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Multivariate Temporal Dictionary Learning for EEG

Q. Barttelemy*?, C. Gouy-Paille?, Y. Isaaé, A. Souloumiag, A. Larué**, J.I. Mar$-P

aCEA, LIST, Data Analysis Tools Laboratory, Gif-sur-Yv&tslex, 91191, France
bGIPSA-lab, DIS, UMR 5216 CNRS, Grenoble INP, Grenoble, 38Bfance

Abstract

This article addresses the issue of representing electepbalographic (EEG) signals in affieient way. While classical ap-
proaches use a fixed Gabor dictionary to analyze EEG sigtiassarticle proposes a data-driven method to obtain antadap
dictionary. To reach anfigcient dictionary learning, appropriate spatial and teraporodeling is required. Inter-channels links
are taken into account in the spatial multivariate moded, strift-invariance is used for the temporal model. Multiage learned
kernels are informative (a few atoms code plentiful eneegy interpretable (the atoms can have a physiological mganising
real EEG data, the proposed method is shown to outperformdissical multichannel matching pursuit used with a Galodiad
nary, as measured by the representative power of the ledictamhary and its spatial flexibility. Moreover, dictiorydearning can
capture interpretable patterns: this ability is illustcibn real data, learning a P300 evoked potential.

Keywords: Dictionary learning, orthogonal matching pursuit, mudtiate, shift-invariance, EEG, evoked potentials, P300.

1. Introduction e Epileptic activity: transient electrical bursts of parfdte

Scalp electroencephalography (EEG) measures electdeal a brain.

tivity produced by post-synaptic potentials of large neal@s-  While EEG devices are known to be able to record such afore-
semblies. Although this old medical imaging techniquffess  mentioned activities through the wide areas of the sensors,
from poor spatial resolution, EEG is still widely used in raied methodologists are usually necessary in EEG experimems. |
cal contexts €.g. sleep analysis, anesthesia and coma monitoreleed, they have to provide the practitioners with tools tiaat

ing, encephalopathies) as well as entertainment and fdéhabi capture the temporal, frequential and spatial content &Ea@.

tion contexts (Brain-Computer Interfaces — BCI). EEG desic Consequently, signal interpretation usually yieldsepresen-

are relatively cheap compared to other imaging technigeigs ( tation problem: which dictionary is able to best represent the
MEG, fMRI, PET), and they fier both high temporal resolu- information recorded in the EEG?

tion (a short period of time between two acquisitions) angve  Fourier and wavelets dictionaries allow spectral analgéis
low latency (a delay between the mental task and the reaprdinthe signals through well-defined mathematical bases (DQurka

on the electrodes). 2007; Mallat, 2009), although they show a lack of flexibility
These features are of particular concern for the pracétion represent the shape diversity of EEG patterns. The Gaber dic
interested in (Sanei and Chambers, 2007): tionary has also attracted high interest due to its temsdriét-

o Event-related potentials (ERPs) or evoked potentials- tra Invariance property. Nevertheless, it alséfets from a lack of
sient electrical activity that results from external segso flexibility to represent evoked potentials and EEG burste{N
stimulation €.g. P300); Qermeyer anq ITQpes da Silva, 2004). For examp!e widely stud-

o Steady-state evoked potentials: oscillatory brain agtivi 1€d Sleep activities such as spindles (centroparietal antal
that results from repetitive external sensory stimulation 2r€@s) consist of a complex EEG shape; as same epileptic ac-

e Event-related synchronizatighesynchronizations tivities such as inter-epileptic peaks are anothe_r _e_xasnpf_e
(ERSERD): oscillatory activity that results from involve- '€Peatable and complexely shaped cerebral activitiesiitie
ment of a specialized part of the brain; for example,Meyer and Lopes da Silva, 2004). In these two cases prac-
activation of the primary motor area, known As(8— titioners should probably peneflt from a cu;tqm—ba_tsed (n}|ct!
13 Hz) or 8 (13-30 Hz) bandpower synchronization or &Y approach over Fourier or yvayelets dictionaries. While
desynchronization, have been widely studied: these approache_s are basedagpriori models of the df':\ta, re-

cent methodological developments focus on data-drivererep

*Corresponding author. CEA, LIST, Data Analysis Tools Labory, Bat ~ Sentationsdictionary learningalgorithms (T&ic and Frossard,

DIGITEO 565 PC 192, Gif-sur-Yvette Cedex, 91191, Francd: Fe33 169  2011).

08 84 39. . In EEG analysis, the spatial modeling consists of taking int

cedfiTé;oi(:fd—r;‘asfi1eq:@ef:al.nf.:ar;::i:?,s@:ae:é::z;.fr account inter-channels links, and this has been done inaleve
’ ; studies searching for more spatial flexibility (Durka, 2D0he

antoine.souloumiac@cea.fr, anthony.larue@cea.fr, ) - -
jerome.mars@gipsa-lab.grenoble-inp.fr (J.l. Mars) EEG temporal modeling is morefilcult. Some approaches
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use a hypothesis of temporal stationarity and treat onlgplze
tial aspect, but this brings about loss of information. ®@the

2.2. Multichannel sparse approximations

Hereafter, the EEG signagl € RNC composed of several

approaches use the generic Gabor dictionary which is shifichannelsc = 1..C are considered. The" channel of the sig-

that integrates these two aspects (Jost et al., 2005; Harhakr
2011).
In this article, time-frequency analysis tools that areduse

these channels spatially with the multichannel modeltitated
in Fig. 1(left).
A multichannel MP (Gribonval, 2003) was set up using a spa-

deal with EEG are first reviewed in Section 2. Then, tempo+jg| (or topographic) prior based on structured sparsitjisT
ral modeling is proposed based on the shift-invariance,&nd model is an extension of Eq. (1), withe RNC, @ € RNM and

spatial model called multivariate to provide affi@ent dictio-
nary learning in Section 3. As validation, the multivariateth-

x € RMXC. The multichannel model linearly mixes an atom in
the channels, each channel being characterized byfaaest.

ods are applied to real EEG data, and then compared to othehe underlying assumption is that few EEG events are shatial

methods in Section 4. Finally, to show the interpretabitify
the learned kernels, methods are applied for learning tio® P3
evoked potential.

2. EEG analysis

In this section, some of the classical signal processintgtoo

that are applied to EEG data for time-frequency analysis are

reviewed: monochannnel and multichannel sparse apprexima
tions, shift-invariant dictionaries, and dictionary leeug algo-
rithms.

2.1. Monochannel sparse approximation

In this paragraph, the EEG analysis is provided indepen-
dently for the diferent electrodeg channels, so it is called
monochannel. A single channel signale RN of N tem-
poral samples and a normalized dictionabye RN*M com-
posed ofM time-frequency atom{sa;ﬁm}r“r",=l are considered. The
monochannel decomposition of the sign# carried out on the
dictionary® such that:

y=>»X+e€, Q)

assumingx € RM for the coding cofficients, ande € RN for
the residual error. The approximatigris'®x. The dictionary
is redundant sinc® > N, and thus the linear system of Eq. (1)
is under-determined. Consequently, sparsity, smoottoress
other constraint is needed to regularize the solutio@onsid-
ering the constart < M, the sparse approximation is written
as:

ming|ly - @I s.t. X <K ,

)

with |.|| for the Frobenius norm, anjtk|, for the ¢y pseudo-

norm, defined as the number of nonzero elements of vector

spread over in all of the ffierent channels.

In (Durka, 2007), dierent multichannel selections are enu-

merated:

¢ the original multichannel MP (Gribonval, 2003), called
MMP_1 by Durka, selects the maximal energy such that:

c
mk = arg m%Z‘ (ek’l[C],¢m> ‘2 ; (4)
c=1

e the multichannel MP (Durka et al., 2005) called M\P

selects the maximal multichannel scalar product (also
called average correlation):

C

mk = arg max, | > (&'[c], ¢m)
=1

(5)

C

Due to absolute values, selection (4) allows the a#m
to be in-phase or in opposite phase with the component
€“1[c], contrary to the more constraining selection (5)
which preferspn, to be in-phase witle“"1[c] (thus giving
the same polarities across channels).

e the multichannel MP (Matysiak et al., 2005) called
MMP_3 selects the maximal energy as Eq. (4), but with
complex coéficients that allows it to have varying phases:
each channet has its own phase., as also studied in
(Gratkowski et al., 2007);

e the multichannel MP (Siekycki et al., 2009b), which will
call MMP_4 selects the maximal multichannel scalar prod-
uct as Eq. (5), with complex cfiicients that allows it to
have a phase. for each channel.

Note that other algorithms deal with EEG decomposition.

x. The well-known Matching Pursuit (MP) (Mallat and Zhang, o example, a multichannel decomposition was proposed in

1993) tackles this dicult problem iteratively, but in a subopti- (Koenig et al., 2001), but it was based on the method of frames
mal way. At iteratiork, it iteratively selects the atom that is the (Daubechies, 1988).

most correlated to the reside? ad :

m‘ = arg maxn| (ek’l, ¢m> | .

2.3. Shift-invariant dictionaries

3

© The dictionary® used in the decomposition can have a par-
To carry out time-frequency analysis for EEG, MP is appliedticular form. In the shift (also called translation or termaiy-
(Durka and Blinowska, 2001) with the Gabor parametric dicti  jnvariant model (Jost et al., 2005; Bagtmy et al., 2012), the
nary, which is a generic dictionary that is widely used talgtu  sjgnaly is coded as a sum of a few structures, named kernels,
EEG signals. that are characterized independently of their positiortse [T
shiftable kernels of the compatit dictionary are replicated
at all positions, to provide th& atoms of thed dictionary.

(A, By = Tr(BMA) is the matrix scalar product.



generate all of the atoms, Eq. (1) becomes: -

Kernels{;m}lL: , can have dferent lengthd, so they are zero-

padded. Thé& samples of the signgl the residue, the atoms

¢m and the kernelg, are indexed by. The subsetr, collects

the translations of the kernely(t). For the fewL kernels that -5 % ’ -5 « [

M
YO = D X dm(t) + (1) (6)
m=1
L Figure 1: lllustration of the multichannel (left) and the nixdtiate (right) mod-
=) D X tnt=1) + €(t). (7) e
I=1 teoy
This model is also called convolutional, and as a resultsitre The dictionary redundancy gives a mor@@ent represen-

naly is approximated as a weighted sum of a few shiftable kertation than learning methods based on Principal Component
nelsy,. Itis thus adapted to overcome the latency variabilityAnalysis or Independent Component Analysis (Lewicki and Se
(also called jitter or misalignment) of the events studied. jnowski, 1998). Moreover, such methods provide only a base
Algorithms described in Section 2.2 are widely used with a(with M = N), and are not adapted to cope with the shift-
Gabor dictionary for EEG (Durka, 2007). Its generic atomsinvariance required by the temporal variability of the EEG.

dcaporare parameterized as (Mallat, 2009):
2.5. Summary of the state of the art

) -cos( 2nft+¢p), (8) To sum up, the previous paragraph on dictionary learning has
already shown the relevance of the shift-invariance tanl¢lae
EEG temporal atom. That is also why the parametric Gabor dic-
tionary, which is quasi shift-invariant, is well-adaptext uch
data and is widely used with the multichannel MPs (Durka,
2007). In multichannel decompositions, thé&elient MPs try to
be flexible to match the spatial variability. The use of coempl
Gabor atoms adds a degree of freedom that improves theyqualit
of the representation (or reconstruction) (Matysiak e28105).
The proposed multivariate approach takes into accounéthes
two aspects in a dictionary learning approach: a relevaifit sh
invariant temporal model and a spatial flexibility which eai
ers all of the channels.

1 t—ar
PGabolt) = N 9(

whereg(t) = ,B.e*’rt2 is a Gaussian windovg,is a normalization
factor, sis the scaler is the shift parametet is the shift fac-
tor, f is the frequency ang is the phase used in MMB and
MMP _4 algorithms. Note that a multiscale Gabor dictionary is
not properly shift-invariant since the shift facter which de-
pends on the dyadic scat is not equal to 1 (Mallat, 2009).
The drawback of such a dictionary is that generic atoms-intro
ducea priori for data analysis.

2.4. Dictionary learning

Recently, dictionary learning algorithms (DLAs) have al-
lowed the learning of dictionary atoms in a data-driven and
unsupervised way (Lewicki and Sejnowski, 1998%i€oand 3. Themultivariate approach
Frossard, 2011). A set of iterations between sparse appesxi
tion and dictionary update provides learned atoms, whiemar
more generic but are adapted to the studied data. Thusetbarn
dictionaries overcome generic ones, showing better gesfibr
processing (T8ic and Frossard, 2011; Baglemy et al., 2012).
Different algorithms deal with this problem: the method of op- S X g i
timal directions (MOD) (Engan et al., 2000) generalized un-Note that the nammultlvanate is used in (Sielaycki et. al.,
der the name iterative least-squares DLA (ILS-DLA) (Engan20092) to designate MME (Durka et al., 2005) applied to
et al., 2007), the K-SVD (Aharon et al., 2006), the online DLA MEG c_iata, and in (Sieizycki et al., 2009b) for its complex
(Mairal et al., 2010) and others (36 and Frossard, 2011). exten_s,lon _MME4; they are totally dferent from the methods
Only two studies have proposed to include dictionary learn€XPlained in (Bartalemy et al., 2012).
ing for EEG data. In (Jost et al., 2005), the MoTIF algorithm,
which is a shift-invariant DLA, is applied to EEG. It thus tea
a kernels dictionary, but only in a monochannel case, which In the multivariate model, Eq. (1) is kept, but wighe RN*C,
does not consider the spatial aspect. In (Hamner et al.,)2011d € RNMXC andx € RM, and now considering the multiplica-
the well-known K-SVD algorithm (Aharon et al., 2006) is used tion ®x as an element-wise product along the dimensibrin
to carry out spatial or temporal EEG dictionary learning.eTh the multichannel model, a same monochannel atom is linearly
spatial learning is fficient and can be viewed as a general-diffused in the dferent channels (imposing a rank-1 matrix).
ization of the N-Microstates algorithm (Pascual-Marquakt  Whereas in the multivariate model illustrated in Fig. 1(t)gh
1995). Conversely, results of the temporal learning areant  each component has its own atom, forming a flexible multi-
vincing, mainly because the shift-invariant model is na@dis = component atom, multiplied by one deient. The diferences

In this section, the general multivariate approach intoedh
in (Barthelemy et al., 2012) is adapted to the context of the
EEG. The underlying model is first detailed, and then the meth
ods are explained: multivariate orthogonal MP (M-OMP) and
multivariate dictionary learning algorithm (M-DLA).

3.1. Multivariate model



between multichannel and multivariate models are detailed ' ' ' ' '

(Barthelemy et al., 2012). MWNM ! 4
h I ‘ \ =

3.2. Multivariate methods M\W'¢" V V]

A brief description of the multivariate methods is given in
this paragraph, as all of the computational details can bedo
in (Barthelemy et al., 2012). Note that these methods are de-
scribed in a shift-invariant way in (Baghemy et al., 2012), but
for more simplicity, a non-shift-invariant formalism isegin
this section, with the atoms dictionady. First, remark that

the OMP (Pati et al., 1993) is an optimal version of the MP, W l. ul W ; ]
as the provided cdBcients vectorx is the least-squares solu- MVV
tion of Eq. (2), contrary to the MP. The multivariate OMP is v(‘ ¥M \ﬁ

the extension of the OMP to the multivariate model described

e
=
=V

TR2EE L
§§
=
&

previously. At the current iteratiok, the algorithm selects the 0 50 100 150 200 250

atom that produces the strongest decrease (in absolute)valu Time (samples]

in the mean square error (Msﬁf)k‘lui. Denoting the current

residue ag“ ! = xmém + €<, we have: Figure 2: EEG signajp4 sampled at 250 Hz witft =22 channels.
A ”i T k-1 k-1
~oxn =2Tr(¢m € 7)=2 <€ ,¢m> , (9)  favour the learning (Experiment 2). Moreover, only two hy-

potheses are followed in this approach: EEG noise is a Gaus-
using the derivation rules of (Petersen and Pedersen, 2808) sian additive noise, and EEG events can be considered as sta-
the selection step chooses the maximal multivariate spadal  tistically repeated following the same stimulus. There raoe
uct: spatial or temporal assumptions made on the dictionary: the
learning results are data-driven at most.

mk = arg maxn| (ek’l, ¢m> | , (10)
C
= arg max, Z (ek‘l[c],¢>m[c]> . (11) 4. Experiment 1: dictionary learning and decompositions
c=1
Consequently, selection (10) is the multivariate extemsicse- Two databases with fierent numbers of electrodes are used
lection (3), with no more considerations about channelarpol to test the genericity of the proposed method. The following
ties as for selections (4) and (5). two experiments aim at showing that multivariate learned ke

Concerning the M-DLA, a training set of multivariate sig- N€lS are informative (Experiment 1) and interpretable @xp
iment 2) in a low signal-to-noise (SNR) ratio context. Insthi

) ] . ) first experiment, the algorithms presented are applied 16 EE
variables). In M-DLA, each triay, is treated one at a time. g5 They are compared to other decomposition methods to

This is anonline alternation between two steps: a multivariate highlight their model novelty and their representativefger
sparse approximation and a multivariate dictionary updet® 1 15nces.

multivariate sparse approximation is carried out by M-OMP:

nals {yp}z=1 is considered (the indep is added to the other

Xp = arg miny || yp - (I)x“2 st Xl < K, (12) 4.1. EEG data

and the multivariate dictionary update is based on maximum Real data are used in the following experiments and compar-

likelihood criterion (Olshausen and Field, 1997), on the asisons. Dataset 2a (Tangermann et al., 2012) from BCI Compe-
sumption of Gaussian noise: tition 1V is considered. There are four classes of motor sask

but they are not taken into account in this paper. EEG signals
® = arg min, || yp — OXp ||2 s.t.¥YmeNy, llgnll=1.  (13)  are sampled at 250 Hz usi@= 22 channels. Compliance to

our model is natural, as signals are organized into triafsiah
This dictionary update step is solved by a stochastic gnadie consists ofN = 501 temporal samples, during which subject
descent. At the end of the M-DLA, the learned dictionary isis asked to perform one among four specific motor tasks. Data
adapted to the training set. In the following of this artjcle come from 9 subjects, and the trials are divided in a traisigtg
the presented multivariate methods are used in a shiftiama  and a testing set. Each set is composeR ef288 signals.
way. Raw data are filtered between 8 and 30 Hz (motor imagery con-

Besides applying the M-DLA on high-noised data, the evo-cernsu andg bands) and zero-padded. Data resulting from this

lution of the kernels length has been improved (Experiment Jreprocessing are the inputs of the M-DLA. The first samples
and 2) and specific EEG activities have been time-localived tof the EEG signay,-1 are plotted in Fig. 2.

4



4.2. Models and comparisons

C = 22 channels. In Fig. 3 and 4, at the top, amplitudgs ¢m

M-DLA is applied to the training set of the first subject, and (ordinate) of one atom are represented as a function of sam-

a dictionary ofL = 20 kernels is learned with 100 iteratiohs

Armplitudes

Reduced frequencies

10 20 30
Time (sarmples)

a0

Figure 3: Real Gabor atom used with MMPor MMP_2: the temporal profiles
of each channel (top) and the time-frequency visualizatatt¢m).

o

o

Armnplitudes

-0.1

Reduced frequencies

10 20
Time (samples)

30

Figure 4: Complex Gabor atom used with MMPor MMP_4: the temporal
profiles of each channel (top) and the time-frequency vigatitin (bottom).
Only the phase of the flerent channels varies, not the spectral content.

To show the novelty of the proposed multivariate model,

the existing multicomponent dictionaries are comparedh wi

2During the DLA, the control of the kernels length is tricky dioethe low
signal-to-noise ratio of the data. For the original M-DLAgtkernels were
first initialized on an arbitrary lengtfi’, and they were then lengthened or
shortened during the update steps, depending on the energgnee in their
edges. Nevertheless, with these rough data, kernels tdaddthened without
stopping. So, a new control method is set up: a limit ledfthborders the
kernels over the first/3 of the iterations, and then, the border is fixed ¥+-40
for the last iterations. This allows kernels to begin to @mge, and to then have
the possibility to obtain quasi-null edges, which avoidscdntinuities in the
latter decompositions using this dictionary.

ples (abscissa), and on the bottom, spectrograms in reduced
frequencies (ordinate) are represented as a function gblsam
(abscissa). A Gabor atom is plotted in Fig. 3, based on MMP
(Gribonval, 2003) or on MME2 (Durka et al., 2005), which
gives the same kind of atoms. Gabor atom parameters are ran-
domly chosen. In Fig. 4, a Gabor atom is plotted based on
MMP_3 (Matysiak et al., 2005; Gratkowski et al., 2007) or on
MMP_4 (Sieluizycki et al., 2009b). Since this atom has a spe-
cific phase for each channel, it is more adaptive than the first
one. Nevertheless, in these two cases, the spectral cdatent
identical in each channel.

In Fig. 5, two learned multivariate kernels are plottee;, 9
(top) andl = 17 (bottom). Components of Fig. 5(top) are sim-
ilar, that is adapted to fit data structured like siggabround
sampleg = 175 of Fig. 2. Components of Fig. 5(bottom) are
not so diferent: they appear to be continuously and smoothly
distorted, which corresponds exactly to data structukeddig-
nal y; around samples = 75 of Fig. 2. Moreover, they
have various spectral contents, as seen in Fig. 6, contrary
to Gabor atoms, which look like monochannel filter banks
(Fig. 3(bottom) and 4(bottom)). In the multivariate mode=lch
channel has its own profile, and so its own spectral content,
which gives an excellent spatial adaptability.

Amplitudes

Armplitudes

40
Time (samples)

Figure 5: Kernels of the learned multivariate dictionaryrrig| =9 (top) and
kernell =17 (bottom).

4.3. Decompositions and comparisons

In this paragraph, the reconstructive power of thi&edent
dictionaries and multichannel sparse algorithms is evetlua

In a first round, the training set of the first subject is con-
sidered. Learned dictionaries (LD) used with M-OMP, and
a Gabor dictionary used with MMB, MMP_2, MMP_3 and
MMP_4, are compared. The Gabor dictionary hs= 30720
atoms. Two learned dictionaries are used: one Wwith20 ker-
nels (learned in Section 4.2), which gives ~ 10000 atoms;



Reduced fregquencies

Reduced frequencies

Reduced frequencies

20

40 60
Tirne (sarmples)

100

Figure 6: Spectrograms of three components of the kéradl7: component
¢=10 (top), componert=14 (middle), componernt= 20 (bottom).

and one withL = 60 which givesM ~ 30000 atoms, which is
a size similar to the Gabor dictionary. For each c&ssparse
approximations are computed on the training set, and tloarec
struction rate is then computed. This is defined as:

= llyol
The ratep is represented as a function Kfin Fig. 7. First,

MMP_1 (blue dash-dot line) is better than MMP(blue dot-
ted line), and MMP3 (green solid line) is better than MM#

p=1- (14)

Tl+

(green dashed line), because the selection of Eq. (5) is mor¢
constraining than selection of Eqg. (4) as well explained in

(Barthelemy et al., 2012). Then, MMB and MMP4 are better
than the other MMPL and MMP.2 due to their spatial flexibil-
ity on phases atoms. Finally, learned dictionaries (blautids
lines) are better than other approaches, even with thresstim
fewer atoms. These two representations (LD wite 20 and

L = 60) are more compact since they are adapted to the stud
ied signals. If learned kernels code more energy than Gabol
atoms, the learned dictionary takes more memory (for storag

or transmission) than the parametric Gabor dictionaryntide
cal results are observed in (Bagthmy et al., 2012), but only in

subjects. Thus, the testing sets of the 9 subjects are nasicton
ered. In the same walif-sparse approximations are computed
with the LD (L = 60) on the diferent testing sets, and the rates
p are plotted as a function &€ in Fig. 8. The diferent curves
are very similar and look like the curve of LD (black soliddin
with stars) in Fig. 7, that shows the intra-user and int&rus
robustness of the learned representation.

Since they have good representation properties, the léarne
dictionaries can be useful for EEG data simulation. Moreove
as noted in (Téic and Frossard, 2011), learned dictionaries
overcome classical approaches for processing such assdenoi
ing, etc.

06f e
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T ol —— Gabor + MMP 1
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Gabor + MMP 3
0.1 Gabor + MMP 4 i
—&— LD{L=20) + M-OMP
—+— LD({L=F0) + M-CMP
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Sparsity K of the approximation
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Figure 7: Reconstruction rageon the training set as a function of the sparsity
K of the approximation of the ffierent dictionaries and algorithms.
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a monochannel case: the learned dictionary overcomesigener

ones for sparse reconstructive power.

The generalization is tested in a second round, determifiing
the adapted representation that was learned on the traietrg
the subject 1, remaindticient for other acquisitions and other

6

Figure 8: Reconstruction rateof the M-OMP used with the LDL(= 60),
function of the sparsitK of the approximation on the 9 testing sets.
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5. Experiment 2: evoked potentialslearning 2009) gives a least-squares (LS) estimation that takesaitto

] . count overlaps of consecutive target stimuli, defined as:
The previous experiment has shown the performances and

the relevance of such adaptive representations. The qoésti dp300= arg min, || Y — D¢ &

to know if these learned kernels can capture behaviorat-stru - (D'D)!DTY. 17)

tures with physiological interpretations. To answer, wé foi

cus on the P300 evoked potential. This estimation is optimal if there is no variability in laies
and amplitudes. Furthermore, without overlap, this ediona

5.1. P300 data is equivalent to the grand average (GA) carried out on ebche

In this section, the experiment is carried out on dataset 2b cz;ignals{yp}P_1:

the P300 speller paradigm (Blankertz et al., 2004), from BCI P

Competition Il. To sum up, a subject is exposed to visual stim _ 1 18

uli. When it is a target stimulus, a P300 evoked potential is $pP300 = EDTY =5 ZYp- (18)

provoked in the brain of the subject 300 ms after, contrary to p=1

non-target stimulus. The fiiculty is the low SNR of the P300

. However, these two multivariate estimations make stronrg as
evoked potentials.

sumptions on latencies and amplitudes, which is a lack oifflex

sicigrEEIS tﬂititsnfrgplzt;iil S?Sr%gthit'g ﬁl'ca;?;a;gﬁj ?;JSL i?izn- bility. Based on model (16), we propose to use dictionargriea
9 P q pies, ing, which can be viewed as an iterative online least-sguare

: . P
parsed inP epoched 5|gnal{3/p}p=l of N samples.D € RN oatimation:

is a Toeplitz matrix, the first column of which is defined such b

thatD(tP, 1) = 1, wheret? is the onset of theth target stimu- min min —x -1 P st -1 19
lus. Acquired signals hav@ = 64 channels and are sampled at g Zl o | Yo = Xp wt= 7o) [ st lpll=1, - (19)
240 Hz. They are filtered between 1 and 20 Hz by a 3rd order

Butterworth filter. with the variabler restricted to an interval around 300 ms. The
estimated kernel is denoted By300
5.2. Review of models and methods Note that spatial filtering is not considered, which progide

enhanced but projected signals (for example, the secondfpar

There are two models for the P300 waveform. €
VWBt00 (Rivet et al., 2009)).

RNXC | the classical additive model can be written as:

Y = dpaoo+ €, (15) 5.3. Learning and qualitative comparisons

M-DLA is applied to the training se{typ}z_l, with K = 1.
The grand average estimatiaagoois used for initialization, to
provide a warm start, and the M-DLA is used on 20 iterations

y(t) = X Yp3odt — 7) + €(t) . (16)  onthe training set. The kernel lengthlis= 65 samples, which
represents 270 ms, and it is constant during the learning. Th
Note that Eq. (6) is retrieved, but reduced to one kerhet 1)  optimal parameter is searched only on an interval of 9 points
and in a multivariate case. centered around 300 ms after the target stiméilushich gives

One classical way for working on P300 is théctionary  alatency tolerance af 16.7 ms. B
design which uses a templaté.e. a pre-determined pattern  To be compared to the kerngbsgo estimationsppsoe and
designed to fit a P300 waveform. Aa priori is thus in-  ¢p3go are firstly limited to 65 samples and then normalized.
jected through this prototype, generally with the shiftarniant ~ Note that considered patterns h&ve= 64 channels and they
model. For example, monochannel patterns as Gaussian funare not spatially filtered to be enhanced. Multivariate temp
tions (Lange et al., 1997), time-limited sinosoidsSiiavski  ral patterns are plotted in Fig. 9, withpsgo estimated by grand
and Verleger, 1999), generic mass potentials (Melkoniah.et average (a)gpa0o estimated by least-squares (b) afghoo by
2003), Gamma functions (Li et al., 2009) and Gabor functiongnultivariate dictionary learning (c). The amplitude is givin
(Jorn et al., 2011) have been used to match the P300 and otherdinate and the samples in abscissa. Patterns (a) ande(b) ar
evoked potentials. Multichannel patterns have been inted  very similar, whereas kernel (c) is thinner and the comptsen
in (Gratkowski et al., 2008) using Gabor temporal atoms andre in-phase.
multichannel cofficients based on Bessel functions which try
to model the Spf?ltla_ll erendenme_s betw_een channels. 3However, an edgefect is observed during the learning: temporal shifts

Another way isdictionary learning which learns EEG pat- 7p of plentiful signals are localized on the interval edgesméans that the
terns in a data-driven way. Berent recent methods al- global maximum of the correlations has not be found in thisrimte andzy,
low the learning of evoked potentials, but with monochannels a value by default. This can be due to the high level of ntia¢ prevents
(D’Avanzo et al., 2011: Nonclercq et al., 2012) or multichan It(he cor~relat|.0n from detecting the P_30_0 position. SuchadEgvleI damage the

i kernelypznoif they are used for the dictionary update, since the shifupeeters
nel patterns (Wu and Gao, 2011). Here, we are interested ig}e not optimal. To avoid this, the kerel update is not cdrat for such
learning multivariate patterns. Based on Eq. (15), (Rivetle  signals.

and, with shift-invariance and an amplitude, it gives a nflee
ible temporal model (&kowski and Verleger, 1999):
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Figure 9: Multivariate temporal patterns of the P300 compbtethe grand average (a), by least-squares (b) and by midtigatictionary learning (c). Sampled
at 240 Hz, the amplitudes are given as a function of the temparaples.

{a) {b) (c)

Figure 10: Spatial patterns of the P300 computed by the greerdige (a), by least-squares (b) and by multivariate diatiptearning (c).

Associated spatial patterns are composed of the amplitudeés give a signal-to-noise ratio 6f10 dB. First, the GA estima-
of the temporal maximum of the patterns. They are then plottion is computed for this dataset. Secondly, this estimaiso
ted in Fig. 10, where (a) is the pattern estimated by the grandsed for the initialization of M-DLA, which is then applied t
average, (b) by least-squares, and (c) by multivariatéodiaty ~ the dataset. This experimentation is carried out 50 times fo
learning. We observe that, similarly to the temporal compardifferent standard deviations of the shift parameters (given in
ison, patterns (a) and (b) are quite similar. The topogaphisamples number). The patterns estimated from these two ap-
scalp (c) is smoother than the others and does not exhibfi-a suproaches are compared quantitatively, computing theiriimax
plementary component behind the head. But, as the true P3@0Bum correlations with the reference pattern. Since theepet
reference pattern is unknown, it idiétult to have a quantitative are normalized, the correlations absolute values are leet@e

comparison between these patterns. and 1.
- . Averaged correlations are plotted in Fig. 11 as a function of
5.4. Quantitative comparisons by analogy the standard deviation of the shift parameters. If the regov

A solution consists in Va”dating the previous case by ana|.perf0rmances of GA and M-DLA are similar for small standard
ogy with a simulation case. A P300 pattern previous|y ledrne deviations, M-DLA is better than GA when the P300 patterns
with C = 64 channels is chosen to be the reference P300 cire WIde'y shifted. This shows quantitatively that the shif
the simulation.P = 1000 signals are created using this refer-invariant dictionary learning is better than the grand ager
ence P300 with shift parameters drawn from a Gaussian-distrBPproach (equivalent to the LS estimation in this case esinc
bution. Spatially correlated noise, reproduced with a Fiferfi ~ there is no overlap between signals).
learned on EEG data (Anderson et al., 1998), is added tolsigna Temporal patterns from one experiment are plotted in Fig. 12
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Figure 12: Temporal patterns of the P300: the referenceh@grtand average (b) and the multivariate dictionary legr(gh

tracted due to its shift-invariance flexibility.
As shift-invariance is not easily integrated into EEG pgce

oget
ing, the hypothesis of temporal stationarity is often eatout
D96 through the covariance matrix (Blankertz et al., 2008) @& th
Dol grand average (Hamner et al., 2011). This experiment shows
that this hypothesis is rough and provides a loss of temporal
5092t information. Although the shift-invariance model and tipas
® tial flexibility of our approach is an obvious improvemertet
g ber goal is not to say that the learned P300 kernel is better thean t
naa b other$, but to present a new estimation method of EEG pat-
terns, with the prospect to move forward with the knowledge
086 of the P300, and to improve the processings based on the P300
el estimation.
This experiment shows that learned kernels are interdestab
082, : " s However, due to the high noise, in order to be interpretet wit

a physiological meaning, the dictionary learning algarthas

to time-localize activities of interest on intervals asgmeted

in Experiment 2, contrary to Experiment 1. Note that the M-
DLA can be applied to other kinds of evoked potentials, such
as mismatch negativity and the N200, among others.

Standard deviation of shift parameters

Figure 11: Correlations averaged over 50 experiments ascéidarof the stan-
dard deviation of shift parameters, for the grand average) (@W the multi-
variate dictionary learning (M-DLA).

5.5. Influence of the channels reference

In the previous experiments, M-DLA seems to rather prefer
atterns with in-phase components, contrary to GA and LS es-
mations. Moreover, as observed in (Matysiak et al., 2005)
the choice of the channels reference influences the comfnen
polarities. To measure what are the real influences on the re-
sults, experiment of Section 5.3 is reproduced withféedént

annels reference.
Data used in Section 5.3 are linearly transformed to provide
an average reference electrode configuration. P300 psitieen

with a standard deviation af = 6. Note that the reference
P300 pattern (a) comes from learning of Section 5.3, but witrﬁ
an interval of 1. It is thus estimated with signals givingithe
maximum correlations at 300 ms exactly. First, we obserae th
averaging shifted patterns gives a spread estimated pgtier
compared to the reference one (a). Indeed, the pattern (b)
the result of the convolution between the reference (a) hed t
Gaussian distribution of the shift parameters. Then, thB M
pattern (c) is thinner than (b). This confirms the resultsivtetd
for the correlations. By analogy, we can assume that the-refe
ence P300 is a thin pattern, spread by the average of theahift  4\jreover, between patterns plotted in Fig. 9(c) and 12(@fh estimated
occurrences. The M-DLA allows a thinner pattern to be ex-by M-DLA, we are not able to say which is the best.
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Figure 13: Multivariate temporal patterns of the P300 compbiethe grand average (a), by least-squares (b) and by nridteaictionary learning (c) for average
reference electrode. Sampled at 240 Hz, the amplitudes ag g&/a function of the temporal samples.

Figure 14: Spatial patterns of the P300 computed by the gremchge (a), by least-squares (b) and by multivariate diatiptearning (c) for average reference
electrode.

estimated by GA and LS, as well as by M-DLA which is appliedfile in each component, and with a shift-invariance used for
with the same parameters. Multivariate temporal pattefns athe temporal model that is obviously pertinent for EEG data.
the P300 are plotted in Fig. 13: for the grand average (a), fomhis provides multivariate and shift-invariant temporadtio-
least-squares (b) and for multivariate dictionary leagnfn).  nary learning. Our approach has been shown to outperform
We observe that M-DLA is able to learn a multivariate patternthe Gabor dictionaries in terms of their sparse represeatat
with opposite phases. power;i.e. the number of atoms necessary to represent a fixed
In the same way, spatial patterns of the P300 are plotted ipercentage of the EEG signals. Specifically high-energyend
Fig. 14 for the grand average (a), for least-squares (b) and f peated patterns have been learned and the resulting @iction
multivariate dictionary learning (c). We observe that the-t has been shown to be robust to intra-user and inter-user vari
gential source, causing opposite polarities behind thd hed  ability. Interestingly, the proposed approach has also laéde
which was not extracted in Fig. 10(c), is learned in Fig. 14(c to extract custom patterns in a very low signal-to-noisérat
context. This property is here demonstrated in the pagicul

) . . context of the P300 signals, which are repeated and approxi-

6. Discussion and Conclusions mately time-localized. In the context of the EEG, the result

After reviewing the classical time-frequency approaclues f ng?/med can be interpreted according to two distinct it

representing EEG signals, our dictionary-based method has
been described. It is characterized by a spatial modelresfe First, EEG signal interpretation entails the analysis ajéwu
to as multivariate, that is very flexible, with one specifiopr amounts of multicomponent signals in the temporal domain.
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Consequently the best representation domain for neurdphysBlankertz B, Tomioka R, Lemm S, Kawanabe MiiNer K. Optimizing spa-
ologists would be the ability tofciently concentrate the infor- tial filters for robust EEG single-trial analysis. |IEEE SégiProcess Mag

. . . ] . 2008;41:581-607.
mation using a small number of active and informative Compobaubechies |. Time-frequency localization operators: axggdc phase space

nents. In this sense, our sparse approach is shown to cwtperf — 4pproach. IEEE Trans Inf Theory 1988:34:605-12.
classical approaches based on Gabor atoms. In other woeds, a’Avanzo C, Schif S, Amodio P, Sparacino G. A Bayesian method to estimate
low and fixed number of active atoms. our method is able to bet- Single-trial event-related potentials with applicatiortite study of the P300
. . . o . . variability. J Neurosci Methods 2011;198:114-24.

t[er rent.:jer the I,nformat_lon avallable Ir_] Im.tlal EEG signdlbis Durka P. Matching Pursuit and Unification in EEG Analysis.teth House,
is also interesting for simulating multivariate EEG datheTs- 2007.
sue of generating realistic multivariate EEG signals hdséd  Durka P, BIinowska_ K. A unified time-frequency parametrizatiaf EEGs.
become recurrent over the past few years, to provide experi- 'EEE Eng Med Biol Mag 2001;20:47-53. .

tallv validated alaorithms in a tiahtlv controlled cextt Durka P, Matysiak A, Maihez-Montes E, Valés-Sosa P, Blinowska K. Mul-
mentally : . g ) ghtly . tichannel matching pursuit and EEG inverse solutions. J d&miMethods
As shown in our first experiment, our approach céiceently 2005;148:49-59.
represent the diversity of EEG signals. Consequently, we be=nganK, Aase S, Husgy J. Multi-frame compression: theory asijd. Signal

lieve that it represents a relevant and competitive canelifia Process 2000;80:2121-40.
P P Engan K, Skretting K, Husgy J. Family of iterative LS-basedtidhary learn-

realistic EEG_ generation. ) . o ing algorithms, ILS-DLA, for sparse signal representatidigit Signal Pro-
Secondly, it should be kept in mind that stroa@riori con- cess 2007;17:32-49.

ditions are considered by methodologists when they arddons Gfat_k,OWSﬁ' bM' Ha(;{elslef? J, /l\f?”dt-N!ellsend'--_ Ch?” A ZaﬂOVVD';;O?PS-

ering pre-defined models based on generic dictionaries. avhil fr']tf'(,’\;'e% o008 a7 06 Ay spatial and time-frequency nsoddethods

these assumptions can be accurate enough in the case ef 0Sgjlatkowski M, Haueisen J, Arendt-Nielsen L, Zanow F. Toppdsic match-

latory activities €.9.,Fourier, wavelets or Gabor), various EEG  ing pursuit of spatio-temporal bioelectromagnetic data. Plektrotech

patterns cannot befficiently represented through these dictio- _ 2007;83:138-41.

. e ; Gribonval R. Piecewise i tion. In: FSBGE 5207. 2003. p.
naries. The flexibility of our approach relies on the factttha = oen o, cCoWISe linearsource separation. in P

: : ne fa 297-310.
shiftable kernels are learned directly from data. This pisiof Hamner B, Chavarriaga R, del R. Mit J. Learning dictionaries of spatial and
particular interest for evoked potentials, or event-egtoten- temporal EEG primitives for brain-computer interfaces. In:rkghop on
tials. To conclude, multivariate learned kernels are imfative structured sparsity: leaming and inference ; ICML 2011120

dint tabl hich i llent for EEG vsi Jaskowski P, Verleger R. Amplitudes and latencies of singk-tERP’s
and interpretable, which 1s excellent tor analysis. estimated by a maximum-likelihood method. |EEE Trans Biomed Eng

For the prospects relating to a brain-computer interface 1999;46:987-93. _
(BCl), on the one hand, classical BCl methods can be improveéflfg Mé_Siellt'ZtyPlf C, Mattysiat!( M.nygi%r_fwicz J, kScdheich Héa%urléa P piig

H H H il . Slngle-trial reconstruction of auditory evoked magn S means
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as noted in (Tic and Frossard, 2011), dictionaries learned;ost p, vandergheynst P, Lesage S, Gribonval R. Learningndzaht dictionar-
with discriminative constraints ardfeient for classification. ies with translation invariance property: the MoTIF algom. In: Work-
The future prospect will thus be to modify the proposed multi ~ shop Structure et parcimonie pour la regentation adaptative de signaux
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