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Sparse and structured decomposition of audio signals on hybrid1

dictionaries using musical priors2
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UMR 8506, CNRS-SUPELEC-Univ Paris-Sud5

91172 Gif-sur-Yvette Cedex, France6

(Dated: January 30, 2013)7

This paper investigates the use of musical priors for sparse expansion of audio signals of music,
on an overcomplete dual-resolution dictionary taken from the union of two orthonormal bases that
can describe both transient and tonal components of a music audio signal. More specifically, chord
and metrical structure information are used to build a structured model that takes into account
dependencies between coefficients of the decomposition, both for the tonal and for the transient
layer. The denoising task application is used to provide a proof of concept of the proposed musical
priors. Several configurations of the model are analyzed. Evaluation on monophonic and complex
polyphonic excerpts of real music signals shows that the proposed approach provides results whose
quality measured by the signal-to-noise ratio is competitive with state-of-the-art approaches, and
more coherent with the semantic content of the signal. A detailed analysis of the model in terms
of sparsity and in terms of interpretability of the representation is also provided, and shows that
the model is capable of giving a relevant and legible representation of Western tonal music audio
signals.

PACS numbers: 43.75.Xz, 43.75.Zz, 43.60.Hj, 43.60.Pt8

I. INTRODUCTION9

We describe in this paper a novel approach for struc-10

tured sparse decomposition of a music signal in an over-11

complete time-frequency hybrid dictionary. Within a12

Bayesian framework, we propose to incorporate musi-13

cal priors in order to built signal representations that14

take into account some “structural” information and that15

are more suitable to music than existing methods that16

are based on physical signal properties. For this, we17

take advantage of the recent work that have been done18

on chord estimation and beat tracking in the context19

of music content indexing. The model we propose is20

inspired from previously proposed Bayesian models for21

time-frequency inverse modeling of non-stationary sig-22

nals (Wolfe et al., 2004) or sparse linear regression in23

unions of bases (Févotte et al., 2008), but presents an es-24

sential difference in the way dependencies between coeffi-25

cients of the representation are modeled, using the newly26

introduced musical priors. One of the goal of this work is27

to show that ideas that have emerged in two related but28

distinct communities, Sparsity and Music Information29

Retrieval, can be exploited jointly to open new perspec-30

tive for audio signal processing. Sparse representations31

have been used as a basis for extracting high-level in-32

formation for MIR applications, such as note extraction33

in (Davies and Daudet, 2006), or beat tracking, chord34

recognition and musical genre classification in (Ravelli35

et al., 2010). Our approach is somewhat different: we36

propose to incorporate music content information in or-37

der to build structured sparse representations that are38

tailored to the analyzed music signal and legible from a39

musical point of view.40

a)Author to whom correspondence should be addressed. Electronic
mail: helene.papadopoulos@lss.supelec.fr.

A. Structured sparse representation41

The problem of representing an audio signal using a42

time-frequency dictionary has been given a lot of atten-43

tion these last few years. The specific problem we con-44

sider here is finding an approximation of a music audio45

signal as a linear combination of elementary waveforms46

(also called atoms) of a suitably chosen dictionary.47

Musical signals are intrinsically structured. A particu-48

larity of musical signals is that, very often, several types49

of components are superimposed such as, among other50

features, tonal components (the partials of the notes, that51

are characterized by sinusoids with slowly varying ampli-52

tude and frequency) and transients (the attacks of the53

notes, that correspond to events well-localized in time).54

This is illustrated in Figure 1 that represents the spectro-55

gram of a glockenspiel signal. The tonals appear as thin56

horizontal lines whereas the transients appear as sharp57

vertical lines. These various components may have sig-58

nificantly different behaviors in terms of time-frequency59

localization. For instance, fast varying transients require60

short analysis window length, whereas low varying tonals61

require long windows. Thus, they cannot be optimally62

represented within the same basis. The Balian-Low the-63

orem (Low, 1985) states that redundancy is necessary64

for having well-localized functions both in time and fre-65

quency for transforms based on local Fourier analysis.66

This is why hybrid models, allowing a simultaneous rep-67

resentation of different components have been proposed68

(Hamdy et al., 1996; Verma and Meng, 2000; Daudet69

and Torrésani, 2002; Molla and Torésani, 2005). These70

models consider redundant (or overcomplete) dictionar-71

ies that are constructed by the concatenation of several72

families or bases (usually time-frequency atoms, such as73

Gabor atoms or local cosines; or time-scale atoms, such74
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as wavelets). Typically, the resulting dictionaries contain1

elements with various time-frequency characteristics and2

are more flexible than orthonormal bases (Chen et al.,3

1998).4
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FIG. 1. Time-frequency representation of a recording of a
glockenspiel excerpt. The vertical lines correspond to the at-
tacks of the notes and the horizontal lines correspond to the
partials.

Among the various existing transforms, lapped trans-5

forms such as the Modified Discrete Cosine Transform6

(MDCT) (Mallat, 1998; Malvar, 1990) is a standard7

choice for the bases (Févotte et al., 2006; Kowalski and8

Torrésani, 2008). This transform is very popular, in par-9

ticular in high quality audio coding and signal compres-10

sion applications, because it allows an orthogonal time-11

frequency transform without blocking effects. Following12

these approaches, we consider in this work a dictionary13

built as the union of two MDCT bases with different14

time-frequency resolutions. The narrow band basis –15

with long time resolution – is used to estimate the tonal16

parts of the signal, and the wide band basis – with short17

time resolution – is used to estimate the transient parts.18

Such a dictionary is overcomplete since the number of el-19

ements of the dictionary is greater than the length of the20

signal. The expansion of the signal with respect to the21

dictionary is thus not unique. Sparsity may be used as a22

selection criterion for finding the expansion coefficients,23

in the sense that only a few coefficients of the decompo-24

sition of the signal on the bases are significantly nonzero.25

The signal can thus be well approximated by a limited26

number of coefficients. This problem is often referred to27

as sparse regression. Sparsity has become a fundamental28

concept in diverse areas of modern signal processing. It29

is, for instance, an essential ingredient of popular cod-30

ing standards such as the MPEG-1 layer III (“MP3”) or31

the MPEG-2 AAC. A review of sparse representations32

for musical signals and their applications can be found in33

(Daudet and Torrésani, 2006; Plumbley et al., 2010).34

A common approach to find a sparse expansion of sig-35

nals in overcomplete dictionaries consists of minimizing36

the ℓ1 norm of the expansion, and is known as basis pur-37

suit (Chen et al., 1998), or LASSO (Tibshirani, 1996).38

Other methods include variational approaches (Kowalski,39

2009), probabilistic approaches (Kowalski and Torrésani,40

2008), greedy methods, such as the Matching Pursuit41

algorithm (Mallat and Zhang, 1993; Daudet, 2010) and42

its variants (the Orthogonal Matching Pursuit (Mallat,43

1998; Pati et al., 1993), the Molecular Matching Pur-44

suit (Daudet, 2006b)), or Bayesian formulations as for45

instance EM-based algorithms (Figueiredo, 2003). In46

the framework of Bayesian variable selection, MCMC47

(Markov chain Monte Carlo) type approaches have been48

proposed (Févotte and Godsill, 2006; Févotte et al.,49

2008). One of the main advantages of the MCMC tech-50

niques is their robustness because they scan the whole51

of the posterior distribution and thus are unlikely to fall52

into local minima. However, this is done at the expanse53

of high computational cost.54

The concept of structured approximation has been in-55

troduced from the observation that significant coefficients56

are not isolated but tend to form “clusters” in the in-57

dex space. As mentioned above, audio music signals are58

well-structured. In the time-frequency plane, the par-59

tials of the notes will generate horizontal lines localized60

in frequency, whereas the attacks of the notes and the61

percussive sounds will generate vertical lines localized62

in time. Ideally, this structure should be reflected in63

the signal decomposition, so that the coefficients have64

physical interpretability and are more meaningful than65

isolated coefficients from an analysis perspective. Inter-66

pretability is a key concept in sparsity1. A signal rep-67

resentation where coefficients can be explained from a68

theoretical or a physical point of view can help assessing69

the model accuracy, and provides a suitable representa-70

tion for higher-level tasks. For instance in music sig-71

nal analysis, a time-frequency representation where coef-72

ficients can be physically interpretable as being part of73

the tonal layer may be very useful to the multi-f0 estima-74

tion task (Yeh et al., 2010). This is why we are interested75

in finding a signal approximation that is not only sparse,76

but also structured, by considering dependencies between77

significant coefficients. Previous approaches that use un-78

structured priors, such as Bernoulli models have shown79

that they generate isolated coefficients with high ampli-80

tude in both bases (Févotte and Godsill, 2006; Kowalski81

and Torrésani, 2008). These components do not have82

any physical or musical meaning and are usually per-83

ceived as “musical artifacts” or “musical noise” in the84

reconstructed signal. Considering dependencies between85

atoms coefficients and using structured priors allows re-86

ducing the number of such undesirable components. Var-87

ious approaches have been proposed for introducing de-88

pendencies between coefficients in the time-frequency do-89

main. These approaches aim at exploiting the fact that90

significant coefficients tend to be organized into clus-91

ters, which results from persistence properties of time-92

frequency representations. Structures can be modeled di-93

rectly in the coefficients themselves, such as in (Kowalski,94

2009). However, dependencies are often introduced in the95

time-frequency indices, rather than directly in the coef-96

ficients. This results into hierarchical models in which97

both the coefficients and the addresses of the significant98
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coefficients have to be modeled.1

Among existing approaches, physical properties result-2

ing in persistency over frequency of the transient layer3

can be modeled using structured hierarchical Bernoulli4

models on a dictionary built as the union of two MDCT5

bases with different time-frequency resolutions (Kowal-6

ski and Torrésani, 2008), binary Markov trees (Crouse7

et al., 1998; Molla and Torésani, 2005), or dyadic trees of8

wavelet coefficients used with wavelet bases (Daudet and9

Torrésani, 2002); persistency of the tonal layer can be10

favored using Markov chains, as proposed in (Molla and11

Torésani, 2005) in the case of a MDCT base; in (Févotte12

et al., 2008), structural constraints on the coefficients13

that rely on physical properties of the signal are imposed14

for both layers. Persistencies of time-frequency coeffi-15

cients of musical signal are modeled using two types of16

Markov chains. It results in a “horizontal structure” for17

the tonal layer and a “vertical structure” for the transient18

layer.19

Enforcing structure between expansion coefficients can20

be managed using sequential approaches (Daudet and21

Torrésani, 2002; Daudet, 2004; Molla and Torésani, 2005)22

that first identify the tonal layer using the first basis, and23

then estimate the transient components from the resid-24

ual, using the second basis. In (Daudet and Torrésani,25

2002; Daudet, 2004), tonal and transient components26

are expanded sequentially into local cosine and dyadic27

wavelets bases respectively. The method does not rely28

on any prior segmentation of the signal. For each layer,29

only the largest coefficients in each time frame are re-30

tained based on threshold values that are estimated adap-31

tively in a quantization stage. In the framework of audio32

coding, (Molla and Torésani, 2005) describes an hybrid33

model for the expansion of audio signals considering a34

redundant dictionary made out of the union of local co-35

sine and wavelet bases. A recursive scheme is proposed36

to estimate the two layers, that relies on the assumption37

that the cardinalities of the significance maps have to be38

known. A priori estimates for the relative sizes of the39

tonal and transient layers are obtained based on an algo-40

rithm that determines local transientness of audio signals41

(Molla and Torésani, 2004). The approach is used to de-42

velop an hybrid audio coder that does not rely on prior43

(time) segmentation of the signal.44

As stressed in (Daudet, 2006a), sequential approaches45

suffer from two limitations. First, errors in a step are46

systematically propagated into the next estimation stage47

and thus bias the estimates of the other components.48

Second, the choice of a threshold that allows discrimi-49

nating large significant from small residual coefficients50

is difficult. An alternative to sequential approaches is51

the simultaneous approach of both layers, as proposed in52

(Févotte et al., 2008).53

Starting from this approach, we build a structured54

model for sparse signal decomposition within a Bayesian55

framework. The originality of our work is that we model56

dependencies between the expansion coefficients by using57

priors that are based on musical information.58

B. Content-based music information retrieval59

Up to now, additional structure constraints that have60

been added rely on physical properties of the signal. The61

recent advances in automatic extraction of content in-62

formation from audio music signals in the field of Music63

Information Retrieval (MIR) offers an interesting alter-64

native. Content-based music information retrieval deals65

with the extraction and processing of meaningful infor-66

mation from musical audio. Techniques developed for67

searching, retrieving, organizing and interacting in a per-68

sonalized way with large databases of music signals are69

often based on the use of musical descriptors that are70

extracted from the signal, such as the key, the chord pro-71

gression, the melody or the instrumentation. Musical72

content information can be used to build structured pri-73

ors that reflect the content of the signal. For instance, as74

we propose in this paper, the chord progression provides75

information about the notes that are present in the sig-76

nal and can be used to build a prior for the tonal layer.77

Similarly, the position of the beats is related to the tran-78

sients and can be used to build a prior for the transient79

layer. These concepts are introduced in what follows.80

1. Chord estimation81

The chord progression of a piece of music is a very im-82

portant descriptor because it characterizes its harmonic83

structure. Here, we want to work directly on audio. The84

symbolic transcription (the score) of a piece of music is85

not always available, especially in music genres such as86

jazz music where there is a large part devoted to improvi-87

sation. In addition, algorithms that extract a transcrip-88

tion from an audio signal, such as multi-f0 estimation89

algorithms (Yeh et al., 2010), are still limited and costly.90

However, numbers of recent work have shown that it is91

possible to accurately extract a robust representation of92

the harmonic content without the use of transcription93

algorithms. Estimating the chord progression of an au-94

dio signal has thus become a very popular task in MIR95

(Sheh and Ellis, 2003; Bello and Pickens, 2005; Harte and96

Sandler, 2005; Papadopoulos and Peeters, 2011).97

The output of a chord estimation algorithm consists in98

a progression of chords chosen among a given chord lexi-99

con, that is very often limited to the 24 major and minor100

triads. Chord estimation on real signals has been fa-101

vored by the use of the chroma features (Wakefield, 1999)102

or Pitch Class Profiles (Fujishima, 1999), which are tra-103

ditionally 12-dimensional vectors, with each dimension104

corresponding to the intensity associated with one of the105

12 semitone pitch classes (chroma) of the Western tonal106

music scale, regardless of octave. The temporal sequence107

of chroma vectors over time is known as chromagram.108

Conceptually, the chromagram is a frequency spectrum109

folded into a single octave. Pooling the spectrum into110

twelve bins that correspond to the twelve pitch classes of111

the equal-tempered scale results in a signal representa-112

tion that allows identifying pitches by an octave. Each113

chord may be characterized by the semitone pitch classes114
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or chroma that correspond to the notes it is composed1

of. The use of such a mid-level representation overcomes2

the problem of automatic transcription.3

Various approaches for chroma computation exist. Al-4

though they present some variances in the implementa-5

tion, they follow in general the same guideline that con-6

sists of two main steps:7

1. First, a semitone pitch class spectrum (SPS), that8

is a log-frequency representation of the spectral9

content of the music audio signal, is constructed.10

It is expressed in a MIDI-note scale and is in gen-11

eral either computed from the Fourier transform or12

from the constant-Q transform (Brown, 1991).13

2. Secondly, the semitone pitch spectrum is mapped14

to the chroma vectors. For this, the semitones in15

octave distance are added up to pitch classes.16

The chromagram computation may include some other17

steps such as a pre-processing step that separates har-18

monic and noise components, a filtering step that19

smoothes the chromagram or a post-processing normal-20

ization step that makes the chromagram invariant to dy-21

namics.22

We rely in this paper on a chromagram computation23

method, described in (Papadopoulos and Peeters, 2011),24

that is based on a constant-Q transform applied on a25

downsampled signal.26

For chord estimation, we rely on the model proposed in27

(Papadopoulos and Peeters, 2007, 2011), that is based on28

chord templates and hidden Markov models. We briefly29

described here the concepts that are used in the rest of30

the paper. The front-end of our model is based on the31

extraction of a chromagram that represents the audio32

signal. The chord progression is then modeled as an33

ergodic 24-states HMM, each hidden state correspond-34

ing a chord of a the chord lexicon (CM, . . . , BM, Cm,35

. . . , Bm), and the observations being the chroma vec-36

tors. The observation chord symbol probabilities are ob-37

tained by computing the correlation between the obser-38

vation vectors (the chroma vectors) and a set of chord39

templates which are the theoretical chroma vectors corre-40

sponding to the I = 24 major and minor triads. A state-41

transition matrix based on musical knowledge (Noland42

and M., 2006) is used to model the rules from which43

the transitions between chords result. The chord pro-44

gression over time is estimated in a maximum likelihood45

sense by decoding the underlying sequence of hidden46

chords S = (s1, s2, . . . , sN ) from the sequence of observed47

chroma vectors using the Viterbi decoding algorithm.48

2. Beat tracking49

Beat tracking is a challenging problem that has been50

addressed in a large number of works because beat in-51

formation is used in many applications in music signal52

processing, such as music analysis, score alignment or53

cover version identification. Numerous good overviews54

on the problem of beat tracking are available, such as55

for instance (Dixon, 2007; Scheirer, 1998; Klapuri et al.,56

2006; Davies and Plumbley, 2007). In the present work,57

we use the beat tracker proposed in (Peeters and Pa-58

padopoulos, 2011) as a front end of the system. Briefly,59

this approach aims at simultaneously estimating beat lo-60

cations with downbeat locations from an audio file. A61

probabilistic framework in which the time of the beats62

and their associated beat-positions-inside-a-measure role,63

hence the downbeats, are considered as hidden states64

and are estimated simultaneously using signal observa-65

tions. For this, a reverse Viterbi algorithm that decodes66

hidden states over beat-numbers is proposed. A beat-67

template is used to derive the beat observation probabil-68

ities. A machine-learning method, the Linear Discrim-69

inant Analysis, allows estimating the most discrimina-70

tive beat-templates. Two kinds of observations are pro-71

posed to derive the beat-position-inside-a-measure obser-72

vation probability: the variation over time of chroma73

vectors and the spectral balance. This methods was74

ranked first for the McKinney Collection test-set dur-75

ing the MIREX 2009 beat tracking contest. We refer76

the reader to (Peeters and Papadopoulos, 2011) for more77

details.78

C. Contributions79

Sparse representations of signals have recently proved80

to be useful for a wide range of applications in signal81

processing, such as denoising (Févotte et al., 2006), cod-82

ing and compression (Daudet et al., 2004; Ravelli et al.,83

2008), source separation (Benaroya et al., 2006; Févotte84

and Godsill, 2006) or music transcription (Blumensath85

and Davies, 2004). Here, we focus on the task of denois-86

ing an excerpt of musical audio. The approach we pro-87

pose is in many respects related to previously proposed88

MCMC schemes for nonlinear approximation in hybrid89

dictionaries of waveforms. However, a main difference is90

that we aim at providing a multilayered signal decom-91

position that fits the music signal, in which the layers92

can well explain the signal and reflect its music content93

and can provide more relevant semantic information. By94

incorporating musical priors, we built a model that is95

particularly well adapted to music and fits the intrinsic96

nature of Western tonal music. The denosing application97

is used as a proof of concept for the description of new98

musical priors introduced in the paper, and we thus focus99

on assessing the relevance of the new priors rather than100

demonstrating the superiority of the method in terms of101

denoising results (although it is competitive with respect102

to signal to noise ratio to the state-of-the-art). In this103

context, we systematically compare our model, in which104

structural constraints on the coefficients are based on mu-105

sical prior, to the model proposed (Févotte et al., 2008),106

and in which structural constraints on the coefficients107

rely on physical properties of the signal are imposed for108

both layers, reaching the state-of-the-art in terms of SNR109

results.110

Preliminary results of the proposed approach can be111

found in (Papadopoulos and Kowalski, 2011). In this ar-112

ticle, we propose significant improvements to the signal113
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model, in particular by presenting a structured model for1

the transient layer; we include the result of new experi-2

ments; finally we present a detailed analysis of the model3

and case-study examples.4

The remainder of this paper is structured as follows. In5

Section II, we present our model for sparse signal decom-6

position on hybrid dictionaries that incorporates musical7

priors; our main contribution is described in part II.C8

where we specify our formulation of prior dependence9

structures in the time-frequency plane. We briefly ad-10

dress the problem of parameters estimation in Section III.11

In Sections IV and V, we present and discuss the simula-12

tion results of our model. Conclusions and perspectives13

for future work are given in Section VI.14

II. SIGNAL MODEL15

This section introduces first the mathematical model16

used to represent the audio signal, and then defines the17

priors chosen in a Bayesian context. Particularly, the18

new musical priors based on the chromagram and the19

beat locations are exposed in Section II.C.20

A. Model21

In this part, we describe our model for signal decom-22

position with sparse constraint on a hybrid dictionary23

of elementary waveforms (Daudet and Torrésani, 2002).24

The dictionary is constructed as the union of two or-25

thonormal bases with different time-frequency resolution26

that account respectively for the tonal and the transient27

parts of the signal. We consider a tree-layer signal model28

of the form:29

signal = tonals + transients + residual .30

Let V = {vn, n = 1, . . . , N} and U = {um, m =31

1, . . . , N} be two MDCT bases of R
N with respectively32

long frame ℓton to achieve good frequency resolution for33

tonals and short frame ℓtran to achieve good time res-34

olution for transients. The MDCT is a bijective linear35

transform and we note nton = N
ℓton

and ntran = N
ℓtran

the36

number of frames for each basis (see Figure 2). Here,37

n and m are time-frequency indexes and will be de-38

noted in the following n = (q, ν) ∈ [1, nton] × [1, ℓton]39

or m = (q, ν) ∈ [1, ntran] × [1, ℓtran].40

The signal is decomposed as a linear combination of41

atoms of the two basis V and U that account for the42

tonal and transient layers plus a residual part that ac-43

counts for the noise and that is not sparse with respect44

to the two considered bases. We denote D = V ∪ U the45

dictionary made as the union of these two bases. D is46

overcomplete in R
N , and any x ∈ R

N admits infinitely47

many expansions in the form:48

x =
∑

n∈I

αnvn +
∑

m∈I

βmum + r , (1)

where I = {1, . . . , N}, αn and βm are the expansion co-49

efficients and r represents the noise term.50

FIG. 2. Illustration of the two MDCT bases that account for
the tonal part (long time resolution) and the transient part
(short time resolution) of the signal.

We are interested in sparse signals, i.e. signals that
may be written as:

x =
∑

λ∈Λ

αλvλ +
∑

δ∈∆

βδuδ + r , (2)

where Λ and ∆ are small subsets of the index set I =51

{1, . . . , N} that account for the significant coefficients,52

i.e they identify which coefficient of the expansion are53

significantly non-zero. In what follows, they will be re-54

ferred to as significance maps.55

In order to model sparseness in the time-frequency co-56

efficients, we introduce two indicator random variables57

corresponding to the significance maps Λ and ∆, γton,n58

and γtran,m ∈ {0, 1} that control the sparsity of the ex-59

pansion:60

γton,n =

{
1 if n ∈ Λ
0 otherwise

γtran,m =

{
1 if m ∈ ∆
0 otherwise .

(3)

We can therefore rewrite Eq. (2) as:

x =
∑

n∈I

γton,nαnvn +
∑

m∈I

γtran,mβmum + r . (4)

The hybrid model is defined by two components: a61

discrete probability model for the significance maps, and62

a probability model for the expansion coefficients con-63

ditional upon the significance maps. Both of them are64

described below.65

B. Coefficient priors66

The sparseness of the expansion is conceptualized in67

a hierarchical manner as it is not directly modeled in68

the coefficients but through the binary indicator random69

variables γton,n and γtran,m that are attached to each70

coefficient. As a result, hierarchical priors are given to71

the coefficients. We assume that, conditional upon the72

significance maps Λ and ∆ , the coefficients αn and βm73
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are independent zero-mean normal random variables:1

p(αn|γton,n, σton,n) = (1 − γton,n)δ0(αn) + (5)

γton,nN (αn|0, σ2
ton,n)

p(βm|γtran,m, σtran,m) = (1 − γtran,m)δ0(βm) +

γtran,mN (βm|0, σ2
tran,m) ,

where δ0 is the Dirac delta distribution and, following2

(Wolfe et al., 2004; Févotte et al., 2008), the variances3

σton,n and σtran,m are given an inverse-Gamma conjugate4

prior distribution:5

6

p(σ2
ton,n|γton,n = 1, fton,n) = (6)

IG(σ2
ton,n|1, fton,n)

p(σ2
tran,m|γtran,m = 1, ftran,m) =

IG(σ2
tran,m|1, ftran,m) ,

where the scale parameters fton,n and ftran,m are para-
metric frequency profiles that aim at taking into account
the decrease of the energy of the signal when the fre-
quency increases (Févotte et al., 2008, Eq. (8)):

fton,n =
λton

1 +
(

q−1
ℓton/3

) ftran,m =
λtran

1 +
(

q−1
ℓtran/3

) . (7)

The parameters λton and λtran are given a non-7

informative Gamma conjugate prior.8

Sparsity is enforced when γton,n = 0 (resp. γtran,m =9

0). In this case, the coefficients αn (resp. βm) are set to10

zero.11

C. Indicator variable priors12

In order to enforce structure between expansion coef-13

ficients, the significance maps Λ and ∆ are given struc-14

tured priors. We design priors that are tailored to the15

music signal. The one corresponding to the tonal basis16

encodes musical information based on harmonic content17

information using a chord transcription of the analyzed18

excerpt. The one corresponding to the transient basis is19

based on metrical content information using the sequence20

of beats corresponding to the analyzed excerpt.21

To show the relevance of the proposed priors, the22

proposed approach will be systematically compared with23

a closely related state-of-the art approach described in24

Section II.C.3.25

26

In what follows, some results will be illustrated27

through the representation of the significance maps that28

are defined by the two binary indicator random vari-29

ables γton,n and γtran,m. In Figure 2, the MDCT bases30

are illustrated by a tiling of the time-frequency plane,31

where each tile represents a particular atom. The signif-32

icance maps in the time-frequency plane are represented33

through the binary indicator random variable γ. To34

each atom corresponds an indicator variable that controls35

whether this atom is selected (γ = 1) or not (γ = 0)2.36

1. Model for tonals37

For the significance map corresponding to the tonals,38

we propose to model dependencies between indicator39

variables using information about the harmonic content40

of the audio signal. Ideally, we would assume that we41

know the score corresponding to the musical excerpt and42

that, for each time frame q ∈ {1, . . . , nton}, we know43

which notes the signal is composed of.44

However, here, we want to work directly on audio, for45

which an exact transcription is usually not available. A46

number of recent work have shown that it is possible to47

accurately extract robust mid-level representation of the48

music, such as the chord progression (Papadopoulos and49

Peeters, 2011), that characterizes its harmonic content.50

We propose to give a musical prior to the indica-51

tor variables using musical information obtained from52

a chord progression estimated from the audio file. The53

output of a chord estimation algorithm consists in a pro-54

gression of chords chosen among a given chord lexicon55

that, in general, does not distinguish between any pos-56

sible combination of simultaneous notes, but is typically57

reduced to a set of chords of 3 or 4 notes. The number58

of notes composing the chords will be denoted by Nc in59

the following. Here, we limit our chord lexicon to the60

24 major and minor triads (Nc = 3). The method we61

propose could be extended to larger dictionaries.62

Each chord is characterized by a set of semitone pitch63

classes or chroma that correspond to the notes it is com-64

posed of. The chord progression does not provide an65

exact transcription of the music. For instance, passing66

notes are in general ignored, missing notes in the har-67

mony may be added. Moreover, the chords are estimated68

regardless of octave. However, experiments show that the69

provided music content information is sufficient enough70

to build musically meaningful priors.71

We consider two methods for building the structured72

significance maps for the tonal layer. In the first case,73

denoted as Method Chord, we use chord information. In74

the second case, denoted as Method Chroma, the priors75

are built relying directly on chromagram information.76

a. Mapping between MDCT bins and chroma: In order77

to select atoms of the MDCT base that correspond to78

the harmonic content of the signal, we first perform79

a mapping between the MDCT bins and the 12 semi-80

tone pitch classes. Given a fixed frame index q, let81

{pMDCT
ν }ν=1,...,ℓton

denote the semitone pitch classes cor-82

responding to each frequency MDCT bin.83

Assuming a perfect tuning of A = 440Hz, a MDCT bin
of frequency ν is converted to a chroma pMDCT

ν by the
following equation:

pMDCT
ν = (12 log2

ν

440
+ 69) (mod 12)3 . (8)

Note that, a single semitone pitch-class corresponds to84

several consecutive bins of the MDCT. Because of the85

logarithmic scale of Western tonal music, the higher the86

frequency, the larger the number of MDCT bins corre-87

spond to a single pitch class.88
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b. Method Chords: Given a fixed frame index q,1

let {pchord
k }k=1,...,Nc

denote the semitone pitch-classes2

(chroma) corresponding to the estimated chord cq. All3

bins of the MDCT that correspond to a note belonging to4

the estimated chord are selected. The indicator variables5

{γton,(q,ν)}ν=1,...,ℓton
are given the following membership6

probabilities:7

PΛ{γton,(q,ν) = 1} (9)

=

{
pton if ∃k ∈ [1, Nc] | pMDCT

ν = pchord
k

1 − pton otherwise ,

where 0 ≤ pton ≤ 1. The significance maps corresponding8

to the tonal layer should reflect the harmonic content of9

the audio signal. In practice, the value pton will be close10

to 1 (in our experiments, pton = 0.9) so that atoms cor-11

responding to the notes that are played are given high12

prior. The significant map for the tonal layer corre-13

sponding to the Glockenspiel monophonic audio signal14

of our test-set is illustrated in Figure 3. A set of atoms15

is selected at each frame according to the notes of the16

(note) transcription, regardless of octave. For instance17

all atoms {B1, B2, . . .} corresponding to the semitone B18

are selected when the first B note of the Glockenspiel is19

sounded.20

The significance maps are given structures of “tubes”21

that have a musical meaning. Note also that we provide22

here a “vertical structure” for tonals.23
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FIG. 3. Structured significance map for tonals for a Glock-
enspiel excerpt using chord information. Left: only notes
composing the chords are considered. Right: higher harmon-
ics are considered. The note transcription is indicated in the
bottom.

c. Method Chroma: Given a fixed frame index q,24

let {ak}k=1,...,12 denote the amplitude of each bin25

{pchroma
k }k=1,...,12 of the computed chroma vector. Note26

that, according to (Papadopoulos and Peeters, 2011), the27

chromagram has been normalized so that

12∑

k=1

ak = 1. For28

each chroma bin, all MDCT bins that correspond to this29

chroma are selected and given a weighted contribution30

according to the amplitude in the chroma vector. The31

indicator variables {γton,(q,ν)}ν=1,...,ℓton
are given the fol-32

lowing membership probabilities:33

PΛ{γton,(q,ν) = 1} (10)

= ak if ∃k ∈ [1, 12] | pMDCT
ν = pchroma

k .
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FIG. 4. Structured significance map for tonals for a Beethoven
String Quartet Op.127 excerpt using chroma information.

Figure 4 shows the significant maps for the tonal layer34

corresponding to the Beethoven String Quartet Op.12735

audio signal of our test-set obtained with Method Chord36

[left] and Method Chroma [right].37

Two additional components may be added to improve38

the model.39

d. Tuning: The instruments may have been tuned ac-
cording to a reference pitch different from the standard
A4 = 440Hz. In this case it is necessary to estimate the
tuning of the track and Eq. (8) becomes:

pMDCT
ν = (12 log2

ν

Aest
+ 69) (mod 12) , (11)

where Aest denotes the estimated tuning, here obtained40

with the method proposed in (Peeters, 2006).41

e. Harmonics: Higher harmonics may be considered in42

the model. Each note produces a set of harmonics, whose43

frequencies are whole number multiples of the fundamen-44

tal frequency4, that results in a mixture of non-zero val-45

ues in the chroma vector corresponding to the chord. For46

instance a C1 note will produce the set of harmonics47

{C1 − C2 − G2 − C3 − E3 − G3 − . . .}. They can be48

considered in the significance maps, as illustrated in the49

right part of Figure 3. Here we take into account the first50

6 harmonics of the notes5.51
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2. Model for transients1

For the significance map corresponding to the tran-2

sients, we propose to model dependencies between in-3

dicator variables using information about the metrical4

structure of the audio signal. The idea is that, in a piece5

of music, most of the transient sounds will occur on beats6

or beat subdivisions. For instance, drum sounds are gen-7

erally used to underline the metrical structure (beats,8

downbeats); in a string quartet piece, bow changes will9

generally occur on note changes, which are related to the10

metrical structure.11

The structured prior corresponding to the significance12

map for tonals is built as follows. The beat positions13

are estimated from the signal using the beat tracker pro-14

posed in (Peeters and Papadopoulos, 2011), described in15

Section I.B.2. Let {bk}k=1,...,Nb
denote the Nb beat posi-16

tions (in frames) of the track (subdivisions of beats such17

as quarter notes or eighth notes can be considered as18

well). The indicator variables {γtran,(q,ν)}ν=1,...,ℓtran
are19

given the following membership probabilities:20

∀ν = 1, . . . , ℓtran P∆{γtran,(q,ν) = 1} (12)

=

{
ptran if ∃k ∈ [1, Nb] | q = k
1 − ptran otherwise ,

where 0 ≤ ptran ≤ 1. The significance maps correspond-21

ing to the transient layer should reflect the metrical con-22

tent of the audio signal. In practice, the value ptran23

will be close to 1 (in our experiments, ptran = 0.9) so24

that atoms corresponding to beat locations are given high25

prior. The significant map for the transient layer corre-26

sponding to the Glockenspiel audio signal of our test-set27

is illustrated in Figure 5. For each beat location, all fre-28

quency bins are retained, resulting in vertical lines that29

are sparse in time but cover all the frequencies, in the30

significance map. It may be noticed that the duration31

between two consecutive lines is not constant, as there32

my by variations in the tempo.33

Time (frames)

F
re

q
u
en

cy
(f

ra
m

es
)

100 200 300 400 500 600 700 800 900 1000

20

40

60

80

100

120

Structured significance maps for transients
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FIG. 5. Structured significance map for transients for a Glock-
enspiel excerpt using beat location information, resulting in
vertical lines in the time-frequency plane. Left: considering
beat locations. Right: considering eight-notes locations.

Remark 1 As underlined in (Kowalski and Torrésani,34

2008; Févotte et al., 2008), the window lengths for each35

layer must be significantly different enough to discrim-36

inate between tonals and transients. Better results are37

obtained using a very short window length for the tran-38

sients (≈ 3ms) that is shorter than the duration of a short39

attack. In this case, several frames may be needed to de-40

scribe a transient. In practice, we also select vertical lines41

surrounding the theoretical (or estimated) beat locations42

in the transient layer prior. Eq. (12) thus becomes:43

∀ν = 1, . . . , ℓtran P∆{γtran,(q,ν) = 1} (13)

=







ptran if ∃k ∈ [1, Nb] | q = k
ptran if ∃k ∈ [1, Nb] | q = k − 1
ptran if ∃k ∈ [1, Nb] | q = k + 1
1 − ptran otherwise .

3. Baseline approach for comparison44

In this article, we compare our approach, in which45

structural constraints on the coefficients are based on mu-46

sical prior, to the baseline model (Févotte et al., 2008),47

in which structural constraints on the coefficients relying48

on physical properties of the signal are imposed for both49

layers. Structure between significant coefficients of the50

decomposition is introduced to model persistence prop-51

erties of time-frequency representations of audio signals,52

so that a horizontal prior structure is given to the in-53

dicator variables corresponding to the tonal layer, while54

vertical prior structure is given to the indicator variables55

corresponding to the transient layer.56

For the tonal layer, persistency in time of the time-57

frequency coefficients is modeled. Given a fixed frequency58

index ν, the sequence {γton,(q,ν)}q=1,...,nton
is modeled by59

a two-state first-order Markov chain with transition prob-60

abilities Pton,00 and Pton,11, assumed equal for all fre-61

quency indices and initial distribution πton of each chain62

taken to be its stationary distribution.63

For the transient layer, persistency in frequency of the64

time-frequency coefficients is modeled. Given a fixed65

frame index q, the sequence {γtran,(q,ν)}ν=1,...,ℓtran
is66

modeled by a two-state first-order Markov chain with67

probabilities Ptran,00 and Ptran,11, assumed equal for all68

frames, and with learned initial probability πtran.69

The tonal and transient models are illustrated in Fig-70

ure 6. We refer the reader to (Févotte et al., 2008) for71

more details.72

D. Residual73

The residual signal r is modeled as an independent,74

identically distributed (i.i.d) Gaussian white noise, with75

variance σ2, which is given an inverse-Gamma conjugate76

prior 6.77

8



FIG. 6. Structured horizontal model for tonals and vertical model for transients based on time-frequency persistency properties.
Adapted from (Févotte et al., 2008).

III. MCMC INFERENCE1

In the spirit of some previous work on Bayesian vari-2

able selection (Geweke, 1996; George and McCulloch,3

1997), and following (Wolfe et al., 2004; Févotte et al.,4

2008), the posterior distribution of the set of param-5

eters and hyperparameters of the model, denoted by6

θ = {α, β, σton, σtran, νton, νtran} ∪ σ , is sampled from7

using a Gibbs sampler (Geman and Geman, 1984; Casella8

and George, 1992). Gibbs sampler is a standard Markov9

Chain Monte Carlo (MCMC) technique that simply re-10

quires to iteratively sample from the posterior distribu-11

tion of each parameter, conditionally upon the data x12

and the remaining parameters.13

The MCMC inference scheme we use is similar to the14

one described in (Wolfe et al., 2004; Févotte and Godsill,15

2006; Févotte et al., 2008), the main difference being the16

new musical priors considered for the indicator variables17

we have introduced in Section II.C. For the sake of com-18

pleteness, we provide in this section its general outline,19

using the notations we adopted in this paper. Further20

details about derivation of the expression for the update21

steps of the parameters, can be found in (Geweke, 1996;22

George and McCulloch, 1997; Wolfe et al., 2004; Févotte23

et al., 2008).24

Let θ−k denote the set of parameters in θ except the
parameter k. Using Bayes’rule, the conditional distri-
bution of each parameter k conditional upon the other
parameters and the data can be written as:

p(k|θ−k, x) ∝ p(x|θ)p(θ) . (14)

The conditional distributions are thus proportional to the25

likelihood of the data times the priors on the parameters.26

In order to avoid a nonconvergent Markov chain in the
Gibbs sampler, (γton, α) and (γtran, β) need to be sam-
pled jointly (Geweke, 1996). As pointed out in (Févotte
et al., 2008), the structure of the dictionary D = [V U ]
and the gaussian noise assumption allows alternative

block sampling of (γton, α) and (γtran, β), with the ben-
efit of avoiding any matrix inversion at each iteration of
the Gibbs sampler. Indeed, with the gaussian noise as-
sumption, the likelihood of the observations can be writ-
ten as:

p(x|θ) = (2πσ2)−N/2 exp(−
1

2σ2
‖ x − V α − Uβ ‖2

2) .

(15)
Because the Euclidian norm is invariant under rotation,27

Eq. (15) can be written as:28

p(x|θ) = (2πσ2)−N/2 exp(− 1
2σ2 ‖ UT (x − V α)

︸ ︷︷ ︸

xtran|ton

−β ‖2
2)

= (2πσ2)−N/2 exp(− 1
2σ2 ‖ V T (x − Uβ)

︸ ︷︷ ︸

xton|tran

−α ‖2
2) .

(16)

According to Eq. (16), conditionally upon β (resp. α)29

and the other parameters, inferring α (resp. β) is thus30

a simple regression problem with data xton|tran (resp.31

xtran|ton), variable α (resp. β) modeled as i.i.d. condi-32

tionally upon γton (resp. γtran), and i.i.d. noise, that33

does not require any matrix inversion.34

Briefly, (γton, α) and (γtran, β) are jointly sampled35

from by 1) sampling γton (resp. γtran) from the poste-36

rior conditional distribution p(γton,n|σton,n, σ, xton|tran)37

(resp. p(γtran,m|σtran,m, σ, xtran|ton)), and 2) sam-38

pling α (resp. β) from the posterior condi-39

tional distribution p(αn|γton,n, σton,n, σ, xton|tran) (resp.40

p(βm|γtran, σtran,m, σ, xtran|ton)). The detailed posterior41

distributions are given in Appendix A, and we refer the42

reader to (Févotte et al., 2008; Geweke, 1996) for more43

details.44

The posterior distribution of the other parameters45

σton, σtran, νton and νtran are easy to sample from since46

they have conjugate prior distributions and thus the cor-47

responding posterior will have the same form.48

The principal steps of the Gibbs sampler are summa-49

rized in Table I, where K is the total number of iterations50
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of the Gibbs sampler and KBurnin is the burn-in length,1

corresponding to the number of iterations required before2

the Markov chain {θ(1), θ(2), . . .} reaches its stationary3

distribution. We provide the full posterior distributions4

in Appendix A.5

TABLE I. Gibbs sampler steps for parameters inference.

Initialize θ(0)

for k = 1 : K + KBurnin do

Update tonals

Update γton and α

γ
(k)
ton ∼ p(γton|σ

(k−1)
ton , σ(k−1), x

(k−1)
ton|tran

) (Eq. (A1))

α(k) ∼ p(α|γ
(k)
ton, σ

(k−1)
ton , σ(k−1), x

(k−1)
ton|tran

) (Eq. (A5))

Update hyperparameters

σ
(k)
ton ∼ p(σton|α

(k), λ
(k−1)
ton ) (Eq. (A7))

λ
(k)
ton ∼ p(λton|σ

(k)
ton) (Eq. (A9))

Update transients

Update γtran and β

γ
(k)
tran ∼ p(γtran|σ

(k−1)
tran , σ(k−1), x

(k−1)

tran|ton
)(Eq. (A3))

β(k) ∼ p(β|γ
(k)
tran, σ

(k−1)
tran , σ(k−1), x

(k−1)

tran|ton
) (Eq. (A6))

Update hyperparameters

σ
(k)
tran ∼ p(σtran|β

(k), λ
(k−1)
tran ) (Eq. (A8))

λ
(k)
tran ∼ p(λtran|σ

(k)
tran) (Eq. (A10))

Update noise

σ(k) ∼ p(σ|α(k), β(k), x) (Eq. (A11))
end for

The Minimum Mean Square Estimates (MMSE) of the6

parameters θ can then be computed from the Gibbs sam-7

ples {θ(KBurnin), θ(KBurnin+1), . . . , θ(K)} of the posterior8

distribution p(θ|x):9

θ̂MMSE =
∫

θp(θ|x)dθ (17)

≈ 1
K−KBurnin

K∑

k=KBurnin+1

θ(k) . (18)

Time-domain source estimates are reconstructed by10

inverse transform of the estimated coefficients (inverse11

MDCT in our case). The denoised estimation is con-12

structed by x̂ = αV + βU .13

IV. EXPERIMENTS PROTOCOL AND EVALUATION14

MEASURES15

In this Section, we describe the test-set and measures16

we use for the evaluation of the proposed model.17

A. Experimental setup18

We present simulation results on 5 musical excerpts19

of various music styles that are described in Table II.20

These signals have been chosen because they have diverse21

characteristics: the Glockenspiel signal is a monophonic22

signal of a tuned percussion instrument, the Misery and23

Love Me Do signals are two complex polyphonic excerpts24

of Beatles songs containing voice and drum sounds, the25

Beethoven String Quartet signal is an excerpt of a string26

quartet and the Mozart Piano Sonata signal is an excerpt27

of polyphonic piano music.

TABLE II. Sound excerpts used for evaluation of the model.
SR: sampling rate.

Name SR (Hz) Duration
Glockenspiel 44100 2s
Misery (Beatles) 11025 11s
Love Me Do (Beatles) 11025 5s
Beethoven String Quartet Op.127 – 1 11025 11s
Mozart Piano Sonata KV310 – 1 11025 11s

28

a. Parameters : The length of the two MDCT bases are29

set to 1024 samples for the tonal layer and 128 samples for30

the transient layer, at a sampling rate of 44100Hz, and31

respectively to 256 and 32 samples at a sampling rate32

of 11025Hz. The MDCT of the clean and noisy signals,33

with input SNR = 10dB are represented in Figure 7.34

The MMSE and MAP estimates of the parameters are35

computed by averaging the last 100 samples of the Gibbs36

sampler, run for 500 iterations.37

We compare a semi-automatic model (denoted as ver-38

sion SA), assuming that the transcription is known (notes39

for the monophonic signal, chords for the polyphonic sig-40

nals, and beat locations) with a fully-automatic model41

where the music content is directly estimated from the42

input signal (denoted as version A). Our approach that43

incorporates musical priors is compared with the one44

presented in (Févotte et al., 2008), described in Section45

II.C.3, in which the priors for both the tonal and tran-46

sient layers are based on time-frequency persistency prop-47

erties (version (Févotte et al., 2008)).48

B. Evaluation measures49

1. Audio denoising:50

In the context of audio denoising task, artificial noisy51

signals are created by adding Gaussian white noise to the52

clean signal with various input SNRs. The case without53

additional noise WN (without noise) corresponds to a54

separation into two layers transient + tonal. Partials55

are expected to be recovered in the tonal layer while at-56

tacks or percussive sounds will be recovered in the tran-57

sient layer. The results in terms of output SNR pro-58

vide an objective evaluation measure. However, although59

widely used for assessing algorithm performances, the60

SNR is not a completely relevant measure of distortion61

for audio signals and is insufficient to measure the qual-62

ity or intelligibility of the reconstructed signals. Indeed,63

it does not reflect exactly the perceived audio quality64

that includes distortion of the reconstructed signal, mu-65

sical noise or other artifacts.. Subjective evaluation by66

listening to the signals is also required. Subjective qual-67

ity assessment of signal reconstruction in source separa-68

tion or denoising tasks is an active ongoing topic of re-69
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FIG. 7. MDCT of the clean and noisy signals, with input SNR = 10dB. Form top top bottom : Glockenspiel, Misery, Love
Me Do, Beethoven and Mozart excerpts.

search (Vincent et al., 2006; Emiya et al., 2010; Rohden-1

burg et al., 2005). It has been found that statistically2

significant results can be obtained from listening tests3

with less than ten non-expert subjects (Vincent et al.,4

2006). However, conducting large-scale listening tests5

is out of scope of this work, and the subjective assess-6

ment of the results is limited here to an analysis and de-7

scription by the authors of the audio excerpts obtained8

by the proposed algorithm. All the audio excerpts are9

available at http://webpages.lss.supelec.fr/perso/10

matthieu.kowalski/jasa/jasa.htm (date last viewed11

01/20/13).12

2. Sparsity:13

In this work, we aim at obtaining a dual representa-14

tion of the signal that is sparse, but that is also struc-15

tured and is meaningful according to the music content16

of the analyzed audio excerpt. A number of criteria for17

measuring the sparsity of an expansion have been pro-18

posed. Among them, Rényi entropies (Rényi, 1961), a19

generalization of the Shannon entropy, have been intro-20

duced in (Baraniuk et al., 2001) as measures for estimat-21

ing the complexity and information content of a signal22

through its time-frequency representation. It has been23

shown that minimizing the complexity or information of24

a time-frequency representation of a signal is equivalent25

to maximizing its concentration, peakiness, and resolu-26

tion. Let Φ ∈ L2(R2) be a time-frequency representation27

of a unit-energy signal s ∈ L2(R) (for instance, in this ar-28

ticle Φ is the MDCT transform of the signal).The Rényi29

entropies of Φ, defined as:30

Rα(Φ(t, f)s) =
1

1 − α
log2

Z Z

Φ(t, f)α
s dtdf, α ∈ [0, 1] ,

(19)

may be interpreted as sparsity measures and have thus31

been used as a criterion for obtaining a sparse expan-32

sion of an audio signal (Jaillet and Torrésani, 2004; Li-33

uni et al., 2011). In the present work, we use a Rényi34

entropy criteria as an evaluation measure to compare the35

sparsity of the significance maps. We present here results36

with α = 0.9, similar results were obtained with different37

criteria.38

Sparsity is also measured in terms of the percentage of39

atoms selected in the significance maps.40

C. Computational performances41

The algorithms are implemented in MATLAB and per-42

formed on a MacBook Pro Intel Core 2 Duo clocked at43

2.4GHz with 2GB RAM. The computation time of the44

proposed method is similar to the one obtained with45

(Févotte et al., 2008), ≈ 270 s for processing the Glock-46

enspiel signal for instance. Note that the use of MCMC47

schemes generates high computational costs.48
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V. RESULTS AND DISCUSSION1

The aim of this section is to provide an analysis of the2

proposed approach for sparse and structured expansion3

of audio signals on overcomplete dictionaries. In order4

to compare our approach to previous work, we evaluate5

the performance of the proposed approach for the task6

of audio denoising. Our purpose is to show how expert7

music knowledge can be used to build priors to obtain a8

relevant signal decomposition. The main contribution of9

the article is the design of new musical priors. In order10

to evaluate the impact of the prior itself, we compare our11

results with (Févotte et al., 2008), that specifically dif-12

fers from the proposed method in the priors. The impact13

of the various parameters (tuning, harmonics, and priors14

settings) is studied. We also provide a detailed analysis15

of our model in terms of sparsity and in terms of inter-16

pretability of the representation. We wish to show that17

the use of priors built on music content information al-18

lows making the structure of the signal legible and leads19

to a representation that has a musical/physical meaning.20

A. Structured representation21

Our aim here is to provide a structured representation22

of the signal that is meaningful from a musical point of23

view, in the sense that it highlights characteristics of the24

signal that are of interest. Such a relevant representation25

may be very useful for extracting higher-level information26

for a given MIR application. For instance, having a clear27

representation of the partials of the notes may be useful28

for removing the drum from a polyphonic excerpt.29

The use of musical priors yields a structure that bet-30

ter reflects the music content of the signal compared to31

the approach that uses physical priors. Figure 8 shows32

the significance maps of the selected atoms (MMSE esti-33

mates) for the Glockenspiel signal, in the WN case, ob-34

tained with the (Févotte et al., 2008) approach [left-top],35

using musical priors for the transient layer [left-bottom],36

using musical priors for the tonal layer [right-top], us-37

ing musical priors for both the tonal and transient lay-38

ers [right-bottom]. When using musical priors for the39

tonal layer, the resolution of the tonal significance map40

is sharper. The partials of the notes clearly appear as41

thin horizontal lines and are better discriminated, espe-42

cially in low frequencies. The beginning of the notes is43

also clearer. The structure of the significance maps is44

even sharper and legible when we also use musical priors45

for the transient layer.46

However, it should be noticed that, especially under47

low-input SNRs conditions, one may perceive artifacts48

in the reconstructed signal with the method we propose.49

These artifacts may be due, on the one hand, to the fact50

that some high frequencies are captured by the transient51

basis rather than by the tonal basis. On the other hand,52

the construction of the significance map corresponding to53

the transient layer leads to some regular “clicks” that are54

audible in low frequencies. But, in spite of these artifacts,55

one can find by listening to the reconstructed signals that56

results obtained relying on musical priors are generally57

“richer” than the ones obtained with the approach used58

in (Févotte et al., 2008). This is very clear for instance in59

the case of the Beethoven excerpt, with SNRin = 10dB.60

The chords (especially those on beats 2 and 3) sound61

more “round”, and the notes are better held. It should62

be noticed that listening tests in general do not reveal63

noticeable improvement when using musical prior also64

for the transient layer, even though the reconstructed65

signal in the case of the Mozart excerpt with SNRin =66

0db sounds a little “flatter” without musical prior for the67

transient layer.68

B. Semi-automatic versus automatic approach69

1. Tonal layer70

Table III shows that the SNR results obtained with an71

automatic approach (A), where the tonal content is di-72

rectly estimated from the audio (using a chord estimation73

algorithm), are similar to the ones obtained with a semi-74

automatic approach (SA), where the transcription (chord75

ground-truth) is given as an input of the model. Results76

are similar at the same time in terms of SNR, in terms of77

legibility of the significance maps, and in terms of listen-78

ing tests. The results of chord estimation are indicated79

in Table III and show that the chord estimation is not80

perfect. Two scores are considered: Exact Estimation81

EE corresponds to the rate of chords correctly detected;82

Exact + Neighbor E+N corresponds to the rate of cor-83

rectly detected chords including neighboring chords 7. It84

can be seen that the exact chord estimation results may85

be low, especially in low input SNR conditions (for in-86

stance EE = 28.35% for the Love Me Do excerpt, with87

SNRin = 0. However, most errors correspond to neigh-88

boring chords (high E +N results), which indicates that89

most of the notes present in the signal are correctly taken90

into account. A rough estimation of the tonal content is91

thus sufficient to built relevant prior for the significance92

map corresponding to the tonal layer.93

2. Transient layer94

The difference between the SNR results obtained with95

an automatic approach, where the beats are directly es-96

timated from the audio (using a beat tracking algorithm)97

and a semi-automatic approach where the beat locations98

are given as an input of the model, was in each case99

≤ 0.1dB (For conciseness, detailed results are not re-100

ported here). Here again, the transcription does not need101

to be perfect to build relevant prior for the significance102

map corresponding to the transient layer.103

C. Influence of musical priors for the transient layer only104

Table IV shows the effect of using musical priors for105

the transient layer only (and using frequency persistency-106

based priors for the tonal layer, as in (Févotte et al.,107

2008)), denoted as case Method tr. In terms of SNR,108

12
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FIG. 8. Significance maps of the tonal and transient bases (MMSE estimates) for the Glockenspiel excerpt, case WN . Left-top:
approach (Févotte et al., 2008); Left-bottom: proposed approach using musical priors for the transient layer only; Right-top:
proposed approach using musical priors for the tonal layer; Right-bottom: proposed approach using musical priors for both the
tonal and transient layers.

musical priors for the transient layer yield results that1

are equivalent to state-of-the-art results, except for poly-2

phonic clean signals. For monophonic and polyphonic3

noisy signals, the use of musical priors for transients re-4

sults in a tonal layer that may be more consistent with5

the music content: the partials of the notes are more6

distinguishable, as illustrated in Figure 8 [Left-bottom].7

However, for clean polyphonic signals, the use of beat po-8

sitions as prior information for building the transit layer9

is too restrictive for having a satisfying decomposition.10

When listening to the results on the Mozart excerpt, one11

can hear that the residual part obtained with Method12

tr. is non-negligible compared to the one obtained with13

Method (Févotte et al., 2008), although it should be zero.14

For the Beethoven excerpt, some high frequencies are15

captured by the transient basis rather than by the tonal16

basis, as it is illustrated Figure 9. Using musical prior17

for transients based on the metrical structure thus shows18

some potential, as it is adapted to the semantic content19

of the signal, but it should be refined, for instance by20

using onset positions instead of beat positions. This is21

also discussed in Section V.E.22

D. Comparison between chromagram versus chords23

We have proposed two methods for building priors for24

the significance map corresponding to the tonal layer.25

1. In the first case (Method Chord), the map is built26

using information about the tonal content from the27

estimated chords.28

2. In the second case (Method Chroma), the map is29

built using information about the tonal content di-30

rectly from the chromagram.31

Table V shows that Method Chord outperforms Method32

Chroma in terms of SNR in the case without noise added33

13



TABLE III. SNR results (in dB), and chord estimation results
(EE : Exact Estimation, E+N : Exact + Neighbor) for various
input SNRs and without additional Gaussian noise (WN),
for comparison between a semi-automatic (estimated chords)
and an automatic (given chords) approach.

SNRin WN 0 10 20
Approach A SA A SA A SA A SA

Gl.
EE 14.39 14.39 14.39 14.39
E + N 72.27 72.27 72.27 72.27
SNRout 71.07 71.36 14.15 14.13 21.31 21.37 28.58 28.59

Mi.
EE 79.22 79.02 79.22 78.77
E + N 82.00 88.1 82.00 81.54
SNRout 42.28 42.73 6.36 6.35 13.02 13.02 20.91 20.87

Lo.
EE 95.29 28.35 60.58 96.27
E + N 100 92.62 100 100
SNRout 29.12 28.31 6.44 6.42 12.44 12.44 19.24 19.21

Be.
EE 87.22 86.56 86.77 86.77
E + N 100 100 100 100
SNRout 55.15 54.72 7.17 7.15 13.56 13.54 21.63 21.62

Mo.
EE 75.69 70.26 75.25 75.69
E + N 90.26 88.70 90.26 90.26
SNRout 62.13 62.33 8.20 8.19 15.47 15.47 23.40 23.42

TABLE IV. SNRs results (in dB), for various input SNRs
and without additional Gaussian noise (WN), for compari-
son between using musical priors for the transient layer only,
case tr, and with the baseline approach (Févotte et al., 2008)
(F2008 ).

SNRin WN 0 10 20
Method tr F2008 tr F2008 tr F2008 tr F2008

Gl. 70.01 70.22 15.54 15.74 22.14 22.45 29.16 29.22
Mi. 33.38 44.41 6.89 6.90 13.13 13.29 20.43 21.08
Lo. 27.30 29.61 6.72 6.77 12.77 12.72 19.49 19.35
Be. 39.60 54.64 7.71 7.71 13.90 14.03 21.44 21.99
Mo. 54.47 60.96 8.98 8.97 15.87 15.94 23.59 23.88

to the clean signal, and in the case of the monophonic sig-1

nal. Method Chroma slightly outperforms Method Chord2

in terms of SNR in the case of polyphonic music and3

when noise is added to the clean signal. Experiments4

reveal that the significance maps obtained with Method5

Chroma are sharper and sparser than those obtained with6

Method Chord, as illustrated in Figure 10. Moreover, lis-7

tening tests reveal that the noise induced by the pro-8

posed method in the case of Method Chord, is consid-9

erably reduced when using Method Chroma, especially10

when musical priors are used both for the tonal and the11

transient layers (see for instance the Beethoven excerpt,12

case SNRin = 10dB).13

However, reconstructed signals using Method Chroma14

are not systematically more pleasant to listen too. A15

drawback of Method Chroma is that, because the hier-16

archy between the 12 pitch classes is less strong than17

with Method Chord when building the prior for the18

tonal layer (because all pitch classes are given a non-19

zero contribution, whereas in the case of Method Chord,20

only 3 pitch classes are considered at each time-instant),21

the reconstructed signal may select notes that do not22
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FIG. 9. Significance maps of the tonal and transient bases
(MMSE estimates) for the Beethoven excerpt, case WN . Top:
approach (Févotte et al., 2008); Bottom: proposed approach
using musical priors for the transient layer only.

TABLE V. SNRs results (in dB), for various input SNRs and
without additional Gaussian noise (WN), for comparison be-
tween Method Chord (Cho) and Method Chroma (Chr).

SNRin WN 0 10 20
Method Cho Chr Cho Chr Cho Chr Cho Chr

Gl. 71.35 69.90 14.13 13.27 21.37 20.70 28.59 27.87
Mi. 42.73 37.09 6.35 7.04 13.02 13.35 20.87 20.89
Lo. 28.32 26.19 6.42 6.80 12.44 12.85 19.21 19.27
Be. 54.72 54.62 7.15 8.63 13.53 14.52 21.62 22.05
Mo. 62.33 60.1 8.19 9.45 15.47 16.28 23.42 23.96

fit the harmonic content, similarly to the one obtained23

with approach (Févotte et al., 2008). In this case, one24

may perceive “wrong” notes in the reconstructed sig-25

nal, especially in high frequencies, as it can be heard,26

for instance, when listening to the Mozart excerpt, case27

SNRin = 10dB. This blurry phenomenon has especially28

an impact in the case on clean and monophonic signals.29

14



TABLE VI. SNR results for comparison between the proposed method that uses musical priors and the approach proposed in
(Févotte et al., 2008) (F2008 ). Case A: musical priors only for the tonal layer (automatic approach). Case A + tr : musical
priors for the tonal and the transient layer.

SNRin WN 0 10 20
Method A A + tr F2008 A A + tr F2008 A A + tr F2008 A A + tr F2008

Gl. 71.35 71.49 70.22 14.13 13.86 15.74 21.37 20.98 22.45 28.59 28.24 29.22
Mi. 42.73 32.72 44.41 7.03 7.04 6.9 13.35 13.34 13.29 20.89 20.60 21.08
Lo. 28.32 27.14 29.61 6.80 6.72 6.77 12.85 12.95 12.72 19.27 19.72 19.35
Be. 54.72 35.97 54.64 8.63 8.65 7.71 14.52 14.54 14.03 22.05 21.49 21.99
Mo. 62.33 57.07 60.96 9.45 9.37 8.97 16.28 16.12 15.94 23.96 23.73 23.88

E. Denoising quality1

Table VI compares results obtained with the proposed2

method that uses musical priors with the approach pro-3

posed in (Févotte et al., 2008). As underlined in the pre-4

vious section, Method Chroma has a negative “blurry”5

effect on clean and monophonic signals. Ideally, the6

method should be selected according to the type of test7

signal. For the sake of legibility, we do not report re-8

sults with both methods in Table Table VI. Our purpose9

here is to demonstrate the potential of the proposed mu-10

sical priors, compared to existing approaches. We thus11

present the best results, obtained with Method Chroma12

in the case of polyphonic music and when noise is added13

to the clean signal and Method Chord otherwise. Con-14

cerning the quality of denoising, our model provides re-15

sults that are comparable to state-of-the-art algorithms16

in terms of SNR: the difference between our method and17

method (Févotte et al., 2008) are in general lower than18

1 dB. The method proposed in (Févotte et al., 2008)19

slightly outperforms our method in the case of mono-20

phonic music, whereas our method performs slightly bet-21

ter in the case of polyphonic music. Our explanation is22

that, by relying on chord information, too many notes23

are considered when building the prior corresponding to24

the tonal significance map of the monophonic excerpt. A25

polyphonic/monophonic detection step could be added26

to improve the proposed model.27

Differences between the two approaches may be per-28

ceived while listening to the sound files. As said before,29

the proposed approach induces some artifacts. In partic-30

ular, the quality of denoising obtained with the proposed31

prior for the transient layer is disappointing. Indeed, the32

construction of the significance map corresponding to the33

transient layer leads to some regular “click” sounds that34

are superimposed to the signal of interest. As indicated in35

Table VII and illustrated in Figure 10 and 11, compared36

to (Févotte et al., 2008), our approach selects much less37

atoms in the transient layer. Although the idea seems38

“natural”, the use of beat position information for build-39

ing the prior for the transient layer may be too restrictive40

for denoising purpose.41

When we build the tonal significance map, we select at42

each time instant all the MDCT bins that correspond to43

the notes of the estimated chord, regardless of octaves.44

Because the estimation of the tonal content is rough (we45

do not have an exact transcription and ignore for instance46

passing tones), some of the “tubes” that result from this47

selection in the tonal significance map may correspond to48

added notes that are not actually in the signal and thus49

not completely relevant. However, these atoms are musi-50

cally coherent with the music content (they are coherent51

with the underlying harmony) and are not as disturbing52

as if they were atoms randomly selected. Figure 11 shows53

the significance maps (MMSE estimates) for the Mozart54

signal, in the case SNRin = 10dB. It can be seen that in55

the case of (Févotte et al., 2008) approach, many atoms56

that do not fit the tonal content are selected, especially57

in high frequencies. When listening to the reconstructed58

signal, one may perceive some notes that seem “wrong”.59

When listening to the signal obtained with the proposed60

approach, one may also perceive somme added notes, but61

they are coherent with the harmonic content. This is62

important when extracting higher-level information from63

the reconstructed signal. For instance, in the case of key64

estimation, the algorithm will be less affected by notes65

that belong to the tonal content than by notes that seem66

randomly selected.67

F. Sparsity68

In the case of polyphonic music, the proposed approach69

provides a representation that is sparser than the one70

proposed in (Févotte et al., 2008). Indeed, the number71

of remaining non-zero coefficients in contrast to the to-72

tal numbers of atoms of the initial redundant dictionary73

is usually lower when using musical priors, as well as74

Renyi entropy, as it can be seen in Table VII. Figures 8,75

10 and 11 illustrate the fact that the energy density of76

the significance map corresponding to the tonal layer is77

concentrated into thin horizontal lines, and Figures 8,78

10 and 12 clearly illustrate that the energy density of79

the significance map corresponding to the transient layer80

is is concentrated into thin vertical lines. In the case81

of monophonic music, figures in Table VII indicate that82

our representation is less sparse than the one provided83

in (Févotte et al., 2008). This is because our method in-84

duces some artifacts resulting from undesirable selected85

atoms (see Figure 12, [middle]). The representation may86

become sparser by increasing the value of pton in Eq. (9),87

as explained in Section V.G.1. Note that, as illustrated in88

Figure 8, in the case of running the algorithm on a clean89

signal (case WN), our approach provides a representa-90

tion that is sparser than the one obtained with (Févotte91

et al., 2008), where a small noise is needed to obtain a92
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TABLE VII. Percentage of remaining non-zero coefficients selected for the tonal layer (% ton.) and the transient layer (%
tran.) and value of Renyi entropy for tonal layer (Renyi ton.) and the transient layer (Renyi tran.) (MAP estimates). Case:
F2008 : approach in (Févotte et al., 2008). Case A: musical priors only for the tonal layer (using estimated chords). Case A +
tr : musical priors for the tonal and the transient layer.

SNRin WN 0 10 20
Method A A + tr F2008 A A + tr F2008 A A + tr F2008 A A + tr F2008

Gl.

% ton. 26.1482 19.7510 30.3772 2.0317 1.9966 1.5022 2.5848 2.4879 1.5518 3.3974 3.2333 3.3745
% tran. 29.0039 33.0078 24.6094 0 8.9844 0 0 6.8359 0 0 5.9570 0

Renyi ton. 15.0604 14.6550 15.2776 11.3662 11.3403 10.9392 11.7111 11.6559 10.9812 12.1047 12.0313 12.0875
Renyi tran. 15.2006 15.3874 14.9631 NaN 13.5122 NaN NaN 13.1180 NaN NaN 12.9194 NaN

Mi.

% ton. 23.1979 14.7957 50.7500 3.0151 3.0815 15.7799 5.2574 5.5031 25.5539 9.0256 9.4261 37.4146
% tran. 58.3740 32.6172 44.8242 11.8164 16.2109 12.3047 21.5820 19.3359 48.9014 46.1914 23.3398 67.8223

Renyi ton. 14.8886 14.2306 16.0161 11.9396 11.9697 14.3331 12.7418 12.8048 15.0260 13.5188 13.5808 15.5774
Renyi tran. 16.1770 15.3702 15.7958 13.9016 14.3637 13.9315 14.7733 14.6180 15.9218 15.8713 14.8896 16.3935

Lo.

% ton. 16.6702 12.2955 45.8679 2.6535 2.8152 11.4395 4.8920 5.0903 20.6650 8.7173 8.7738 32.9956
% tran. 74.0723 37.5000 27.0020 31.2500 20.3125 10.2051 45.7031 26.5625 19.4824 51.9531 32.2266 24.6582

Renyi ton. 13.4112 12.9614 14.8705 10.7474 10.8349 12.8587 11.6348 11.6909 13.7200 12.4686 12.4759 14.3943
Renyi tran. 15.5207 14.5736 14.0640 14.3106 13.6891 12.6616 14.8560 14.0761 13.5926 15.0413 14.3550 13.9329

Be.

% ton. 30.2101 19.2009 44.4839 3.1097 3.0518 8.9005 5.6511 5.9242 18.5188 9.5741 10.3973 32.7576
% tran. 57.5195 31.2500 61.3037 2.9297 6.8359 13.4033 23.4375 6.7383 82.7148 80.0781 15.8203 99.8779

Renyi ton. 15.2689 14.6063 15.8275 11.9828 11.9540 13.5067 12.8449 12.9090 14.5619 13.6028 13.7216 15.3836
Renyi tran. 16.1560 15.3084 16.2482 11.8713 13.1180 14.0549 14.8926 13.0972 16.6802 16.6664 14.3285 16.9521

Mo.

% ton. 36.0977 21.1670 42.2409 2.9648 2.9938 8.1978 4.6402 4.8706 12.5305 7.4661 7.5645 18.7614
% tran. 39.4287 54.6875 33.2764 4.1992 14.7461 14.4043 39.3555 15.8203 47.2656 79.9805 28.8086 92.5049

Renyi ton. 15.5174 14.7432 15.7447 11.9101 11.9226 13.3835 12.5500 12.6164 13.9843 13.2364 13.2536 14.5687
Renyi tran. 15.6106 16.1180 15.3662 12.4149 14.2271 14.1588 15.6433 14.3285 15.8731 16.6655 15.1933 16.8414

good decomposition.1

G. Impact of parameters2

1. Indicator variable prior set-up:3

The values pton in Eq. (9) and Eq. (10) and ptran in4

Eq. (13) have an effect on the above-mentioned artifacts5

produced by our model in low-input SNRs conditions.6

For instance, setting pton and ptran to 0.99 instead of7

0.9 in the case of the Glockenspiel signal allows reducing8

the artifacts for SNRin = 10dB, as it can be seen in9

Figure 12. However, our experiments show that indicator10

variables corresponding to atoms that do not belong to11

the chord must not be set to 0. Setting pton or ptran to 112

results in reconstructed signals of very “poor” sound, as it13

can be assessed by listening tests. Output SNRs are also14

degraded. Setting pton < 1 allows taking into account15

imperfections of the chromagram given as input of the16

hybrid model (temporal imperfections due to windowing,17

discrepancy between the ideal model and reality, etc.).18

2. Impact of tuning:19

Integrating tuning information in the model does not20

lead to improvement in terms of output SNR values (de-21

tailed results are not reported here to avoid overfill of the22

article), but yields to estimated significance maps that23

are more coherent with our model. Indeed, the “tubes”24

depend on the tuning and thus, in case of “bad” tuning,25

using tuning information allows selecting atoms within26

the correct frequency regions.27

3. Impact of harmonics:28

We did not find any improvement when adding har-29

monics in our model : the difference between the SNR30

results obtained with and without considering the har-31

monics was systematically ≤ 0.3dB (detailed results are32

not reported here to avoid overfill of the article). This33

may be explained by the fact that, in the polyphonic34

case, the contribution of a large part of the first 6 higher35

harmonics of a note is already taken into account in the36

significance map by the other notes. For instance, let us37

consider C major chord (C-E-G). The C note generates38

harmonics E and G. E and G are thus both actual played39

notes and harmonics. Their contribution is already par-40

tially taken into account in the significance map in the41

case of the model “without harmonics” .42

VI. CONCLUSION AND FUTURE WORK43

In this article, we have presented a new approach for44

sparse decomposition of audio signals of music on an over-45

complete dictionary made as the union of two MDCT46

bases. The originality of our model is that, within a47

Bayesian framework, we introduce musical priors that48

aim at modeling dependencies between the coefficients of49

the expansion in a more realistic way than what has been50

proposed before. The main contribution of the article is51
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FIG. 10. Significance maps of the tonal and transient bases
(MAP estimates) for the Beethoven excerpt, case SNRin =
10dB. Top: approach (Févotte et al., 2008); middle: proposed
approach using musical priors for both layers, Method Chord ;
bottom: proposed approach using musical priors for both lay-
ers, Method Chroma.

to show that the musical prior based on musical knowl-1

edge performs as well as more sophisticate prior as HMM2
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FIG. 11. Significance maps of each basis (MMSE estimates)
for the Mozart excerpt, case SNRin = 10dB. Top: approach
(Févotte et al., 2008); middle: proposed approach using a
musical prior for the tonal layer; bottom: proposed approach
using musical priors for both the tonal and transient layers.

and appears to be more “natural”. The significance maps3

corresponding to the tonal and transient layers are coher-4

ent with the intrinsic content of music audio.5

We have provided numerical results and a number of6

case study examples that assess that our model is ade-7

quate to fairly represent audio signals of music. The de-8

noising task has been used as a “proof of concept” of the9
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FIG. 12. Significance maps of each basis (MAP estimates)
for the Glockenspiel excerpt, case SNRin = 10dB. Top: ap-
proach (Févotte et al., 2008); middle: proposed approach us-
ing musical priors with pton = 0.9 and ptran = 0.9; bottom:
proposed approach using musical priors with pton = 0.99 and
ptran = 0.99.

newly introduced musical priors. Concerning the qual-1

ity of denoising, all the configurations of the model we2

propose provide results whose quality in terms of SNR re-3

sults outperforms or, at least, corresponds to state-of-the-4

art approaches. Moreover, the content of reconstructed5

signal is more coherent with the underlying harmony and6

metrical structure, and thus musically meaningful.7

A well-structured representation may be very useful8

to provide access to higher level information about the9

audio signal, whereas relevant music content information10

should help providing a “good” representation. Future11

work will concentrate on fully integrating in the model12

chord and beat estimation in an interactive fashion. For13

instance the chromagram could be updated with the14

other parameters during MCMC inference in order to15

possibly improve the chord estimation.16

The priors we propose have a great potential of im-17

provement in the future (for example, by using a time18

segmentation, a larger chord lexicon, using onsets com-19

bined with beat positions etc.). The model could also be20

extended so that dependencies between layers are taken21

into account. For this, musical information such as the22

fact that chord changes usually occur on beat subdivi-23

sions (which are related to transient locations) could be24

used. This should help reducing musical noise and arti-25

facts.26

As far as we know, the introduction of musical pri-27

ors in hybrid models for spare decomposition is novel.28

The use of mid-level representation of audio – such as29

the chromagram, as proposed in this paper – or scores, if30

available, could be extended to many applications such31

as denoising, source separation, compression, coding and32

many others. Usually, only physical and mathematical33

criteria are taken into account. We believe that the use34

of musical content information opens new interesting per-35

spectives.36
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APPENDIX A: POSTERIOR DISTRIBUTIONS USED IN41

THE GIBBS SAMPLER42

1. Indicator variables43

a. Tonal layer44

p(γton,n = 0|σton,n, σ, xton|tran) =
1

1 + τton,n

p(γton,n = 1|σton,n, σ, xton|tran) =
τton,n

1 + τton,n
,

(A1)

with45
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τton,n =

√

σ2

σ2 + σton,n
exp

(
x2

ton|tranσton,n

2σ2(σ2 + σton,n)

)

× p

(
γton,n = 1|γton,−n

γton,n = 0|γton,−n

)

.

(A2)

The ratio p
(

γton,n=1|γton,−n

γton,n=0|γton,−n

)

is
PΛ{γton,n=1}

1−PΛ{γton,n=1} , where1

PΛ{γton,n = 1} is defined in Eq. (9) for Method Chord2

and in Eq. (10) for Method Chroma.3

b. Transient layer4

p(γtran,m = 0|σtran,m, σ, xtran|ton) =
1

1 + τtran,m

p(γtran,m = 1|σtran,m, σ, xtran|ton) =
τtran,m

1 + τtran,m
,

(A3)

with5

τtran,m =

√

σ2

σ2 + σtran,m
exp

(
x2

tran|tonσtran,m

2σ2(σ2 + σtran,m)

)

× p

(
γtran,m = 1|γtran,−m

γtran,m = 0|γtran,−m

)

.

(A4)

The ratio p
(

γtran,m=1|γtran,−m

γtran,m=0|γtran,−m

)

is
P∆{γtran,m=1}

1−P∆{γtran,m=1} ,6

where P∆{γtran,m = 1} is defined in Eq. (13).7

2. Coefficients8

p(αn|γton,n,σton,n, σ, xton|tran) = (1 − γton,n)δ0(αn)

+ γton,nN

(

αn

∣
∣
∣
∣
∣

uT
nr σ2

ton,n

σ2
ton,n + σ2

,
σ2σ2

ton,n

σ2 + σ2
ton,n

)

(A5)

p(βm|γtran,σtran,m, σ, xtran|ton) = (1 − γtran,m)δ0(βm)

+ γtran,mN

(

βm

∣
∣
∣
∣
∣

vT
mr σ2

tran,m

σ2
tran,m + σ2

,
σ2σ2

tran,m

σ2 + σ2
tran,m

)

(A6)

3. Hyperparameters9

a. Scale parameters of coefficients10

p(σ2
ton,n|γton,n, fton,n) = (1 − γton,n)IG (σton,n|1, fton,n)

+ γton,nIG

(

σton,n

∣
∣
∣
∣
∣
3/2,

α2
ton,n

2
+ fton,n

)

(A7)

p(σ2
tran,m|γtran,m, ftran,m) = (1 − γtran,m)IG(σtran,m|1, ftran,m)

+ γtran,mIG

(

σtran,m

∣
∣
∣
∣
∣
3/2,

α2
tran,m

2
+ ftran,m

)

(A8)

b. Scale parameters of frequency profiles11

p(λton|σton) = γ

(

λton

∣
∣
∣
∣
∣
N,
∑

n

1

1 + q−1
ℓton/3σton,n

)

(A9)

p(λtran|σtran) = γ

(

λtran

∣
∣
∣
∣
∣
N,
∑

m

1

1 + q−1
ℓtran/3σtran,m

)

(A10)

c. Variance of the noise12

p(σ2|xton, xtran, x) = IG

(

σ2

∣
∣
∣
∣

N

2
,
‖x − V α − Uβ‖2

2

)

(A11)

1. See e.g. https://sites.google.com/site/nips10sparsews/.13

2. Here γ is used to refer indifferently to γton,n or γtran,m.14

3. a (mod b) denotes the mathematical operator modulo, the15

remainder when a is divided by b.16

4. In general, the harmonics of harmonic music sounds do not17

have frequencies that are exact multiples of its fundamental18

frequency, but are nearly harmonically related.19

5. We limit the number of considered harmonics to 6 because20

many of the higher harmonics, which are theoretically whole21

number multiples of the fundamental frequency, are far from22

any note of the Western chromatic scale. This is especially23

true for the 7th and the 11th harmonics.24

6. As stressed in (Févotte et al., 2008), colored or non-Gaussian25

noise could also be considered as well and embedded into the26

same framework, but this would lead to an increase in the27

computational efficiency of the algorithm because of some28

matrix inversion, which is out of the scope of this paper.29

7. Neighboring chords considered here are harmonically close30

triads: parallel Major/ minor (EM being confused with Em),31

relative (Am being confused with CM), dominant (CM be-32

ing confused with GM) or subdominant (CM being confused33

with FM).34
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