplete in R N , and any x ∈ R N admits infinitely many expansions in the form:

x = n∈I α n v n + m∈I β m u m + r , (1) 
where I = {1, . . . , N }, α n and β m are the expansion coefficients and r represents the noise term. We are interested in sparse signals, i.e. signals that may be written as:

x = λ∈Λ α λ v λ + δ∈∆ β δ u δ + r , (2) 
where Λ and ∆ are small subsets of the index set I = 57 {1, . . . , N } that account for the significant coefficients, pansion:

8 γ ton,n = 1 if n ∈ Λ 0 otherwise γ tran,m = 1 if m ∈ ∆ 0 otherwise .
(3) We can therefore rewrite Eq. (2) as:

x = n∈I γ ton,n α n v n + m∈I γ tran,m β m u m + r . (4)
The hybrid model is defined by two components: a 

p(α n |γ ton,n , σ ton,n ) = (1 -γ ton,n )δ 0 (α n ) + (5) γ ton,n N (α n |0, σ 2 ton,n ) p(β m |γ tran,m , σ tran,m ) = (1 -γ tran,m )δ 0 (β m ) + γ tran,m N (β m |0, σ 2 tran,m ) ,
where δ 0 is the Dirac delta distribution and, following σ ton,n and σ tran,m are given an inverse-Gamma conjugate 25 prior distribution:

p(σ 2 ton,n |γ ton,n = 1, f ton,n ) = (6) IG(σ 2 ton,n |1, f ton,n ) p(σ 2 tran,m |γ tran,m = 1, f tran,m ) = IG(σ 2 tran,m |1, f tran,m ) ,
where the scale parameters f ton,n and f tran,m are parametric frequency profiles that aim at taking into account the decrease of the energy of the signal when the frequency increases (Févotte et al., 2008, Eq. ( 8)):

f ton,n = λ ton 1 + q-1 ℓton/3 f tran,m = λ tran 1 + q-1 ℓtran/3 . (7)
The parameters λ ton and λ tran are given a non-27 informative Gamma conjugate prior. In what follows, some results will be illustrated Given a fixed frame index q, let {p chord k } k=1,...,Nc denote the semitone pitch-classes (chroma) corresponding to the estimated chord c q . All bins of the MDCT that correspond to a note belonging to the estimated chord are selected. The indicator variables {γ ton,(q,ν) } ν=1,...,ℓton are given the following membership probabilities:

P Λ {γ ton,(q,ν) = 1} (9) = p ton if ∃k ∈ [1, N c ] | p MDCT ν = p chord k 1 -p ton otherwise ,
where 0 ≤ p ton ≤ 1. The significance maps corresponding to the tonal layer should reflect the harmonic content of the audio signal. In practice, the value p ton will be close to 1 (in our experiments, p ton = 0.9) so that atoms corresponding to the notes that are played are given high prior. The significant map for the tonal layer corresponding to the Glockenspiel monophonic audio signal of our test-set is illustrated in Figure 3. A set of atoms is selected at each frame according to the notes of the (note) transcription, regardless of octave. For instance all atoms {B1, B2, . . .} corresponding to the semitone B are selected when the first B note of the Glockenspiel is sounded.

The significance maps are given structures of "tubes" that have a musical meaning. Note also that we provide here a "vertical structure" for tonals. 

p MDCT ν = (12 log 2 ν A est + 69) (mod 12) , (11) 
where A est denotes the estimated tuning, here obtained 46 with the method proposed in [START_REF] Peeters | Musical key estimation of audio signal based on HMM modeling of chroma vectors[END_REF]. given the following membership probabilities: 

24 ∀ν = 1, . . . , ℓ tran P ∆ {γ tran,(q,ν) = 1} (12) = p tran if ∃k ∈ [1, N b ] | q = k 1 -p tran otherwise ,
47 ∀ν = 1, . . . , ℓ tran P ∆ {γ tran,(q,ν) = 1} (13) =      p tran if ∃k ∈ [1, N b ] | q = k p tran if ∃k ∈ [1, N b ] | q = k -1 p tran if ∃k ∈ [1, N b ] | q = k + 1 1 -p tran otherwise .

III. MCMC INFERENCE

In the spirit of some previous work on Bayesian variable selection [START_REF] Geweke | Variable Selection and Model Compari-86 son in Regression[END_REF][START_REF] George | Approaches for 84 Bayesian variable selection[END_REF], and following [START_REF] Wolfe | Bayesian vari-1464 able selection and regularization for time-frequency surface 1465 estimation[END_REF]Févotte et al., 2008), the posterior distribution of the set of parameters and hyperparameters of the model, denoted by θ = {α, β, σ ton , σ tran , ν ton , ν tran } ∪ σ , is sampled from using a Gibbs sampler [START_REF] Geman | Stochastic relaxation, 80 Gibbs distributions, and the Bayesian restoration of images[END_REF]Casella and George, 1992). Gibbs sampler is a standard Markov Chain Monte Carlo (MCMC) technique that simply requires to iteratively sample from the posterior distribution of each parameter, conditionally upon the data x and the remaining parameters.

The MCMC inference scheme we use is similar to the one described in [START_REF] Wolfe | Bayesian vari-1464 able selection and regularization for time-frequency surface 1465 estimation[END_REF]Févotte and Godsill, 2006;Févotte et al., 2008), the main difference being the new musical priors considered for the indicator variables we have introduced in Section II.C. For the sake of completeness, we provide in this section its general outline, using the notations we adopted in this paper. Further details about derivation of the expression for the update steps of the parameters, can be found in [START_REF] Geweke | Variable Selection and Model Compari-86 son in Regression[END_REF][START_REF] George | Approaches for 84 Bayesian variable selection[END_REF][START_REF] Wolfe | Bayesian vari-1464 able selection and regularization for time-frequency surface 1465 estimation[END_REF]Févotte et al., 2008).

Let θ -k denote the set of parameters in θ except the parameter k. Using Bayes'rule, the conditional distribution of each parameter k conditional upon the other parameters and the data can be written as:

p(k|θ -k , x) ∝ p(x|θ)p(θ) . ( 14 
)
The conditional distributions are thus proportional to the likelihood of the data times the priors on the parameters.

In order to avoid a nonconvergent Markov chain in the Gibbs sampler, (γ ton , α) and (γ tran , β) need to be sampled jointly [START_REF] Geweke | Variable Selection and Model Compari-86 son in Regression[END_REF]. As pointed out in (Févotte et al., 2008), the structure of the dictionary D = [V U ] and the gaussian noise assumption allows alternative block sampling of (γ ton , α) and (γ tran , β), with the benefit of avoiding any matrix inversion at each iteration of the Gibbs sampler. Indeed, with the gaussian noise assumption, the likelihood of the observations can be written as:

p(x|θ) = (2πσ 2 ) -N/2 exp(- 1 2σ 2 x -V α -U β 2 2 ) .
(15) Because the Euclidian norm is invariant under rotation, 2 Eq. ( 15) can be written as:

3 p(x|θ) = (2πσ 2 ) -N/2 exp(-1 2σ 2 U T (x -V α) x tran|ton -β 2 2 ) = (2πσ 2 ) -N/2 exp(-1 2σ 2 V T (x -U β) x ton|tran -α 2 2 ) . (16) 
According to Eq. ( 16), conditionally upon β (resp. α) 
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The principal steps of the Gibbs sampler are summa-24 rized in Table I, where K is the total number of iterations 25 9 of the Gibbs sampler and K Burnin is the burn-in length, distribution. We provide the full posterior distributions 29 in Appendix A. ton ∼ p(γton|σ

(k-1) ton , σ (k-1) , x (k-1) ton|tran ) (Eq. (A1)) α (k) ∼ p(α|γ (k) ton , σ (k-1) ton , σ (k-1) , x (k-1) ton|tran ) (Eq. (A5)) Update hyperparameters σ (k) ton ∼ p(σton|α (k) , λ (k-1) ton ) (Eq. (A7)) λ (k) ton ∼ p(λton|σ (k) ton ) (Eq. (A9)) Update transients Update γtran and β γ (k) tran ∼ p(γtran|σ (k-1) tran , σ (k-1) , x (k-1) tran|ton )(Eq. (A3)) β (k) ∼ p(β|γ (k) tran , σ (k-1) tran , σ (k-1) , x (k-1) tran|ton ) (Eq. (A6)) Update hyperparameters σ (k) tran ∼ p(σtran|β (k) , λ (k-1) tran ) (Eq. (A8)) λ (k) tran ∼ p(λtran|σ (k) tran ) (Eq. (A10)) Update noise σ (k) ∼ p(σ|α (k) , β (k) , x) (Eq. (A11)) end for
The Minimum Mean Square Estimates (MMSE) of the parameters θ can then be computed from the Gibbs sam-32 ples {θ (KBurnin) , θ (KBurnin+1) , . . . , θ (K) } of the posterior 33 distribution p(θ|x): In this Section, we describe the test-set and measures

We present simulation results on 5 musical excerpts 44 of various music styles that are described in Table II. search [START_REF] Vincent | Prelim-1455 inary guidelines for subjective evaluation of audio source sep-1456 aration algorithms[END_REF]Emiya et al., 2010;[START_REF] Rohdenburg | Objective perceptual quality measures for the evaluation of noise reduction schemes[END_REF]. It has been found that statistically significant results can be obtained from listening tests with less than ten non-expert subjects [START_REF] Vincent | Prelim-1455 inary guidelines for subjective evaluation of audio source sep-1456 aration algorithms[END_REF]. However, conducting large-scale listening tests is out of scope of this work, and the subjective assessment of the results is limited here to an analysis and description by the authors of the audio excerpts obtained by the proposed algorithm. All the audio excerpts are available at http://webpages.lss.supelec.fr/perso/ matthieu.kowalski/jasa/jasa.htm (date last viewed 01/20/13).

Sparsity:

In this work, we aim at obtaining a dual representation of the signal that is sparse, but that is also structured and is meaningful according to the music content of the analyzed audio excerpt. A number of criteria for measuring the sparsity of an expansion have been proposed. Among them, Rényi entropies [START_REF] Rényi | On measures of entropy and information[END_REF] entropies of Φ, defined as:

33 Rα(Φ(t, f )s) = 1 1 -α log2 Z Z Φ(t, f ) α s dtdf, α ∈ [0, 1] , (19) 
may be interpreted as sparsity measures and have thus The aim of this section is to provide an analysis of the proposed approach for sparse and structured expansion of audio signals on overcomplete dictionaries. In order to compare our approach to previous work, we evaluate the performance of the proposed approach for the task of audio denoising. Our purpose is to show how expert music knowledge can be used to build priors to obtain a relevant signal decomposition. The main contribution of the article is the design of new musical priors. In order to evaluate the impact of the prior itself, we compare our results with (Févotte et al., 2008), that specifically differs from the proposed method in the priors. The impact of the various parameters (tuning, harmonics, and priors settings) is studied. We also provide a detailed analysis of our model in terms of sparsity and in terms of interpretability of the representation. We wish to show that the use of priors built on music content information allows making the structure of the signal legible and leads to a representation that has a musical/physical meaning.

A. Structured representation

Our aim here is to provide a structured representation of the signal that is meaningful from a musical point of view, in the sense that it highlights characteristics of the signal that are of interest. Such a relevant representation may be very useful for extracting higher-level information for a given MIR application. For instance, having a clear representation of the partials of the notes may be useful for removing the drum from a polyphonic excerpt.

The use of musical priors yields a structure that better reflects the music content of the signal compared to the approach that uses physical priors. However, it should be noticed that, especially under low-input SNRs conditions, one may perceive artifacts in the reconstructed signal with the method we propose.

These artifacts may be due, on the one hand, to the fact that some high frequencies are captured by the transient basis rather than by the tonal basis. On the other hand, the construction of the significance map corresponding to the transient layer leads to some regular "clicks" that are audible in low frequencies. But, in spite of these artifacts, one can find by listening to the reconstructed signals that results obtained relying on musical priors are generally "richer" than the ones obtained with the approach used 58 in (Févotte et al., 2008). This is very clear for instance in 59 the case of the Beethoven excerpt, with SN R in = 10dB.

60

The chords (especially those on beats 2 and 3) sound proposed approach using musical priors for the tonal layer; Right-bottom: proposed approach using musical priors for both the tonal and transient layers.

musical priors for the transient layer yield results that are equivalent to state-of-the-art results, except for polyphonic clean signals. For monophonic and polyphonic noisy signals, the use of musical priors for transients results in a tonal layer that may be more consistent with the music content: the partials of the notes are more distinguishable, as illustrated in Figure 8 

[Left-bottom].
However, for clean polyphonic signals, the use of beat positions as prior information for building the transit layer is too restrictive for having a satisfying decomposition.

When listening to the results on the Mozart excerpt, one can hear that the residual part obtained with Method tr. is non-negligible compared to the one obtained with Method (Févotte et al., 2008), although it should be zero.

For the Beethoven excerpt, some high frequencies are captured by the transient basis rather than by the tonal basis, as it is illustrated Figure 9. Using musical prior for transients based on the metrical structure thus shows some potential, as it is adapted to the semantic content of the signal, but it should be refined, for instance by 8 using onset positions instead of beat positions. This is 9 also discussed in Section V.E.

10

D. Comparison between chromagram versus chords 11

We have proposed two methods for building priors for 12 the significance map corresponding to the tonal layer. 1. In the first case (Method Chord ), the map is built 14 using information about the tonal content from the 15 estimated chords. 16 2. In the second case (Method Chroma), the map is 17 built using information about the tonal content di- slightly outperforms our method in the case of monophonic music, whereas our method performs slightly better in the case of polyphonic music. Our explanation is that, by relying on chord information, too many notes are considered when building the prior corresponding to the tonal significance map of the monophonic excerpt. A polyphonic/monophonic detection step could be added to improve the proposed model.

Differences between the two approaches may be perceived while listening to the sound files. As said before, the proposed approach induces some artifacts. In particular, the quality of denoising obtained with the proposed prior for the transient layer is disappointing. Indeed, the construction of the significance map corresponding to the transient layer leads to some regular "click" sounds that are superimposed to the signal of interest. As indicated in

Table VII and illustrated in Figure 10 and 11, compared to (Févotte et al., 2008), our approach selects much less atoms in the transient layer. Although the idea seems "natural", the use of beat position information for building the prior for the transient layer may be too restrictive for denoising purpose.

When we build the tonal significance map, we select at each time instant all the MDCT bins that correspond to the notes of the estimated chord, regardless of octaves.

Because the estimation of the tonal content is rough (we do not have an exact transcription and ignore for instance passing tones), some of the "tubes" that result from this 58.3740 32.6172 44.8242 11.8164 16.210912.3047 21.5820 19.3359 48.9014 46.191423.3398 67.8223 Renyi ton. 14.8886 14.230616.0161 11.9396 11.9697 14.3331 12.7418 12.8048 15.0260 13.5188 13.5808 15.5774 Renyi tran. 16.1770 15.3702 15.7958 13.9016 14.3637 13.9315 14.7733 14.6180 15.9218 15.8713 14.8896 39.4287 54.6875 33.27644.199214.7461 14.4043 39.3555 15.8203 47.265679.9805 28.8086 92.5049 Renyi ton. 15.5174 14.7432 15.7447 11.9101 11.9226 13.3835 12.5500 12.6164 13.9843 13.236413.253614.5687 Renyi tran. 15.6106 16.118015.3662 12.4149 14.227114.158815.6433 14.3285 15.8731 16.6655 15.1933 16.8414 good decomposition.

G. Impact of parameters

Indicator variable prior set-up:

The values p ton in Eq. ( 9) and Eq. ( 10) and p tran in Eq. ( 13) have an effect on the above-mentioned artifacts produced by our model in low-input SNRs conditions.

For instance, setting p ton and p tran to 0.99 instead of 0.9 in the case of the Glockenspiel signal allows reducing the artifacts for SN R in = 10dB, as it can be seen in Figure 12. However, our experiments show that indicator variables corresponding to atoms that do not belong to the chord must not be set to 0. Setting p ton or p tran to 1 results in reconstructed signals of very "poor" sound, as it can be assessed by listening tests. Output SNRs are also degraded. Setting p ton < 1 allows taking into account imperfections of the chromagram given as input of the hybrid model (temporal imperfections due to windowing, discrepancy between the ideal model and reality, etc.).

Impact of tuning:

Integrating tuning information in the model does not lead to improvement in terms of output SNR values (detailed results are not reported here to avoid overfill of the article), but yields to estimated significance maps that are more coherent with our model. Indeed, the "tubes" depend on the tuning and thus, in case of "bad" tuning, using tuning information allows selecting atoms within 23 the correct frequency regions. 36 Daudet, L., Molla, S., and Torrésani, B. (2004). "Towards 37 a hybrid audio coder", in Proceedings of the International

  FIG. 1. Time-frequency representation of a recording of a glockenspiel excerpt. The vertical lines correspond to the attacks of the notes and the horizontal lines correspond to the partials.
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  . Content-based music information retrieval 61 Up to now, additional structure constraints that have 62 been added rely on physical properties of the signal. The 63 recent advances in automatic extraction of content in-64 formation from audio music signals in the field of Music 65 Information Retrieval (MIR) offers an interesting alter-66 native. Content-based music information retrieval deals 67 with the extraction and processing of meaningful infor-68 mation from musical audio. Techniques developed for 69 searching, retrieving, organizing and interacting in a per-70 sonalized way with large databases of music signals are 71 often based on the use of musical descriptors that are 72 extracted from the signal, such as the key, the chord pro-73 gression, the melody or the instrumentation. Musical 74 content information can be used to build structured pri-75 ors that reflect the content of the signal. For instance, as 76 we propose in this paper, the chord progression provides 77 information about the notes that are present in the sig-78 nal and can be used to build a prior for the tonal layer. 79 Similarly, the position of the beats is related to the tran-80 sients and can be used to build a prior for the transient 81 layer. These concepts are introduced in what follows. 82 1. Chord estimation 83 The chord progression of a piece of music is a very im-84 portant descriptor because it characterizes its harmonic 85 structure. Here, we want to work directly on audio. The 86 symbolic transcription (the score) of a piece of music is 87 not always available, especially in music genres such as 88 jazz music where there is a large part devoted to improvi-89 sation. In addition, algorithms that extract a transcrip-90 tion from an audio signal, such as multi-f0 estimation 91 algorithms (Yeh et al., 2010), are still limited and costly. 92 However, numbers of recent work have shown that it is 93 possible to accurately extract a robust representation of 94 the harmonic content without the use of transcription 95 algorithms. Estimating the chord progression of an au-96 dio signal has thus become a very popular task in MIR 97 (Sheh and Ellis, 2003; Bello and Pickens, 2005; Harte and 98 Sandler, 2005; Papadopoulos and Peeters, 2011). 99 The output of a chord estimation algorithm consists in 100 a progression of chords chosen among a given chord lexi-101 con, that is very often limited to the 24 major and minor 102 triads. Chord estimation on real signals has been fa-103 vored by the use of the chroma features (Wakefield, 1999) 104 or Pitch Class Profiles (Fujishima, 1999), which are tra-105 ditionally 12-dimensional vectors, with each dimension 106 corresponding to the intensity associated with one of the 107 12 semitone pitch classes (chroma) of the Western tonal 108 music scale, regardless of octave. The temporal sequence 109 of chroma vectors over time is known as chromagram. 110 Conceptually, the chromagram is a frequency spectrum 111 folded into a single octave. Pooling the spectrum into 112 twelve bins that correspond to the twelve pitch classes of 113 the equal-tempered scale results in a signal representa-114 tion that allows identifying pitches by an octave. Each 1 chord may be characterized by the semitone pitch classes 2 3

15 2 .

 2 Secondly, the semitone pitch spectrum is mapped 16 to the chroma vectors. For this, the semitones in 17 octave distance are added up to pitch classes. 18 The chromagram computation may include some other 19 steps such as a pre-processing step that separates har-20 monic and noise components, a filtering step that 21 smoothes the chromagram or a post-processing normal-22 ization step that makes the chromagram invariant to dy-23 namics.

31

  described here the concepts that are used in the rest of 32 the paper. The front-end of our model is based on the 33 extraction of a chromagram that represents the audio 34 signal. The chord progression is then modeled as an 35 ergodic 24-states HMM, each hidden state correspond-36 ing a chord of a the chord lexicon (CM, . . . , BM, Cm,

5

  ticle, we propose significant improvements to the signal 6 4 model, in particular by presenting a structured model for the transient layer; we include the result of new experiments; finally we present a detailed analysis of the model and case-study examples.

  II. SIGNAL MODEL This section introduces first the mathematical model used to represent the audio signal, and then defines the priors chosen in a Bayesian context. Particularly, the new musical priors based on the chromagram and the beat locations are exposed in Section II.C.

FIG. 2 .

 2 FIG. 2. Illustration of the two MDCT bases that account for the tonal part (long time resolution) and the transient part (short time resolution) of the signal.
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  58i.e they identify which coefficient of the expansion are 1 significantly non-zero. In what follows, they will be re-2 ferred to as significance maps.In order to model sparseness in the time-frequency co-4 efficients, we introduce two indicator random variables 5 corresponding to the significance maps Λ and ∆, γ ton,n 6 and γ tran,m ∈ {0, 1} that control the sparsity of the ex-

  7

9

  discrete probability model for the significance maps, and 10 a probability model for the expansion coefficients con-11 ditional upon the significance maps. Both of them are 12 as it is not directly modeled in 16 the coefficients but through the binary indicator random 17 variables γ ton,n and γ tran,m that are attached to each 18 coefficient. As a result, hierarchical priors are given to 19 the coefficients. We assume that, conditional upon the 20 significance maps Λ and ∆ , the coefficients α n and β m 21 5 are independent zero-mean normal random variables:

28

  Sparsity is enforced when γ ton,n = 0 (resp. γ tran,m = 29 0). In this case, the coefficients α n (resp. β m ) are set to enforce structure between expansion coef-33 ficients, the significance maps Λ and ∆ are given struc-34 tured priors. We design priors that are tailored to the 35 music signal. The one corresponding to the tonal basis 36 encodes musical information based on harmonic content 37 information using a chord transcription of the analyzed 38 excerpt. The one corresponding to the transient basis is 39 based on metrical content information using the sequence 40 of beats corresponding to the analyzed excerpt.

47

  through the representation of the significance maps that 48 are defined by the two binary indicator random vari-49 ables γ ton,n and γ tran,m . In Figure 2, the MDCT bases 50 are illustrated by a tiling of the time-frequency plane, 51 where each tile represents a particular atom. The signif-52 icance maps in the time-frequency plane are represented 53 through the binary indicator random variable γ. To 54 each atom corresponds an indicator variable that controls 55 whether this atom is selected (γ = 1) or not (γ = 0) 2 . 56 1. Model for tonals 57 For the significance map corresponding to the tonals, 58 we propose to model dependencies between indicator 59 variables using information about the harmonic content 60 of the audio signal. Ideally, we would assume that we 61 know the score corresponding to the musical excerpt and 62 that, for each time frame q ∈ {1, . . . , n ton }, we know 63 which notes the signal is composed of. 64 However, here, we want to work directly on audio, for 65 which an exact transcription is usually not available. A 66 number of recent work have shown that it is possible to 67 accurately extract robust mid-level representation of the 68 music, such as the chord progression (Papadopoulos and 69 Peeters, 2011), that characterizes its harmonic content. 70 We propose to give a musical prior to the indica-71 tor variables using musical information obtained from 72 a chord progression estimated from the audio file. The 73 output of a chord estimation algorithm consists in a pro-74 gression of chords chosen among a given chord lexicon 75 that, in general, does not distinguish between any pos-76 sible combination of simultaneous notes, but is typically 77 reduced to a set of chords of 3 or 4 notes. The number 78 of notes composing the chords will be denoted by N c in 79 the following. Here, we limit our chord lexicon to the 80 24 major and minor triads (N c = 3). The method we 81 propose could be extended to larger dictionaries. 82 Each chord is characterized by a set of semitone pitch 83 classes or chroma that correspond to the notes it is com-84 posed of. The chord progression does not provide an 85 exact transcription of the music. For instance, passing 86 notes are in general ignored, missing notes in the har-87 mony may be added. Moreover, the chords are estimated 88 regardless of octave. However, experiments show that the 89 provided music content information is sufficient enough 90 to build musically meaningful priors. 91 We consider two methods for building the structured 92 significance maps for the tonal layer. In the first case, 93 denoted as Method Chord, we use chord information. In 94 the second case, denoted as Method Chroma, the priors 95 are built relying directly on chromagram information.

96 a.

 96 Mapping between MDCT bins and chroma:In order 97 to select atoms of the MDCT base that correspond to 98 the harmonic content of the signal, we first perform 99 a mapping between the MDCT bins and the 12 semi-100 tone pitch classes. Given a fixed frame index q, let 101 {p MDCT ν } ν=1,...,ℓton denote the semitone pitch classes cor-102 responding to each frequency MDCT bin. 1 Assuming a perfect tuning of A = 440Hz, a MDCT bin of frequency ν is converted to a chroma p MDCT ν of the MDCT. Because of the 3 logarithmic scale of Western tonal music, the higher the 4 frequency, the larger the number of MDCT bins corre-5 spond to a single pitch class.

  FIG.3. Structured significance map for tonals for a Glockenspiel excerpt using chord information. Left: only notes composing the chords are considered. Right: higher harmonics are considered. The note transcription is indicated in the bottom.

Figure 4

 4 Figure4shows the significant maps for the tonal layer

  47 e. Harmonics: Higher harmonics may be considered in 48 the model. Each note produces a set of harmonics, whose 49 frequencies are whole number multiples of the fundamen-50 tal frequency 4 , that results in a mixture of non-zero val-51 ues in the chroma vector corresponding to the chord. For 52 instance a C1 note will produce the set of harmonics 53 {C1 -C2 -G2 -C3 -E3 -G3 -. . .}. They can be 1 considered in the significance maps, as illustrated in the 2 right part of Figure 3. Here we take into account the first 3 6 harmonics of the notes 5 4 7 2. Model for transients For the significance map corresponding to the tran-6 sients, we propose to model dependencies between in-7 dicator variables using information about the metrical 8 structure of the audio signal. The idea is that, in a piece 9 of music, most of the transient sounds will occur on beats 10 or beat subdivisions. For instance, drum sounds are gen-11 erally used to underline the metrical structure (beats, 12 downbeats); in a string quartet piece, bow changes will 13 generally occur on note changes, which are related to the 14 metrical structure. 15 The structured prior corresponding to the significance 16 map for tonals is built as follows. The beat positions 17 are estimated from the signal using the beat tracker pro-18 posed in (Peeters and Papadopoulos, 2011), described in 19 Section I.B.2. Let {b k } k=1,...,N b denote the N b beat posi-20 tions (in frames) of the track (subdivisions of beats such 21 as quarter notes or eighth notes can be considered as 22 well). The indicator variables {γ tran,(q,ν) } ν=1,...,ℓtran are 23

  where 0 ≤ p tran ≤ 1. The significance maps correspond-25 ing to the transient layer should reflect the metrical con-26 tent of the audio signal. In practice, the value p tran 27 will be close to 1 (in our experiments, p tran = 0.9) so 28 that atoms corresponding to beat locations are given high 29 prior. The significant map for the transient layer corre-30 sponding to the Glockenspiel audio signal of our test-set 31 is illustrated in Figure 5. For each beat location, all fre-32 quency bins are retained, resulting in vertical lines that 33 are sparse in time but cover all the frequencies, in the 34 significance map. It may be noticed that the duration 35 between two consecutive lines is not constant, as there 36 my by variations in the tempo.

  FIG. 5. Structured significance map for transients for a Glockenspiel excerpt using beat location information, resulting in vertical lines in the time-frequency plane. Left: considering beat locations. Right: considering eight-notes locations.

3.7

  FIG. 6. Structured horizontal model for tonals and vertical model for transients based on time-frequency persistency properties. Adapted from (Févotte et al., 2008).

4

  and the other parameters, inferring α (resp. β) is thus 5 a simple regression problem with data x ton|tran (resp.6x tran|ton ), variable α (resp. β) modeled as i.i.d. condi-7 tionally upon γ ton (resp. γ tran ), and i.i.d. noise, that 8 does not require any matrix inversion. 9 Briefly, (γ ton , α) and (γ tran , β) are jointly sampled 10 from by 1) sampling γ ton (resp. γ tran ) from the poste-11 rior conditional distribution p(γ ton,n |σ ton,n , σ, x ton|tran ) 12 (resp. p(γ tran,m |σ tran,m , σ, x tran|ton )), and 2) sam-13 pling α (resp. β) from the posterior condi-14 tional distribution p(α n |γ ton,n , σ ton,n , σ, x ton|tran ) (resp. 15 p(β m |γ tran , σ tran,m , σ, x tran|ton )). The detailed posterior 16 distributions are given in Appendix A, and we refer the 17 reader to (Févotte et al., 2008; Geweke, 1996) for more 18 details. 19 The posterior distribution of the other parameters 20 σ ton , σ tran , ν ton and ν tran are easy to sample from since 21 they have conjugate prior distributions and thus the cor-22 responding posterior will have the same form.

  source estimates are reconstructed by 35 inverse transform of the estimated coefficients (inverse 36 MDCT in our case). The denoised estimation is con-37 structed by x = αV + βU . 38 IV. EXPERIMENTS PROTOCOL AND EVALUATION 39 MEASURES 40

  FIG. 7. MDCT of the clean and noisy signals, with input SN R = 10dB. Form top top bottom : Glockenspiel, Misery, Love Me Do, Beethoven and Mozart excerpts.

  , a generalization of the Shannon entropy, have been introduced in (Baraniuk et al., 2001) as measures for estimating the complexity and information content of a signal through its time-frequency representation. It has been shown that minimizing the complexity or information of a time-frequency representation of a signal is equivalent to maximizing its concentration, peakiness, and resolu-tion. Let Φ ∈ L 2 (R 2 ) be a time-frequency representation 30 of a unit-energy signal s ∈ L 2 (R) (for instance, in this ar-31 ticle Φ is the MDCT transform of the signal).The Rényi32

34(

  schemes generates high computational costs.51

  Figure 8 shows the significance maps of the selected atoms (MMSE estimates) for the Glockenspiel signal, in the W N case, obtained with the (Févotte et al., 2008) approach [left-top], using musical priors for the transient layer [left-bottom], using musical priors for the tonal layer [right-top], using musical priors for both the tonal and transient layers [right-bottom]. When using musical priors for the tonal layer, the resolution of the tonal significance map is sharper. The partials of the notes clearly appear as thin horizontal lines and are better discriminated, especially in low frequencies. The beginning of the notes is also clearer. The structure of the significance maps is even sharper and legible when we also use musical priors for the transient layer.

  FIG. 8. Significance maps of the tonal and transient bases (MMSE estimates) for the Glockenspiel excerpt, case W N . Left-top: approach (Févotte et al., 2008); Left-bottom: proposed approach using musical priors for the transient layer only; Right-top:proposed approach using musical priors for the tonal layer; Right-bottom: proposed approach using musical priors for both the tonal and transient layers.
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  FIG. 9. Significance maps of the tonal and transient bases (MMSE estimates) for the Beethoven excerpt, case W N . Top: approach (Févotte et al., 2008); Bottom: proposed approach using musical priors for the transient layer only.

24 3 .

 3 FIG. 10. Significance maps of the tonal and transient bases (MAP estimates) for the Beethoven excerpt, case SN Rin = 10dB. Top: approach (Févotte et al., 2008); middle: proposed approach using musical priors for both layers, Method Chord ; bottom: proposed approach using musical priors for both layers, Method Chroma.

  and appears to be more "natural". The significance maps 3 corresponding to the tonal and transient layers are coher-4 ent with the intrinsic content of music audio. 5 We have provided numerical results and a number of 6 case study examples that assess that our model is ade-7 quate to fairly represent audio signals of music. The de-8 noising task has been used as a "proof of concept" of the 9 propose provide results whose quality in terms of SNR re-12 sults outperforms or, at least, corresponds to state-of-the-13 art approaches. Moreover, the content of reconstructed 1 signal is more coherent with the underlying harmony and 2 metrical structure, and thus musically meaningful.

3"

  A well-structured representation may be very useful 4 to provide access to higher level information about the 5 audio signal, whereas relevant music content information 6 should help providing a "good" representation. Future 7 work will concentrate on fully integrating in the model 8 chord and beat estimation in an interactive fashion. For 9 instance the chromagram could be updated with the 10 other parameters during MCMC inference in order to 11 possibly improve the chord estimation. 12 The priors we propose have a great potential of im-13 provement in the future (for example, by using a time 14 segmentation, a larger chord lexicon, using onsets com-15 bined with beat positions etc.). The model could also be 16 extended so that dependencies between layers are taken 17 into account. For this, musical information such as the 18 fact that chord changes usually occur on beat subdivi-19 sions (which are related to transient locations) could be 20 used. This should help reducing musical noise and arti-21 facts. 22 As far as we know, the introduction of musical pri-23 ors in hybrid models for spare decomposition is novel. 24 The use of mid-level representation of audio -such as 25 the chromagram, as proposed in this paper -or scores, if 26 available, could be extended to many applications such 27 as denoising, source separation, compression, coding and 28 many others. Usually, only physical and mathematical 29 criteria are taken into account. We believe that the use 30 of musical content information opens new interesting perlike to thank C. Févotte and all 34 the authors of (Févotte et al., 2008) for providing their 35 ton,n = 0|σ ton,n , σ, x ton|tran ) = 1 1 + τ ton,n p(γ ton,n = 1|σ ton,n , σ, x ton|tran ) = τ ton,n 1 + τ ton,n , σ ton,n 2σ 2 (σ 2 + σ ton,n ) × p γ ton,n = 1|γ ton,-n γ ton,n = 0|γ ton,-n . Atomic decomposition by basis pursuit", SIAM Journal on 16 Scientific Computing 20, 33-61. 17 Crouse, M., Nowak, R., and Baraniuk, R. (1998). "Wavelet-18 based statistical signal processing using hidden markov mod-19 els", IEEE Transactions on Signal Processing 46, 886-902. 20 Daudet, L. (2004). "Sparse and structured decompositions of 21 audio signals in overcomplete spaces", in Proceedings of the 22 International Conference on Digital Audio Effects (DAFx), 23 22-26 (Naples, Italy). 24 Daudet, L. (2006a). "A review on techniques for the ex-25 traction of transients in musical signals", in Computer Mu-26 sic Modeling and Retrieval, volume 3902 of Lecture Notes in 27 Computer Science, 219-232 (Springer-Verlag Berlin Heidel-. (2010). "Audio sparse decompositions in paral-34 lel, Let the greed be shared!", IEEE Transactions on Signal 35 Processing 27, 90-96.

  Remark 1 As underlined in(Kowalski and Torrésani, 

38 2008; Févotte et al., 2008), the window lengths for each 39 layer must be significantly different enough to discrim-40 inate between tonals and transients. Better results are 41 obtained using a very short window length for the tran-42 sients (≈ 3ms) that is shorter than the duration of a short 43 attack. In this case, several frames may be needed to de-44 scribe a transient. In practice, we also select vertical lines 45 surrounding the theoretical (or estimated) beat locations 46 in the transient layer prior. Eq. (12) thus becomes:

TABLE I .

 I Gibbs sampler steps for parameters inference.

	Initialize θ (0)
	for k = 1 : K + KBurnin do
	Update tonals
	Update γton and α
	γ	(k)

TABLE III .

 III SNR results (in dB), and chord estimation results (EE : Exact Estimation, E+N : Exact + Neighbor ) for various input SNRs and without additional Gaussian noise (W N ), for comparison between a semi-automatic (estimated chords) and an automatic (given chords) approach.

		SN Rin		W N	0		10	20
		Approach A	SA	A	SA	A	SA	A	SA
		EE		14.39		14.39		14.39	14.39
	Gl.	E + N		72.27		72.27		72.27	72.27
		SN Rout	71.07 71.36 14.15 14.13 21.31 21.37 28.58 28.59
		EE		79.22		79.02		79.22	78.77
	Mi.	E + N		82.00		88.1		82.00	81.54
		SN Rout	42.28 42.73 6.36 6.35 13.02 13.02 20.91 20.87
		EE		95.29		28.35		60.58	96.27
	Lo.	E + N		100		92.62		100	100
		SN Rout	29.12 28.31 6.44 6.42 12.44 12.44 19.24 19.21
		EE		87.22		86.56		86.77	86.77
	Be.	E + N		100		100		100	100
		SN Rout	55.15 54.72 7.17 7.15 13.56 13.54 21.63 21.62
		EE		75.69		70.26		75.25	75.69
	Mo.	E + N		90.26		88.70		90.26	90.26
		SN Rout	62.13 62.33 8.20 8.19 15.47 15.47 23.40 23.42
	SN Rin	W N			0		10	20
	Method tr	F2008 tr	F2008 tr	F2008 tr	F2008
	Gl.							
									18
									rectly from the chromagram.

19 Table V shows that Method Chord outperforms Method 20 Chroma in terms of SNR in the case without noise added 21

TABLE IV. SNRs results (in dB), for various input SNRs and without additional Gaussian noise (W N ), for comparison between using musical priors for the transient layer only, case tr, and with the baseline approach (Févotte et al., 2008) (F2008 ). 70.01 70.22 15.54 15.74 22.14 22.45 29.16 29.22 Mi. 33.38 44.41 6.89 6.90 13.13 13.29 20.43 21.08 Lo. 27.30 29.61 6.72 6.77 12.77 12.72 19.49 19.35 Be. 39.60 54.64 7.71 7.71 13.90 14.03 21.44 21.99 Mo. 54.47 60.96 8.98 8.97 15.87 15.94 23.59 23.88

TABLE V .

 V SNRs results (in dB), for various input SNRs and without additional Gaussian noise (W N ), for comparison between Method Chord (Cho) and Method Chroma (Chr).

		SN Rin	W N	0	10	20
		Method Cho Chr Cho Chr Cho Chr Cho Chr
		Gl.	71.35 69.90 14.13 13.27 21.37 20.70 28.59 27.87
		Mi.	42.73 37.09 6.35 7.04 13.02 13.35 20.87 20.89
		Lo.	28.32 26.19 6.42 6.80 12.44 12.85 19.21 19.27
		Be.	54.72 54.62 7.15 8.63 13.53 14.52 21.62 22.05
		Mo.	62.33 60.1 8.19 9.45 15.47 16.28 23.42 23.96
	44	fit the harmonic content, similarly to the one obtained
		with approach (Févotte et al., 2008). In this case, one

TABLE VI .

 VI SNR results for comparison between the proposed method that uses musical priors and the approach proposed in (Févotte et al., 2008) (F2008 ). Case A: musical priors only for the tonal layer (automatic approach). Case A + tr : musical priors for the tonal and the transient layer.

	SN Rin	W N	0		10	20
	Method	A A + tr F2008	A A + tr F2008	A A + tr F2008	A A + tr F2008
	Gl.	71.35 71.49 70.22 14.13 13.86 15.74 21.37 20.98 22.45 28.59 28.24 29.22
	Mi.	42.73 32.72 44.41 7.03 7.04	6.9	13.35 13.34 13.29 20.89 20.60 21.08
	Lo.	28.32 27.14 29.61 6.80 6.72	6.77 12.85 12.95 12.72 19.27 19.72 19.35
	Be.	54.72 35.97 54.64 8.63 8.65	7.71 14.52 14.54 14.03 22.05 21.49 21.99
	Mo.	62.33 57.07 60.96 9.45 9.37	8.97 16.28 16.12 15.94 23.96 23.73 23.88
	E. Denoising quality				

  Table VI compares results obtained with the proposed method that uses musical priors with the approach proposed in(Févotte et al., 2008). As underlined in the previous section, Method Chroma has a negative "blurry" effect on clean and monophonic signals. Ideally, the method should be selected according to the type of test signal. For the sake of legibility, we do not report results with both methods in TableTable VI. Our purpose here is to demonstrate the potential of the proposed musical priors, compared to existing approaches. We thus present the best results, obtained with Method Chroma in the case of polyphonic music and when noise is added to the clean signal and Method Chord otherwise. Concerning the quality of denoising, our model provides results that are comparable to state-of-the-art algorithms in terms of SNR: the difference between our method and method(Févotte et al., 2008) are in general lower than 1 dB. The method proposed in(Févotte et al., 2008) 

TABLE VII .

 VII Percentage of remaining non-zero coefficients selected for the tonal layer (% ton.) and the transient layer (% tran.) and value of Renyi entropy for tonal layer (Renyi ton.) and the transient layer (Renyi tran.) (MAP estimates). Case: F2008 : approach in(Févotte et al., 2008). Case A: musical priors only for the tonal layer (using estimated chords). Case A + tr : musical priors for the tonal and the transient layer.Renyi ton. 15.0604 14.6550 15.2776Renyi ton. 15.0604 14.6550 15. 11.3662 11.3403 10.9392 11.7111 11.6559 10.9812 12.1047 12.0313 12.0875 12.0313 12.0875 

		SN Rin		W N		0			10			20
		Method	A	A + tr F2008	A	A + tr F2008	A	A + tr F2008	A	A + tr F2008
		% ton.	26.1482 19.7510 30.3772 2.0317 1.9966 1.5022 2.5848 2.4879 1.5518 3.3974 3.2333 3.3745
	Gl.	% tran.	29.0039 33.0078 24.6094	0	8.9844	0	0	6.8359	0	0	5.9570	0
		Renyi tran. 15.2006 15.3874 14.9631 N aN 13.5122 N aN	N aN 13.1180 N aN	N aN 12.9194 N aN
		% ton.	23.1979 14.7957 50.7500 3.0151 3.0815 15.7799 5.2574 5.5031 25.5539 9.0256 9.4261 37.4146
	Mi.	% tran.										

  Renyi ton. 13.4112 12.9614 14.8705 10.7474 10.8349 12.8587 11.6348 11.6909 13.7200 12.4686 12.4759 14.3943 Renyi tran. 15.5207 14.5736 14.0640 14.3106 13.6891 12.6616 14.8560 14.0761 13.5926 15.0413 14.3550 13.9329 Renyi ton. 15.2689 14.6063 15.8275 11.9828 11.9540 13.5067 12.8449 12.9090 14.5619 13.6028 13.7216 15.3836 Renyi tran. 16.1560 15.3084 16.2482 11.8713 13.1180 14.0549 14.8926 13.0972 16.6802 16.6664 14.3285 16.9521 

			16.3935
		% ton.	16.6702 12.2955 45.8679 2.6535 2.8152 11.4395 4.8920 5.0903 20.6650 8.7173 8.7738 32.9956
	Lo.	% tran.	74.0723 37.5000 27.0020 31.2500 20.3125 10.2051 45.7031 26.5625 19.4824 51.9531 32.2266 24.6582
		% ton.	30.2101 19.2009 44.4839 3.1097 3.0518 8.9005 5.6511 5.9242 18.5188 9.5741 10.3973 32.7576
	Be.	% tran.	57.5195 31.2500 61.3037 2.9297 6.8359 13.4033 23.4375 6.7383 82.7148 80.0781 15.8203 99.8779
		% ton.	36.0977 21.1670 42.2409 2.9648 2.9938 8.1978 4.6402 4.8706 12.5305 7.4661 7.5645 18.7614
	Mo.	% tran.	

[START_REF] Wolfe | Bayesian vari-1464 able selection and regularization for time-frequency surface 1465 estimation[END_REF] Févotte et al., 2008), the variances

P Λ {γ ton,n = 1} is defined in Eq. (9) for Method Chord

To show the relevance of the proposed priors, the 42 proposed approach will be systematically compared with 43 a closely related state-of-the art approach described in 44 Section II.C.3.

45

corresponding to the number of iterations required before 27 the Markov chain {θ (1) , θ (2) , . . .} reaches its stationary we use for the evaluation of the proposed model. et al., 2008). This is because our method in-68 duces some artifacts resulting from undesirable selected 

(A4)

The ratio p γtran,m=1|γtran,-m γtran,m=0|γtran,-m is P∆{γtran,m=1}

1-P∆{γtran,m=1} ,
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where P ∆ {γ tran,m = 1} is defined in Eq. ( 13). 

c. Variance of the noise

1. See e.g. https://sites.google.com/site/nips10sparsews/. 12 Casella, G. and George, E. (1992). "Explaining the Gibbs